1
|
Wang L, Gao J, Ma J, Sun J, Wang Y, Luo J, Wang Z, Wang H, Li J, Yang D, Wang J, Hu R. Effects of hyperhomocysteinemia on follicular development and oocytes quality. iScience 2024; 27:111241. [PMID: 39563894 PMCID: PMC11574796 DOI: 10.1016/j.isci.2024.111241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/12/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
In patients with polycystic ovary syndrome (PCOS), the concentration of homocysteine (Hcy) in follicular fluid is inversely correlated with oocyte and embryo quality. Nevertheless, other metabolic abnormalities associated with PCOS may also impact oocyte and early embryo quality. Therefore, it remains uncertain whether reproductive function is affected in patients without PCOS with hyperhomocysteinemia (HHcy). Here, we observed reduced fertility, increased ovarian atretic follicles, and reduced oocyte maturation rates in HHcy mice. Proteomic analyses revealed that HHcy causes mitochondrial dysfunction and reduced expression of zona pellucida proteins (ZP1, ZP2, and ZP3) in oocytes. Transmission electron microscopy confirmed abnormal formation of the zona pellucida and microvilli in oocytes from HHcy mice. Additionally, in vitro fertilization (IVF) demonstrated a reduction in the rate of 2-cell embryo formation in HHcy mice. These findings reveal that HHcy reduces female reproductive longevity by affecting follicular development and oocyte quality.
Collapse
Affiliation(s)
- Lu Wang
- Ningxia Medical University, General Hospital of Ningxia Medical University, Ningxia, China
| | - Jinmei Gao
- Ningxia Medical University, General Hospital of Ningxia Medical University, Ningxia, China
| | - Jie Ma
- Ningxia Medical University, General Hospital of Ningxia Medical University, Ningxia, China
| | - Jing Sun
- Ningxia Medical University, Ningxia, China
| | - Yajie Wang
- Ningxia Medical University, General Hospital of Ningxia Medical University, Ningxia, China
| | - Jia Luo
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia, China
| | | | - Hui Wang
- Reproductive Medicine Center, Yinchuan Women and Children Healthcare Hospital, Ningxia, China
| | - Jialing Li
- Reproductive Medicine Center, General Hospital of Ningxia Medical University, Ningxia, China
| | - Danyu Yang
- Ningxia Medical University, General Hospital of Ningxia Medical University, Ningxia, China
| | - Jinfang Wang
- Department of Obstetrician, General Hospital of Ningxia Medical University, Ningxia, China
| | - Rong Hu
- Reproductive Medicine Center, General Hospital of Ningxia Medical University, Ningxia, China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia, China
| |
Collapse
|
2
|
Notario Manzano R, Chaze T, Rubinstein E, Penard E, Matondo M, Zurzolo C, Brou C. Proteomic landscape of tunneling nanotubes reveals CD9 and CD81 tetraspanins as key regulators. eLife 2024; 13:RP99172. [PMID: 39250349 PMCID: PMC11383530 DOI: 10.7554/elife.99172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Tunneling nanotubes (TNTs) are open actin- and membrane-based channels, connecting remote cells and allowing direct transfer of cellular material (e.g. vesicles, mRNAs, protein aggregates) from the cytoplasm to the cytoplasm. Although they are important especially, in pathological conditions (e.g. cancers, neurodegenerative diseases), their precise composition and their regulation were still poorly described. Here, using a biochemical approach allowing to separate TNTs from cell bodies and from extracellular vesicles and particles (EVPs), we obtained the full composition of TNTs compared to EVPs. We then focused on two major components of our proteomic data, the CD9 and CD81 tetraspanins, and further investigated their specific roles in TNT formation and function. We show that these two tetraspanins have distinct non-redundant functions: CD9 participates in stabilizing TNTs, whereas CD81 expression is required to allow the functional transfer of vesicles in the newly formed TNTs, possibly by regulating docking to or fusion with the opposing cell.
Collapse
Affiliation(s)
- Roberto Notario Manzano
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and Infection, CNRS 18 UMR 3691, Institut Pasteur, Université Paris Cité, Paris, France
- Sorbonne Université, ED394 - Physiologie, Physiopathologie et Thérapeutique, Paris, France
| | - Thibault Chaze
- Proteomics Platform, Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut Pasteur, Paris, France
| | - Eric Rubinstein
- Centre d'Immunologie et des Maladies Infectieuses, Inserm, CNRS, Sorbonne Université, CIMI-Paris, Paris, France
| | - Esthel Penard
- Ultrastructural BioImaging Core Facility (UBI), C2RT, Institut Pasteur, Université Paris Cité, Paris, France
| | - Mariette Matondo
- Proteomics Platform, Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut Pasteur, Paris, France
| | - Chiara Zurzolo
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and Infection, CNRS 18 UMR 3691, Institut Pasteur, Université Paris Cité, Paris, France
| | - Christel Brou
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and Infection, CNRS 18 UMR 3691, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
3
|
Kim JB, Bae JE, Park NY, Kim YH, Kim SH, Hyung H, Yeom E, Choi DK, Jeong K, Cho DH. TAAR8 Mediates Increased Migrasome Formation by Cadaverine in RPE Cells. Curr Issues Mol Biol 2024; 46:8658-8664. [PMID: 39194727 DOI: 10.3390/cimb46080510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Migrasomes, the newly discovered cellular organelles that form large vesicle-like structures on the retraction fibers of migrating cells, are thought to be involved in communication between neighboring cells, cellular content transfer, unwanted material shedding, and information integration. Although their formation has been described previously, the molecular mechanisms of migrasome biogenesis are largely unknown. Here, we developed a cell line that overexpresses GFP-tetraspanin4, enabling observation of migrasomes. To identify compounds that regulate migrasome activity in retinal pigment epithelial (RPE) cells, we screened a fecal chemical library and identified cadaverine, a biogenic amine, as a potent migrasome formation inducer. Compared with normal migrating cells, those treated with cadaverine had significantly more migrasomes. Putrescine, another biogenic amine, also increased migrasome formation. Trace amine-associated receptor 8 (TAAR8) depletion inhibited migrasome increase in cadaverine-treated RPE cells, and cadaverine also inhibited protein kinase A phosphorylation. In RPE cells, cadaverine triggers migrasome formation via a TAAR8-mediated protein kinase A signaling pathway.
Collapse
Affiliation(s)
- Joon Bum Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji-Eun Bae
- KNU G-LAMP Research Group, KNU Institute of Basic Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Na Yeon Park
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yong Hwan Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seong Hyun Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyejin Hyung
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eunbyul Yeom
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong Kyu Choi
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kwiwan Jeong
- Bio Industry Department, Gyeonggido Business & Science Accelerator, Suwon 16229, Republic of Korea
| | - Dong-Hyung Cho
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- Organelle Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
4
|
Dharan R, Sorkin R. Tetraspanin proteins in membrane remodeling processes. J Cell Sci 2024; 137:jcs261532. [PMID: 39051897 DOI: 10.1242/jcs.261532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Membrane remodeling is a fundamental cellular process that is crucial for physiological functions such as signaling, membrane fusion and cell migration. Tetraspanins (TSPANs) are transmembrane proteins of central importance to membrane remodeling events. During these events, TSPANs are known to interact with themselves and other proteins and lipids; however, their mechanism of action in controlling membrane dynamics is not fully understood. Since these proteins span the membrane, membrane properties such as rigidity, curvature and tension can influence their behavior. In this Review, we summarize recent studies that explore the roles of TSPANs in membrane remodeling processes and highlight the unique structural features of TSPANs that mediate their interactions and localization. Further, we emphasize the influence of membrane curvature on TSPAN distribution and membrane domain formation and describe how these behaviors affect cellular functions. This Review provides a comprehensive perspective on the multifaceted function of TSPANs in membrane remodeling processes and can help readers to understand the intricate molecular mechanisms that govern cellular membrane dynamics.
Collapse
Affiliation(s)
- Raviv Dharan
- School of Chemistry , Raymond & Beverly Sackler Faculty of Exact Sciences , Tel Aviv University, 6997801, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems , Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Raya Sorkin
- School of Chemistry , Raymond & Beverly Sackler Faculty of Exact Sciences , Tel Aviv University, 6997801, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems , Tel Aviv University, 6997801, Tel Aviv, Israel
| |
Collapse
|
5
|
Dharan R, Vaknin A, Sorkin R. Extracellular domain 2 of TSPAN4 governs its functions. BIOPHYSICAL REPORTS 2024; 4:100149. [PMID: 38562622 PMCID: PMC10982557 DOI: 10.1016/j.bpr.2024.100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
Tetraspanin 4, a protein with four transmembrane helices and three connecting loops, senses membrane curvature and localizes to membrane tubes. This enrichment in tubular membranes enhances its diverse interactions. While the transmembrane part of the protein likely contributes to curvature sensitivity, the possible roles of the ectodomains in curvature sensitivity of tetraspanin 4 are still unknown. Here, using micropipette aspiration combined with confocal microscopy and optical tweezers, we show that the extracellular loop 2 contributes to the curvature sensitivity and curvature-induced interactions of tetraspanin 4. To this end, we created truncated tetraspanin 4 mutants by deleting each of the connecting loops. Subsequently, we pulled membrane tubes from giant plasma membrane vesicles containing tetraspanin 4-GFP or its mutants while maintaining controllable membrane tension and curvature. Among the mutations tested, the removal of the extracellular loop 2 had the most significant impact on both the curvature sensitivity and interactions of tetraspanin 4. Based on the results, we suggest that the extracellular loop 2 regulates the affinity of tetraspanin 4 towards curved membranes and affects its lateral interactions.
Collapse
Affiliation(s)
- Raviv Dharan
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Alisa Vaknin
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Raya Sorkin
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Frolikova M, Sur VP, Novotny I, Blazikova M, Vondrakova J, Simonik O, Ded L, Valaskova E, Koptasikova L, Benda A, Postlerova P, Horvath O, Komrskova K. Juno and CD9 protein network organization in oolemma of mouse oocyte. Front Cell Dev Biol 2023; 11:1110681. [PMID: 37635875 PMCID: PMC10450504 DOI: 10.3389/fcell.2023.1110681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Juno and CD9 protein, expressed in oolemma, are known to be essential for sperm-oocyte binding and fusion. Although evidence exists that these two proteins cooperate, their interaction has not yet been demonstrated. Here in, we present Juno and CD9 mutual localization over the surface of mouse metaphase II oocytes captured using the 3D STED super-resolution technique. The precise localization of examined proteins was identified in different compartments of oolemma such as the microvillar membrane, planar membrane between individual microvilli, and the membrane of microvilli-free region. Observed variance in localization of Juno and CD9 was confirmed by analysis of transmission and scanning electron microscopy images, which showed a significant difference in the presence of proteins between selected membrane compartments. Colocalization analysis of super-resolution images based on Pearson's correlation coefficient supported evidence of Juno and CD9 mutual position in the oolemma, which was identified by proximity ligation assay. Importantly, the interaction between Juno and CD9 was detected by co-immunoprecipitation and mass spectrometry in HEK293T/17 transfected cell line. For better understanding of experimental data, mouse Juno and CD9 3D structure were prepared by comparative homology modelling and several protein-protein flexible sidechain dockings were performed using the ClusPro server. The dynamic state of the proteins was studied in real-time at atomic level by molecular dynamics (MD) simulation. Docking and MD simulation predicted Juno-CD9 interactions and stability also suggesting an interactive mechanism. Using the multiscale approach, we detected close proximity of Juno and CD9 within microvillar oolemma however, not in the planar membrane or microvilli-free region. Our findings show yet unidentified Juno and CD9 interaction within the mouse oolemma protein network prior to sperm attachment. These results suggest that a Juno and CD9 interactive network could assist in primary Juno binding to sperm Izumo1 as a prerequisite to subsequent gamete membrane fusion.
Collapse
Affiliation(s)
- Michaela Frolikova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Vishma Pratap Sur
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Ivan Novotny
- Light Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Michaela Blazikova
- Light Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Jana Vondrakova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Ondrej Simonik
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Lukas Ded
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Eliska Valaskova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Lenka Koptasikova
- Imaging Methods Core Facility at BIOCEV, Faculty of Science, Charles University, Vestec, Czechia
| | - Ales Benda
- Imaging Methods Core Facility at BIOCEV, Faculty of Science, Charles University, Vestec, Czechia
| | - Pavla Postlerova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czechia
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, University of Life Sciences Prague, Prague, Czechia
| | - Ondrej Horvath
- Light Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Katerina Komrskova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czechia
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
7
|
Azimi FC, Dean TT, Minari K, Basso LGM, Vance TDR, Serrão VHB. A Frame-by-Frame Glance at Membrane Fusion Mechanisms: From Viral Infections to Fertilization. Biomolecules 2023; 13:1130. [PMID: 37509166 PMCID: PMC10377500 DOI: 10.3390/biom13071130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Viral entry and fertilization are distinct biological processes that share a common mechanism: membrane fusion. In viral entry, enveloped viruses attach to the host cell membrane, triggering a series of conformational changes in the viral fusion proteins. This results in the exposure of a hydrophobic fusion peptide, which inserts into the host membrane and brings the viral and host membranes into close proximity. Subsequent structural rearrangements in opposing membranes lead to their fusion. Similarly, membrane fusion occurs when gametes merge during the fertilization process, though the exact mechanism remains unclear. Structural biology has played a pivotal role in elucidating the molecular mechanisms underlying membrane fusion. High-resolution structures of the viral and fertilization fusion-related proteins have provided valuable insights into the conformational changes that occur during this process. Understanding these mechanisms at a molecular level is essential for the development of antiviral therapeutics and tools to influence fertility. In this review, we will highlight the biological importance of membrane fusion and how protein structures have helped visualize both common elements and subtle divergences in the mechanisms behind fusion; in addition, we will examine the new tools that recent advances in structural biology provide researchers interested in a frame-by-frame understanding of membrane fusion.
Collapse
Affiliation(s)
- Farshad C. Azimi
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Trevor T. Dean
- Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Karine Minari
- Biomolecular Cryo-Electron Microscopy Facility, University of California-Santa Cruz, Santa Cruz, CA 95064, USA;
| | - Luis G. M. Basso
- Laboratório de Ciências Físicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil;
| | - Tyler D. R. Vance
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Vitor Hugo B. Serrão
- Biomolecular Cryo-Electron Microscopy Facility, University of California-Santa Cruz, Santa Cruz, CA 95064, USA;
- Department of Chemistry and Biochemistry, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
8
|
Golani G, Schwarz US. High curvature promotes fusion of lipid membranes: Predictions from continuum elastic theory. Biophys J 2023; 122:1868-1882. [PMID: 37077047 PMCID: PMC10209146 DOI: 10.1016/j.bpj.2023.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/19/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023] Open
Abstract
The fusion of lipid membranes progresses through a series of hemifusion intermediates with two significant energy barriers related to the formation of stalk and fusion pore, respectively. These energy barriers determine the speed and success rate of many critical biological processes, including the fusion of highly curved membranes, for example synaptic vesicles and enveloped viruses. Here we use continuum elastic theory of lipid monolayers to determine the relationship between membrane shape and energy barriers to fusion. We find that the stalk formation energy decreases with curvature by up to 31 kBT in a 20-nm-radius vesicle compared with planar membranes and by up to 8 kBT in the fusion of highly curved, long, tubular membranes. In contrast, the fusion pore formation energy barrier shows a more complicated behavior. Immediately after stalk expansion to the hemifusion diaphragm, the fusion pore formation energy barrier is low (15-25 kBT) due to lipid stretching in the distal monolayers and increased tension in highly curved vesicles. Therefore, the opening of the fusion pore is faster. However, these stresses relax over time due to lipid flip-flop from the proximal monolayer, resulting in a larger hemifusion diaphragm and a higher fusion pore formation energy barrier, up to 35 kBT. Therefore, if the fusion pore fails to open before significant lipid flip-flop takes place, the reaction proceeds to an extended hemifusion diaphragm state, which is a dead-end configuration in the fusion process and can be used to prevent viral infections. In contrast, in the fusion of long tubular compartments, the surface tension does not accumulate due to the formation of the diaphragm, and the energy barrier for pore expansion increases with curvature by up to 11 kBT. This suggests that inhibition of polymorphic virus infection could particularly target this feature of the second barrier.
Collapse
Affiliation(s)
- Gonen Golani
- Institute for Theoretical Physics and BioQuant Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - Ulrich S Schwarz
- Institute for Theoretical Physics and BioQuant Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
9
|
Gatti M, Belli M, De Rubeis M, Khalili MA, Familiari G, Nottola SA, Macchiarelli G, Hajderi E, Palmerini MG. Ultrastructural Evaluation of Mouse Oocytes Exposed In Vitro to Different Concentrations of the Fungicide Mancozeb. BIOLOGY 2023; 12:biology12050698. [PMID: 37237511 DOI: 10.3390/biology12050698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
Mancozeb is a widely used fungicide, considered to be an endocrine disruptor. In vivo and in vitro studies evidenced its reproductive toxicity on mouse oocytes by altering spindle morphology, impairing oocyte maturation, fertilization, and embryo implantation. Mancozeb also induces dose-dependent toxicity on the ultrastructure of mouse granulosa cells, including chromatin condensation, membrane blebbing, and vacuolization. We evaluated the effects on the ultrastructure of mouse oocytes isolated from cumulus-oocyte complexes (COCs), exposed in vitro to increasing concentrations of mancozeb. COCs were matured in vitro with or without (control) low fungicide concentrations (0.001-1 μg/mL). All mature oocytes were collected and prepared for light and transmission electron microscopy. Results showed a preserved ultrastructure at the lowest doses (0.001-0.01 μg/mL), with evident clusters of round-to-ovoid mitochondria, visible electron-dense round cortical granules, and thin microvilli. Mancozeb concentration of 1 μg/mL affected organelle density concerning controls, with a reduction of mitochondria, appearing moderately vacuolated, cortical granules, and microvilli, short and less abundant. In summary, ultrastructural data revealed changes mainly at the highest concentration of mancozeb on mouse oocytes. This could be responsible for the previously described impaired capability in oocyte maturation, fertilization, and embryo implantation, demonstrating its impact on the reproductive health and fertility.
Collapse
Affiliation(s)
- Marta Gatti
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy
| | - Manuel Belli
- MEBIC Consortium, IRCCS San Raffaele Roma, 00166 Rome, Italy
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Mariacarla De Rubeis
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy
| | - Mohammad Ali Khalili
- Department of Reproductive Biology, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd 8916877391, Iran
| | - Giuseppe Familiari
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy
| | - Stefania Annarita Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Edmond Hajderi
- Department of Pharmaceutical Sciences, Catholic University Our Lady of Good Counsel, 1000 Tirana, Albania
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
10
|
Xie J, Xu X, Liu S. Intercellular communication in the cumulus-oocyte complex during folliculogenesis: A review. Front Cell Dev Biol 2023; 11:1087612. [PMID: 36743407 PMCID: PMC9893509 DOI: 10.3389/fcell.2023.1087612] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
During folliculogenesis, the oocyte and surrounding cumulus cells form an ensemble called the cumulus-oocyte complex (COC). Due to their interdependence, research on the COC has been a hot issue in the past few decades. A growing body of literature has revealed that intercellular communication is critical in determining oocyte quality and ovulation. This review provides an update on the current knowledge of COC intercellular communication, morphology, and functions. Transzonal projections (TZPs) and gap junctions are the most described structures of the COC. They provide basic metabolic and nutrient support, and abundant molecules for signaling pathways and regulations. Oocyte-secreted factors (OSFs) such as growth differentiation factor 9 and bone morphogenetic protein 15 have been linked with follicular homeostasis, suggesting that the communications are bidirectional. Using advanced techniques, new evidence has highlighted the existence of other structures that participate in intercellular communication. Extracellular vesicles can carry transcripts and signaling molecules. Microvilli on the oocyte can induce the formation of TZPs and secrete OSFs. Cell membrane fusion between the oocyte and cumulus cells can lead to sharing of cytoplasm, in a way making the COC a true whole. These findings give us new insights into related reproductive diseases like polycystic ovary syndrome and primary ovarian insufficiency and how to improve the outcomes of assisted reproduction.
Collapse
Affiliation(s)
- Jun Xie
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao Xu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Suying Liu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China,*Correspondence: Suying Liu,
| |
Collapse
|
11
|
Extracellular vesicles-encapsulated microRNA in mammalian reproduction: A review. Theriogenology 2023; 196:174-185. [PMID: 36423512 DOI: 10.1016/j.theriogenology.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022]
Abstract
Extracellular vesicles (EVs) are nanoscale cell-derived lipid vesicles that participate in cell-cell communication by delivering cargo, including mRNAs, proteins and non-coding RNAs, to recipient cells. MicroRNA (miRNA), a non-coding RNA typically 22 nucleotides long, is crucial for nearly all developmental and pathophysiological processes in mammals by regulating recipient cells gene expression. Infertility is a worldwide health issue that affects 10-15% of couples during their reproductive years. Although assisted reproductive technology (ART) gives infertility couples hope, the failure of ART is mainly unknown. It is well accepted that EVs-encapsulated miRNAs have a role in different reproductive processes, implying that these EVs-encapsulated miRNAs could optimize ART, improve reproductive rate, and treat infertility. As a result, in this review, we describe the present understanding of EVs-encapsulated miRNAs in reproduction regulation.
Collapse
|
12
|
Jangid P, Rai U, Bakshi A, Singh R. Significance of Complement Regulatory Protein Tetraspanins in the Male Reproductive System and Fertilization. Curr Protein Pept Sci 2023; 24:240-246. [PMID: 36718968 DOI: 10.2174/1389203724666230131110203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 02/01/2023]
Abstract
Fertilization is a very sophisticated and unique process involving several key steps resulting in a zygote's formation. Recent research has indicated that some immune system-related cell surface molecules (CD molecules from the tetraspanin superfamily) may have a role in fertilization. Extracellular vesicles are undeniably involved in a variety of cellular functions, including reproduction. Tetraspanin proteins identified in extracellular vesicles are now used mostly as markers; mounting evidence indicates that they also participate in cell targeting, cargo selection, and extracellular vesicle formation. Their significance and potential in mammalian reproduction are currently being studied extensively. Despite the fact that the current data did not establish any theory, the crucial function of tetraspanins in the fertilization process was not ruled out, and the specific role of tetraspanins is still unknown. In this review, we bring insight into the existing knowledge regarding the expression of tetraspanins in spermatozoa and seminal fluid and their role in gamete binding and fusion.
Collapse
Affiliation(s)
- Pooja Jangid
- Department of Environmental Studies, Satyawati College, University of Delhi, New Delhi 110052, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, New Delhi 110007, India
| | - Amrita Bakshi
- Department of Zoology, University of Delhi, New Delhi 110007, India
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, New Delhi 110052, India
- Department of Environmental Science, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
13
|
Wei Y, Wang K, Xia Q, Li B, Liu L. 3D diversiform dynamic process of microvilli in living cells. Biochem Biophys Res Commun 2022; 635:114-119. [DOI: 10.1016/j.bbrc.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/17/2022] [Accepted: 10/01/2022] [Indexed: 11/25/2022]
|
14
|
Brukman NG, Nakajima KP, Valansi C, Flyak K, Li X, Higashiyama T, Podbilewicz B. A novel function for the sperm adhesion protein IZUMO1 in cell-cell fusion. J Cell Biol 2022; 222:213693. [PMID: 36394541 PMCID: PMC9671554 DOI: 10.1083/jcb.202207147] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/11/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Mammalian sperm-egg adhesion depends on the trans-interaction between the sperm-specific type I glycoprotein IZUMO1 and its oocyte-specific GPI-anchored receptor JUNO. However, the mechanisms and proteins (fusogens) that mediate the following step of gamete fusion remain unknown. Using live imaging and content mixing assays in a heterologous system and structure-guided mutagenesis, we unveil an unexpected function for IZUMO1 in cell-to-cell fusion. We show that IZUMO1 alone is sufficient to induce fusion, and that this ability is retained in a mutant unable to bind JUNO. On the other hand, a triple mutation in exposed aromatic residues prevents this fusogenic activity without impairing JUNO interaction. Our findings suggest a second function for IZUMO1 as a unilateral mouse gamete fusogen.
Collapse
Affiliation(s)
- Nicolas G. Brukman
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Kohdai P. Nakajima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Clari Valansi
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Kateryna Flyak
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Xiaohui Li
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Tetsuya Higashiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan,Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi, Japan,Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
15
|
Abstract
In sexually reproducing organisms, the genetic information is transmitted from one generation to the next via the merger of male and female gametes. Gamete fusion is a two-step process involving membrane recognition and apposition through ligand-receptor interactions and lipid mixing mediated by fusion proteins. HAP2 (also known as GCS1) is a bona fide gamete fusogen in flowering plants and protists. In vertebrates, a multitude of surface proteins have been demonstrated to be pivotal for sperm-egg fusion, yet none of them exhibit typical fusogenic features. In this Cell Science at a Glance article and the accompanying poster, we summarize recent advances in the mechanistic understanding of gamete fusion in eukaryotes, with a particular focus on mammalian species.
Collapse
Affiliation(s)
- Yonggang Lu
- Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- Laboratory of Reproductive Systems Biology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Tetraspanin Cd9b plays a role in fertility in zebrafish. PLoS One 2022; 17:e0277274. [DOI: 10.1371/journal.pone.0277274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022] Open
Abstract
In mice, CD9 expression on the egg is required for efficient sperm-egg fusion and no effects on ovulation or male fertility are observed in CD9 null animals. Here we show that cd9b knockout zebrafish also appear to have fertility defects. In contrast to mice, fewer eggs were laid by cd9b knockout zebrafish pairs and, of the eggs laid, a lower percentage were fertilised. These effects could not be linked to primordial germ cell numbers or migration as these were not altered in the cd9b mutants. The decrease in egg numbers could be rescued by exchanging either cd9b knockout partner, male or female, for a wildtype partner. However, the fertilisation defect was only rescued by crossing a cd9b knockout female with a wildtype male. To exclude effects of mating behaviour we analysed clutch size and fertilisation using in vitro fertilisation techniques. Number of eggs and fertilisation rates were significantly reduced in the cd9b mutants suggesting the fertility defects are not solely due to courtship behaviours. Our results indicate that CD9 plays a more complex role in fish fertility than in mammals, with effects in both males and females.
Collapse
|
17
|
Abstract
Multiple membrane-shaping and remodeling processes are associated with tetraspanin proteins by yet unknown mechanisms. Tetraspanins constitute a family of proteins with four transmembrane domains present in every cell type. Prominent examples are tetraspanin4 and CD9, which are required for the fundamental cellular processes of migrasome formation and fertilization, respectively. These proteins are enriched in curved membrane structures, such as cellular retraction fibers and oocyte microvilli. The factors driving this enrichment are, however, unknown. Here, we revealed that tetraspanin4 and CD9 are curvature sensors with a preference for positive membrane curvature. To this end, we used a biomimetic system emulating membranes of cell retraction fibers and oocyte microvilli by membrane tubes pulled out of giant plasma membrane vesicles with controllable membrane tension and curvature. We developed a simple thermodynamic model for the partitioning of curvature sensors between flat and tubular membranes, which allowed us to estimate the individual intrinsic curvatures of the two proteins. Overall, our findings illuminate the process of migrasome formation and oocyte microvilli shaping and provide insight into the role of tetraspanin proteins in membrane remodeling processes.
Collapse
|
18
|
Vance TDR, Yip P, Jiménez E, Li S, Gawol D, Byrnes J, Usón I, Ziyyat A, Lee JE. SPACA6 ectodomain structure reveals a conserved superfamily of gamete fusion-associated proteins. Commun Biol 2022; 5:984. [PMID: 36115925 PMCID: PMC9482655 DOI: 10.1038/s42003-022-03883-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022] Open
Abstract
SPACA6 is a sperm-expressed surface protein that is critical for gamete fusion during mammalian sexual reproduction. Despite this fundamental role, little is known about how SPACA6 specifically functions. We elucidated the crystal structure of the SPACA6 ectodomain at 2.2-Å resolution, revealing a two-domain protein containing a four-helix bundle and Ig-like β-sandwich connected via a quasi-flexible linker. This structure is reminiscent of IZUMO1, another gamete fusion-associated protein, making SPACA6 and IZUMO1 founding members of a superfamily of fertilization-associated proteins, herein dubbed the IST superfamily. The IST superfamily is defined structurally by its distorted four-helix bundle and a pair of disulfide-bonded CXXC motifs. A structure-based search of the AlphaFold human proteome identified more protein members to this superfamily; remarkably, many of these proteins are linked to gamete fusion. The SPACA6 structure and its connection to other IST-superfamily members provide a missing link in our knowledge of mammalian gamete fusion.
Collapse
Affiliation(s)
- Tyler D R Vance
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Patrick Yip
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Elisabet Jiménez
- Institute of Molecular Biology of Barcelona (IBMB-CSIC), 08028, Barcelona, Spain
| | - Sheng Li
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Diana Gawol
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - James Byrnes
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Isabel Usón
- Institute of Molecular Biology of Barcelona (IBMB-CSIC), 08028, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Ahmed Ziyyat
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014, Paris, France
- Service d'Histologie, d'Embryologie, Biologie de la Reproduction, AP-HP, Hôpital Cochin, F-75014, Paris, France
| | - Jeffrey E Lee
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
19
|
Inaba M, Ridwan SM, Antel M. Removal of cellular protrusions. Semin Cell Dev Biol 2022; 129:126-134. [PMID: 35260295 PMCID: PMC9378436 DOI: 10.1016/j.semcdb.2022.02.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/08/2023]
Abstract
Cell-cell communications are central to a variety of physiological and pathological processes in multicellular organisms. Cells often rely on cellular protrusions to communicate with one another, which enable highly selective and efficient signaling within complex tissues. Owing to significant improvements in imaging techniques, identification of signaling protrusions has increased in recent years. These protrusions are structurally specialized for signaling and facilitate interactions between cells. Therefore, physical regulation of these structures must be key for the appropriate strength and pattern of signaling outcomes. However, the typical approaches for understanding signaling regulation tend to focus solely on changes in signaling molecules, such as gene expression, protein-protein interaction, and degradation. In this short review, we summarize the studies proposing the removal of different types of signaling protrusions-including cilia, neurites, MT (microtubule based)-nanotubes and microvilli-and discuss their mechanisms and significance in signaling regulation.
Collapse
Affiliation(s)
- Mayu Inaba
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Sharif M Ridwan
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Matthew Antel
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
20
|
Assembly of Tetraspanin-enriched macrodomains contains membrane damage to facilitate repair. Nat Cell Biol 2022; 24:825-832. [PMID: 35654840 DOI: 10.1038/s41556-022-00920-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/22/2022] [Indexed: 11/08/2022]
Abstract
Various mechanisms contribute to membrane repair1-8 but the machinery that mediates the repair of large wounds on the plasma membrane is less clear. We found that shortly after membrane damage, Tetraspanin-enriched macrodomains are assembled around the damage site. Tetraspanin-enriched macrodomains are in the liquid-ordered phase and form a rigid ring around the damaged site. This restricts the spread of the damage and prevents membrane disintegration, thus facilitating membrane repair by other mechanisms. Functionally, Tetraspanin 4 helps cells mitigate damage caused by laser, detergent, pyroptosis and natural killer cells. We propose that assembly of Tetraspanin-enriched macrodomains creates a physical barrier to contain membrane damage.
Collapse
|
21
|
Wang H, Kinsey WH. Signaling Proteins Recruited to the Sperm Binding Site: Role of β-Catenin and Rho A. Front Cell Dev Biol 2022; 10:886664. [PMID: 35646891 PMCID: PMC9136404 DOI: 10.3389/fcell.2022.886664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/29/2022] [Indexed: 01/19/2023] Open
Abstract
Sperm interaction with the oocyte plasma membrane triggers a localized response in the mouse oocyte that leads to remodeling of oocyte surface as well as the underlying cortical actin layer. The recent demonstration that PTK2B is recruited and activated at the sperm binding site raised the possibility that multiple signaling events may be activated during this stage of fertilization. The present study demonstrated that β-catenin and Rho A were recruited to the cortex underlying bound/fused sperm. To determine whether sperm-oocyte contact was sufficient to initiate β-catenin recruitment, Cd9-null, and PTK2b-null oocytes were tested for the ability to recruit β-catenin to sperm binding sites. Both Cd9 and Ptk2b ablation reduced β-catenin recruitment raising the possibility that PTK2B may act downstream of CD9 in the response to sperm binding/fusion. Further immunofluorescence study revealed that β-catenin co-localized with f-actin in the interstitial regions between actin layer fenestrae. Rho A, in contrast, was arranged underneath the actin layer in both the fenestra and the interstitial regions suggesting that they may play different roles in the oocyte.
Collapse
|
22
|
Yanagimachi R. Mysteries and unsolved problems of mammalian fertilization and related topics. Biol Reprod 2022; 106:644-675. [PMID: 35292804 PMCID: PMC9040664 DOI: 10.1093/biolre/ioac037] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Mammalian fertilization is a fascinating process that leads to the formation of a new individual. Eggs and sperm are complex cells that must meet at the appropriate time and position within the female reproductive tract for successful fertilization. I have been studying various aspects of mammalian fertilization over 60 years. In this review, I discuss many different aspects of mammalian fertilization, some of my laboratory's contribution to the field, and discuss enigmas and mysteries that remain to be solved.
Collapse
Affiliation(s)
- Ryuzo Yanagimachi
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii Medical School, Honolulu, HI 96822, USA
| |
Collapse
|
23
|
Noda T, Blaha A, Fujihara Y, Gert KR, Emori C, Deneke VE, Oura S, Panser K, Lu Y, Berent S, Kodani M, Cabrera-Quio LE, Pauli A, Ikawa M. Sperm membrane proteins DCST1 and DCST2 are required for sperm-egg interaction in mice and fish. Commun Biol 2022; 5:332. [PMID: 35393517 PMCID: PMC8989947 DOI: 10.1038/s42003-022-03289-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 03/17/2022] [Indexed: 12/28/2022] Open
Abstract
The process of sperm-egg fusion is critical for successful fertilization, yet the underlying mechanisms that regulate these steps have remained unclear in vertebrates. Here, we show that both mouse and zebrafish DCST1 and DCST2 are necessary in sperm to fertilize the egg, similar to their orthologs SPE-42 and SPE-49 in C. elegans and Sneaky in D. melanogaster. Mouse Dcst1 and Dcst2 single knockout (KO) sperm are able to undergo the acrosome reaction and show normal relocalization of IZUMO1, an essential factor for sperm-egg fusion, to the equatorial segment. While both single KO sperm can bind to the oolemma, they show the fusion defect, resulting that Dcst1 KO males become almost sterile and Dcst2 KO males become sterile. Similar to mice, zebrafish dcst1 KO males are subfertile and dcst2 and dcst1/2 double KO males are sterile. Zebrafish dcst1/2 KO sperm are motile and can approach the egg, but are defective in binding to the oolemma. Furthermore, we find that DCST1 and DCST2 interact with each other and are interdependent. These data demonstrate that DCST1/2 are essential for male fertility in two vertebrate species, highlighting their crucial role as conserved factors in fertilization.
Collapse
Affiliation(s)
- Taichi Noda
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
- Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Andreas Blaha
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and the Medical University of Vienna, 1030, Vienna, Austria
| | - Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Krista R Gert
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and the Medical University of Vienna, 1030, Vienna, Austria
| | - Chihiro Emori
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Victoria E Deneke
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Seiya Oura
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Karin Panser
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Yonggang Lu
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Sara Berent
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Mayo Kodani
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Luis Enrique Cabrera-Quio
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and the Medical University of Vienna, 1030, Vienna, Austria
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria.
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
24
|
Satouh Y, Inoue N. Involvement of cellular protrusions in gamete interactions. Semin Cell Dev Biol 2022; 129:93-102. [PMID: 35370088 DOI: 10.1016/j.semcdb.2022.03.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/15/2022] [Accepted: 03/25/2022] [Indexed: 12/24/2022]
Abstract
Gamete fusion is of considerable importance in reproductive events, as it determines the gamete pairs or chromosomes that the next generation will inherit. To preserve species specificity with an appropriate karyotype, the fusion between gametes requires regulatory mechanisms to ensure limited fusion competency. In many organisms, gamete surfaces are not smooth, but present constitutive or transient cellular protrusions suggested to be involved in gamete fusion. However, the molecular mechanisms and the factors essential for the membrane-membrane fusion process and cellular protrusion involvement have remained unclear. Recent advances in the identification and functional analysis of the essential factors for gamete interaction have revealed the molecular mechanisms underlying their activity regulation and dynamics. In homogametic fertilization, dynamic regulation of the fusion core machinery on cellular protrusions was precisely uncovered. In heterogametic fertilization, oocyte fusion competency was suggested to correlate with the compartmentalization of the fusion essential factor and protrusion formation. These findings shed light on the significance of cellular protrusions in gamete fusion as a physically and functionally specialized site for cellular fusion. In this review, we consider the developments in gamete interaction research in various species with different fertilization modes, highlighting the commonalities in the relationship between gamete fusion and cellular protrusions.
Collapse
Affiliation(s)
- Yuhkoh Satouh
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan.
| | - Naokazu Inoue
- Department of Cell Science, Institute of Biomedical Sciences, School of Medicine, Fukushima Medical University, Fukushima, Fukushima, Japan.
| |
Collapse
|
25
|
Cohen J, Wang L, Marques S, Ialy-Radio C, Barbaux S, Lefèvre B, Gourier C, Ziyyat A. Oocyte ERM and EWI Proteins Are Involved in Mouse Fertilization. Front Cell Dev Biol 2022; 10:863729. [PMID: 35359433 PMCID: PMC8963852 DOI: 10.3389/fcell.2022.863729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
In mammalian fertilization, the link between the oocyte plasma membrane and underneath cytoskeleton has often been associated to key elements of successful gamete fusion, like microvilli shaping or CD9 function, but its effective role has poorly been studied. EWI-2 and EWI-F as cis partners of CD9, and ERM proteins (Ezrin, Radixin and Moesin) that both attach to the actin cytoskeleton and to the EWI are part of the molecules that make the link between the oocyte membrane and its cytoskeleton. This study aims to assay through siRNA inhibition, the involvement of these ERM and EWI molecules in mouse fertilization, their role in the microvilli morphology of the egg but also their possible contribution to the cortical tension, a parameter that reflects the mechanical behavior of the oocyte cortex. Whereas inhibiting separately the expression of each protein had no effect on fertilization, the combined inhibition of either EWI-2/EWI-F or the three ERM triggered a significant decrease of the fertilization index. This inhibition seems to correlate with an increase in the radius of curvature of the oocyte microvilli. It also causes a decrease of the oocyte cortical tension. These results show the importance of EWI-2 and EWI–F and ERM proteins in the smooth running of a fertilization event and support their involvement in the microvilli architecture of the oocyte and in its mechanical properties.
Collapse
Affiliation(s)
- J Cohen
- Institut Cochin, INSERM, CNRS, Université de Paris, Paris, France
| | - L Wang
- Institut Cochin, INSERM, CNRS, Université de Paris, Paris, France
- Ecole Normale Supérieure (ENS), Université Paris Sciences et Lettres (PSL), CNRS, Sorbonne Université, Université de Paris, Paris, France
- Department of Histo-embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - S Marques
- Institut Cochin, INSERM, CNRS, Université de Paris, Paris, France
| | - C Ialy-Radio
- Institut Cochin, INSERM, CNRS, Université de Paris, Paris, France
| | - S Barbaux
- Institut Cochin, INSERM, CNRS, Université de Paris, Paris, France
| | - B Lefèvre
- Institut Cochin, INSERM, CNRS, Université de Paris, Paris, France
| | - C Gourier
- Ecole Normale Supérieure (ENS), Université Paris Sciences et Lettres (PSL), CNRS, Sorbonne Université, Université de Paris, Paris, France
| | - A Ziyyat
- Institut Cochin, INSERM, CNRS, Université de Paris, Paris, France
- Service d’histologie, d’embryologie, Biologie de la Reproduction, AP-HP, Hôpital Cochin, Paris, France
- *Correspondence: A Ziyyat,
| |
Collapse
|
26
|
Bourdais A, Dehapiot B, Halet G. Cofilin regulates actin network homeostasis and microvilli length in mouse oocytes. J Cell Sci 2021; 134:273797. [PMID: 34841429 DOI: 10.1242/jcs.259237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/18/2021] [Indexed: 11/20/2022] Open
Abstract
How multiple actin networks coexist in a common cytoplasm while competing for a shared pool of monomers is still an ongoing question. This is exemplified by meiotic maturation in the mouse oocyte, which relies on the dynamic remodeling of distinct cortical and cytoplasmic F-actin networks. Here, we show that the conserved actin-depolymerizing factor cofilin is activated in a switch-like manner upon meiosis resumption from prophase arrest. Interfering with cofilin activation during maturation resulted in widespread elongation of microvilli, while cytoplasmic F-actin was depleted, leading to defects in spindle migration and polar body extrusion. In contrast, cofilin inactivation in metaphase II-arrested oocytes resulted in a shutdown of F-actin dynamics, along with a dramatic overgrowth of the polarized actin cap. However, inhibition of the Arp2/3 complex to promote actin cap disassembly elicited ectopic microvilli outgrowth in the polarized cortex. These data establish cofilin as a key player in actin network homeostasis in oocytes and reveal that microvilli can act as a sink for monomers upon disassembly of a competing network.
Collapse
Affiliation(s)
- Anne Bourdais
- Institut Génétique et Développement de Rennes , CNRS IGDR UMR 6290, Université de Rennes 1, F-35000 Rennes, France
| | - Benoit Dehapiot
- Institut Génétique et Développement de Rennes , CNRS IGDR UMR 6290, Université de Rennes 1, F-35000 Rennes, France
| | - Guillaume Halet
- Institut Génétique et Développement de Rennes , CNRS IGDR UMR 6290, Université de Rennes 1, F-35000 Rennes, France
| |
Collapse
|
27
|
Merc V, Frolikova M, Komrskova K. Role of Integrins in Sperm Activation and Fertilization. Int J Mol Sci 2021; 22:11809. [PMID: 34769240 PMCID: PMC8584121 DOI: 10.3390/ijms222111809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
In mammals, integrins are heterodimeric transmembrane glycoproteins that represent a large group of cell adhesion receptors involved in cell-cell, cell-extracellular matrix, and cell-pathogen interactions. Integrin receptors are an important part of signalization pathways and have an ability to transmit signals into and out of cells and participate in cell activation. In addition to somatic cells, integrins have also been detected on germ cells and are known to play a crucial role in complex gamete-specific physiological events, resulting in sperm-oocyte fusion. The main aim of this review is to summarize the current knowledge on integrins in reproduction and deliver novel perspectives and graphical interpretations presenting integrin subunits localization and their dynamic relocation during sperm maturation in comparison to the oocyte. A significant part of this review is devoted to discussing the existing view of the role of integrins during sperm migration through the female reproductive tract; oviductal reservoir formation; sperm maturation processes ensuing capacitation and the acrosome reaction, and their direct and indirect involvement in gamete membrane adhesion and fusion leading to fertilization.
Collapse
Affiliation(s)
- Veronika Merc
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic; (V.M.); (M.F.)
| | - Michaela Frolikova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic; (V.M.); (M.F.)
| | - Katerina Komrskova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic; (V.M.); (M.F.)
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic
| |
Collapse
|
28
|
Siu KK, Serrão VHB, Ziyyat A, Lee JE. The cell biology of fertilization: Gamete attachment and fusion. J Cell Biol 2021; 220:e202102146. [PMID: 34459848 PMCID: PMC8406655 DOI: 10.1083/jcb.202102146] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
Fertilization is defined as the union of two gametes. During fertilization, sperm and egg fuse to form a diploid zygote to initiate prenatal development. In mammals, fertilization involves multiple ordered steps, including the acrosome reaction, zona pellucida penetration, sperm-egg attachment, and membrane fusion. Given the success of in vitro fertilization, one would think that the mechanisms of fertilization are understood; however, the precise details for many of the steps in fertilization remain a mystery. Recent studies using genetic knockout mouse models and structural biology are providing valuable insight into the molecular basis of sperm-egg attachment and fusion. Here, we review the cell biology of fertilization, specifically summarizing data from recent structural and functional studies that provide insights into the interactions involved in human gamete attachment and fusion.
Collapse
Affiliation(s)
- Karen K. Siu
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Vitor Hugo B. Serrão
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ahmed Ziyyat
- Université de Paris, Institut Cochin, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Paris, France
- Service d’Histologie, d’Embryologie, Biologie de la Reproduction, Assistance Publique - Hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - Jeffrey E. Lee
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Mori M, Yao T, Mishina T, Endoh H, Tanaka M, Yonezawa N, Shimamoto Y, Yonemura S, Yamagata K, Kitajima TS, Ikawa M. RanGTP and the actin cytoskeleton keep paternal and maternal chromosomes apart during fertilization. J Cell Biol 2021; 220:e202012001. [PMID: 34424312 PMCID: PMC8404465 DOI: 10.1083/jcb.202012001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/18/2021] [Accepted: 08/06/2021] [Indexed: 11/22/2022] Open
Abstract
Zygotes require two accurate sets of parental chromosomes, one each from the mother and the father, to undergo normal embryogenesis. However, upon egg-sperm fusion in vertebrates, the zygote has three sets of chromosomes, one from the sperm and two from the egg. The zygote therefore eliminates one set of maternal chromosomes (but not the paternal chromosomes) into the polar body through meiosis, but how the paternal chromosomes are protected from maternal meiosis has been unclear. Here we report that RanGTP and F-actin dynamics prevent egg-sperm fusion in proximity to maternal chromosomes. RanGTP prevents the localization of Juno and CD9, egg membrane proteins that mediate sperm fusion, at the cell surface in proximity to maternal chromosomes. Following egg-sperm fusion, F-actin keeps paternal chromosomes away from maternal chromosomes. Disruption of these mechanisms causes the elimination of paternal chromosomes during maternal meiosis. This study reveals a novel critical mechanism that prevents aneuploidy in zygotes.
Collapse
Affiliation(s)
- Masashi Mori
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tatsuma Yao
- Research and Development Center, Fuso Pharmaceutical Industries, Ltd., Osaka, Japan
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Tappei Mishina
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hiromi Endoh
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Masahito Tanaka
- Physics and Cell Biology Laboratory, National Institute of Genetics & Department of Genetics, SOKENDAI University, Kanagawa, Japan
| | - Nao Yonezawa
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Yuta Shimamoto
- Physics and Cell Biology Laboratory, National Institute of Genetics & Department of Genetics, SOKENDAI University, Kanagawa, Japan
| | - Shigenobu Yonemura
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Department of Cell Biology, Tokushima University Graduate School of Medical Science, Tokushima, Japan
| | - Kazuo Yamagata
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Tomoya S. Kitajima
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
30
|
Abstract
Fertilization is a multistep process that culminates in the fusion of sperm and egg, thus marking the beginning of a new organism in sexually reproducing species. Despite its importance for reproduction, the molecular mechanisms that regulate this singular event, particularly sperm-egg fusion, have remained mysterious for many decades. Here, we summarize our current molecular understanding of sperm-egg interaction, focusing mainly on mammalian fertilization. Given the fundamental importance of sperm-egg fusion yet the lack of knowledge of this process in vertebrates, we discuss hallmarks and emerging themes of cell fusion by drawing from well-studied examples such as viral entry, placenta formation, and muscle development. We conclude by identifying open questions and exciting avenues for future studies in gamete fusion. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Victoria E Deneke
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria; ,
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria; ,
| |
Collapse
|
31
|
CD13 is a critical regulator of cell-cell fusion in osteoclastogenesis. Sci Rep 2021; 11:10736. [PMID: 34031489 PMCID: PMC8144195 DOI: 10.1038/s41598-021-90271-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/07/2021] [Indexed: 12/04/2022] Open
Abstract
The transmembrane aminopeptidase CD13 is highly expressed in cells of the myeloid lineage, regulates dynamin-dependent receptor endocytosis and recycling and is a necessary component of actin cytoskeletal organization. Here, we show that CD13-deficient mice present a low bone density phenotype with increased numbers of osteoclasts per bone surface, but display a normal distribution of osteoclast progenitor populations in the bone marrow and periphery. In addition, the bone formation and mineral apposition rates are similar between genotypes, indicating a defect in osteoclast-specific function in vivo. Lack of CD13 led to exaggerated in vitro osteoclastogenesis as indicated by significantly enhanced fusion of bone marrow-derived multinucleated osteoclasts in the presence of M-CSF and RANKL, resulting in abnormally large cells containing remarkably high numbers of nuclei. Mechanistically, while expression levels of the fusion-regulatory proteins dynamin and DC-STAMP1 must be downregulated for fusion to proceed, these are aberrantly sustained at high levels even in CD13-deficient mature multi-nucleated osteoclasts. Further, the stability of fusion-promoting proteins is maintained in the absence of CD13, implicating CD13 in protein turnover mechanisms. Together, we conclude that CD13 may regulate cell–cell fusion by controlling the expression and localization of key fusion regulatory proteins that are critical for osteoclast fusion.
Collapse
|
32
|
Jiménez-Movilla M, Hamze JG, Romar R. Oolemma Receptors in Mammalian Molecular Fertilization: Function and New Methods of Study. Front Cell Dev Biol 2021; 9:662032. [PMID: 34095128 PMCID: PMC8170029 DOI: 10.3389/fcell.2021.662032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/07/2021] [Indexed: 01/08/2023] Open
Abstract
Fertilization is a key process in biology to the extent that a new individual will be born from the fusion of two cells, one of which leaves the organism in which it was produced to exert its function within a different organism. The structure and function of gametes, and main aspects of fertilization are well known. However, we have limited knowledge about the specific molecules participating in each of the steps of the fertilization process due to the transient nature of gamete interaction. Moreover, if we specifically focus in the fusion of both gametes’ membrane, we might say our molecular knowledge is practically null, despite that molecular mechanisms of cell-to-cell adhesion are well studied in somatic cells. Moreover, between both gametes, the molecular knowledge in the egg is even scarcer than in the spermatozoon for different reasons addressed in this review. Sperm-specific protein IZUMO1 and its oocyte partner, JUNO, are the first cell surface receptor pair essential for sperm–egg plasma membrane binding. Recently, thanks to gene editing tools and the development and validation of in vitro models, new oocyte molecules are being suggested in gamete fusion such as phosphatidylserine recognition receptors. Undoubtedly, we are in a new era for widening our comprehension on molecular fertilization. In this work, we comprehensively address the proposed molecules involved in gamete binding and fusion, from the oocyte perspective, and the new methods that are providing a better understanding of these crucial molecules.
Collapse
Affiliation(s)
- María Jiménez-Movilla
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.,International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Julieta G Hamze
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.,International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Raquel Romar
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.,International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Department of Physiology, Faculty of Veterinary Medicine, University of Murcia, Murcia, Spain
| |
Collapse
|
33
|
Wang HF, Xiang W, Xue BZ, Wang YH, Yi DY, Jiang XB, Zhao HY, Fu P. Cell fusion in cancer hallmarks: Current research status and future indications. Oncol Lett 2021; 22:530. [PMID: 34055095 PMCID: PMC8138896 DOI: 10.3892/ol.2021.12791] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Cell fusion is involved in several physiological processes, such as reproduction, development and immunity. Although cell fusion in tumors was reported 130 years ago, it has recently attracted great interest, with recent progress in tumorigenesis research. However, the role of cell fusion in tumor progression remains unclear. The pattern of cell fusion and its role under physiological conditions are the basis for our understanding of the pathological role of cell fusion. However, the role of cell fusion in tumors and its functions are complicated. Cell fusion can directly increase tumor heterogeneity by forming polyploids or aneuploidies. Several studies have reported that cell fusion is associated with tumorigenesis, metastasis, recurrence, drug resistance and the formation of cancer stem cells. Given the diverse roles cell fusion plays in different tumor phenotypes, methods based on targeted cell fusion have been designed to treat tumors. Research on cell fusion in tumors may provide novel ideas for further treatment.
Collapse
Affiliation(s)
- Hao-Fei Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei Xiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Bing-Zhou Xue
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yi-Hao Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Dong-Ye Yi
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiao-Bing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hong-Yang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
34
|
Zhang Y, Wang Y, Feng X, Zhang S, Xu X, Li L, Niu S, Bo Y, Wang C, Li Z, Xia G, Zhang H. Oocyte-derived microvilli control female fertility by optimizing ovarian follicle selection in mice. Nat Commun 2021; 12:2523. [PMID: 33953177 PMCID: PMC8100162 DOI: 10.1038/s41467-021-22829-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/31/2021] [Indexed: 01/19/2023] Open
Abstract
Crosstalk between oocytes and surrounding somatic cells is crucial for mammalian oogenesis, but the structural mechanisms on oocytes to control female reproduction remain unknown. Here we combine endogenous-fluorescent tracing mouse models with a high-resolution live-cell imaging system to characterize oocyte-derived mushroom-like microvilli (Oo-Mvi), which mediate germ-somatic communication in mice. We perform 3D live-cell imaging to show that Oo-Mvi exhibit cellular characteristics that fit an exocrine function for signaling communication. We find that deletion of the microvilli-forming gene Radixin in oocytes leads to the loss of Oo-Mvi in ovaries, and causes a series of abnormalities in ovarian development, resulting in shortened reproductive lifespan in females. Mechanistically, we find that Oo-Mvi enrich oocyte-secreted factors and control their release, resulting in optimal selection of ovarian follicles. Taken together, our data show that the Oo-Mvi system controls the female reproductive lifespan by governing the fate of follicles. How structural features on oocytes regulate mammalian female reproduction is unclear. Here, the authors provide imaging and physiological evidence (for example on Radixin knockout) to identify oocyte-derived mushroom-like microvilli that control the female reproductive lifespan by governing the fate of follicles.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ye Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xie'an Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shuo Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xueqiang Xu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lingyu Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shudong Niu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yingnan Bo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia, China
| | - Hua Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
35
|
Wang H, Hong X, Kinsey WH. Sperm-oocyte signaling: the role of IZUMO1R and CD9 in PTK2B activation and actin remodeling at the sperm binding site†. Biol Reprod 2021; 104:1292-1301. [PMID: 33724343 PMCID: PMC8182024 DOI: 10.1093/biolre/ioab048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/09/2021] [Accepted: 03/15/2021] [Indexed: 01/19/2023] Open
Abstract
Sperm-oocyte binding initiates an outside-in signaling event in the mouse oocyte that triggers recruitment and activation of the cytosolic protein kinase PTK2B in the cortex underlying the bound sperm. While not involved in gamete fusion, PTK2B activity promotes actin remodeling events important during sperm incorporation. However, the mechanism by which sperm-oocyte binding activates PTK2B is unknown, and the present study examined the possibility that sperm interaction with specific oocyte surface proteins plays an important role in PTK2B activation. Imaging studies revealed that as IZUMO1R and CD9 became concentrated at the sperm binding site, activated (phosphorylated) PTK2B accumulated in the cortex underlying the sperm head and in microvilli partially encircling the sperm head. In order to determine whether IZUMO1R and/or CD9 played a significant role in PTK2B recruitment and activation at the sperm binding site, the ability of oocytes null for Izumo1r or Cd9, to initiate an increase in PTK2B content and activation was tested. The results revealed that IZUMO1R played a minor role in PTK2B activation and had no effect on actin remodeling; however, CD9 played a very significant role in PTK2B activation and subsequent actin remodeling at the sperm binding site. These findings suggest the possibility that interaction of sperm surface proteins with CD9 or CD9-associated oocyte proteins triggers PTK2B activation at the sperm binding site.
Collapse
Affiliation(s)
- Huizhen Wang
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Xiaoman Hong
- Department of Molecular and Integrative Physiology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - William H Kinsey
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, USA,Correspondence: Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS 66160, USA. E-mail:
| |
Collapse
|
36
|
Cebecauer M. Role of Lipids in Morphogenesis of T-Cell Microvilli. Front Immunol 2021; 12:613591. [PMID: 33790891 PMCID: PMC8006438 DOI: 10.3389/fimmu.2021.613591] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/13/2021] [Indexed: 11/13/2022] Open
Abstract
T cells communicate with the environment via surface receptors. Cooperation of surface receptors regulates T-cell responses to diverse stimuli. Recently, finger-like membrane protrusions, microvilli, have been demonstrated to play a role in the organization of receptors and, hence, T-cell activation. However, little is known about the morphogenesis of dynamic microvilli, especially in the cells of immune system. In this review, I focus on the potential role of lipids and lipid domains in morphogenesis of microvilli. Discussed is the option that clustering of sphingolipids with phosphoinositides at the plasma membrane results in dimpling (curved) domains. Such domains can attract phosphoinositide-binding proteins and stimulate actin cytoskeleton reorganization. This process triggers cortical actin opening and bundling of actin fibres to support the growing of microvilli. Critical regulators of microvilli morphogenesis in T cells are unknown. At the end, I suggest several candidates with a potential to organize proteins and lipids in these structures.
Collapse
Affiliation(s)
- Marek Cebecauer
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences (CAS), Prague, Czechia
| |
Collapse
|
37
|
Lorico A, Lorico-Rappa M, Karbanová J, Corbeil D, Pizzorno G. CD9, a tetraspanin target for cancer therapy? Exp Biol Med (Maywood) 2021; 246:1121-1138. [PMID: 33601913 DOI: 10.1177/1535370220981855] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the present minireview, we intend to provide a brief history of the field of CD9 involvement in oncogenesis and in the metastatic process of cancer, considering its potential value as a tumor-associated antigenic target. Over the years, CD9 has been identified as a favorable prognostic marker or predictor of metastatic potential depending on the cancer type. To understand its implications in cancer beside its use as an antigenic biomarker, it is essential to know its physiological functions, including its molecular partners in a given cell system. Moreover, the discovery that CD9 is one of the most specific and broadly expressed markers of extracellular membrane vesicles, nanometer-sized entities that are released into extracellular space and various physiological body fluids and play a role in intercellular communication under physiological and pathological conditions, notably the establishment of cancer metastases, has added a new dimension to our knowledge of CD9 function in cancer. Here, we will discuss these issues as well as the possible cancer therapeutic implications of CD9, their limitations, and pitfalls.
Collapse
Affiliation(s)
- Aurelio Lorico
- Touro University College of Medicine, Henderson, NV 89014, USA.,Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | | | - Jana Karbanová
- Biotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Denis Corbeil
- Biotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Giuseppe Pizzorno
- University of Tennessee Health Science Center, Memphis, TN 38163, USA.,Erlanger Health System, Chattanooga, TN 37403 , USA
| |
Collapse
|
38
|
Hasezaki T, Yoshima T, Mattsson M, Särnefält A, Takubo K. A monoclonal antibody recognizing a new epitope on CD81 inhibits T-cell migration without inducing cytokine production. J Biochem 2020; 167:399-409. [PMID: 31794019 DOI: 10.1093/jb/mvz103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022] Open
Abstract
CD81 is involved in leukocyte migration and cytokine induction. Previous work found that anti-CD81 monoclonal antibodies (mAbs) showed therapeutic potential for several immune diseases via inhibiting leukocyte migration. Although the suppression of cell migration is a promising approach for treating immune diseases, some anti-CD81 mAbs can induce cytokine production, which may exacerbate disease. To obtain new anti-human CD81 mAbs that inhibited migration in the absence of cytokine production enhancement activity, we screened a human single chain variable fragment by phage library. One of the new anti-CD81 mAbs isolated, DSP-8250, had equivalent inhibitory cell migration activity with the established anti-CD81 mAb 5A6, but it lacked cytokine induction activity. These mAbs recognized different epitopes on CD81. mAb 5A6, which had inhibitory activity on T-cell migration and increased cytokine production, bound to three residues, Ser179, Asn180 and Phe186 of CD81. In contrast, DSP-8250, which had inhibitory activity on T-cell migration but no cytokine enhancement activity, bound to four residues, His151, Ala164, Ser168 and Asn172 of CD81 as a unique epitope. These results indicate that the set of His151, Ala164, Ser168 and Asn172 forms a novel epitope that might make the application of anti-CD81 mAb therapeutically useful.
Collapse
Affiliation(s)
- Takuya Hasezaki
- External Innovation, Sumitomo Dainippon Pharma Co., Ltd, 3-1-98 Kasugade Naka, Konohana-ku, Osaka 554-0022, Japan
| | - Tadahiko Yoshima
- Applied Bioscience Group, Bioscience Research Laboratory, Sumitomo Chemical Co., Ltd, 3-1-98 Kasugade Naka, Konohana-ku, Osaka 554-0022, Japan
| | - Mikael Mattsson
- BioInvent International AB, Sölvegatan 41, SE-223 70 Lund, Sweden
| | - Anna Särnefält
- BioInvent International AB, Sölvegatan 41, SE-223 70 Lund, Sweden
| | - Keiko Takubo
- Group II, Platform Technology Research Unit, Sumitomo Dainippon Pharma Co., Ltd, 3-1-98 Kasugade Naka, Konohana-ku, Osaka 554-0022, Japan
| |
Collapse
|
39
|
Kharazi U, Badalzadeh R. A review on the stem cell therapy and an introduction to exosomes as a new tool in reproductive medicine. Reprod Biol 2020; 20:447-459. [DOI: 10.1016/j.repbio.2020.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/18/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022]
|
40
|
Abstract
Sexual reproduction is such a successful way of creating progeny with subtle genetic variations that the vast majority of eukaryotic species use it. In mammals, it involves the formation of highly specialised cells: the sperm in males and the egg in females, each carrying the genetic inheritance of an individual. The interaction of sperm and egg culminates with the fusion of their cell membranes, triggering the molecular events that result in the formation of a new genetically distinct organism. Although we have a good cellular description of fertilisation in mammals, many of the molecules involved remain unknown, and especially the identity and role of cell surface proteins that are responsible for sperm–egg recognition, binding, and fusion. Here, we will highlight and discuss these gaps in our knowledge and how the role of some recently discovered sperm cell surface and secreted proteins contribute to our understanding of this fundamental process. Fertilisation is the challenging process whereby cells from two individuals fuse to generate a new, genetically distinct organism of the same species. This Unsolved Mystery article explores the molecular mechanisms underlying sperm–egg interaction and fusion, a fascinating topic that is under increasing investigation.
Collapse
Affiliation(s)
- Enrica Bianchi
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, United Kingdom
- * E-mail:
| | - Gavin J. Wright
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, United Kingdom
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, Wentworth Way, York, United Kingdom
| |
Collapse
|
41
|
Qamar AY, Mahiddine FY, Bang S, Fang X, Shin ST, Kim MJ, Cho J. Extracellular Vesicle Mediated Crosstalk Between the Gametes, Conceptus, and Female Reproductive Tract. Front Vet Sci 2020; 7:589117. [PMID: 33195625 PMCID: PMC7661581 DOI: 10.3389/fvets.2020.589117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) mediated intracellular communication plays an imperative role in the proper completion of different physiological events. Most of the bio-fluids are enriched with several subpopulations of EVs including exosomes and microvesicles (MVs), with the capacity of transferring different functional molecules (lipids, proteins, and nucleic acids) to target cells. Recipient cells upon receiving the signal molecules undergo different changes that positively affect the structural and functional integrity of the cells. This article was aimed to highlight the role of EVs secreted by gametes, the female reproductive tract, and the growing conceptus in the successful completion of different reproductive events related to gestation. EVs associated with the reproductive system are actively involved in the regulation of different physiological events including gamete maturation, fertilization, and embryo and fetal development. In the reproductive system, EVs mediated intracellular communication is not unidirectional but is rather regulated through crosstalk between the reproductive tract and the growing conceptus. These vesicles are secreted from the ovary, oviductal epithelium, endometrium, developing embryo, and the placenta. The cargo inside these vesicles exerts pleiotropic effects on both maternal and embryonic environments. A better understanding of the EVs-mediated crosstalk will be helpful in the development of useful tools serving both the diagnostic as well as therapeutic needs related to female fertility.
Collapse
Affiliation(s)
- Ahmad Yar Qamar
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
- Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang, Sub-Campus University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Feriel Yasmine Mahiddine
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Seonggyu Bang
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Xun Fang
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Sang Tae Shin
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Min Jung Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Jongki Cho
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
42
|
Ravi RT, Leung MR, Zeev-Ben-Mordehai T. Looking back and looking forward: contributions of electron microscopy to the structural cell biology of gametes and fertilization. Open Biol 2020; 10:200186. [PMID: 32931719 PMCID: PMC7536082 DOI: 10.1098/rsob.200186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/25/2020] [Indexed: 01/22/2023] Open
Abstract
Mammalian gametes-the sperm and the egg-represent opposite extremes of cellular organization and scale. Studying the ultrastructure of gametes is crucial to understanding their interactions, and how to manipulate them in order to either encourage or prevent their union. Here, we survey the prominent electron microscopy (EM) techniques, with an emphasis on considerations for applying them to study mammalian gametes. We review how conventional EM has provided significant insight into gamete ultrastructure, but also how the harsh sample preparation methods required preclude understanding at a truly molecular level. We present recent advancements in cryo-electron tomography that provide an opportunity to image cells in a near-native state and at unprecedented levels of detail. New and emerging cellular EM techniques are poised to rekindle exploration of fundamental questions in mammalian reproduction, especially phenomena that involve complex membrane remodelling and protein reorganization. These methods will also allow novel lines of enquiry into problems of practical significance, such as investigating unexplained causes of human infertility and improving assisted reproductive technologies for biodiversity conservation.
Collapse
Affiliation(s)
- Ravi Teja Ravi
- Cryo-Electron Microscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Miguel Ricardo Leung
- Cryo-Electron Microscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584CH Utrecht, The Netherlands
- Division of Structural Biology, Wellcome Centre for Human Genetics, The University of Oxford, Oxford OX3 7BN, UK
| | - Tzviya Zeev-Ben-Mordehai
- Cryo-Electron Microscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584CH Utrecht, The Netherlands
- Division of Structural Biology, Wellcome Centre for Human Genetics, The University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
43
|
Inoue N, Saito T, Wada I. Unveiling a novel function of CD9 in surface compartmentalization of oocytes. Development 2020; 147:dev.189985. [PMID: 32665248 DOI: 10.1242/dev.189985] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/06/2020] [Indexed: 01/02/2023]
Abstract
Gamete fusion is an indispensable process for bearing offspring. In mammals, sperm IZUMO1-oocyte JUNO recognition essentially carries out the primary step of this process. In oocytes, CD9 is also known to play a crucial role in gamete fusion. In particular, microvilli biogenesis through CD9 involvement appears to be a key event for successful gamete fusion, because CD9-disrupted oocytes produce short and sparse microvillous structures, resulting in almost no fusion ability with spermatozoa. In order to determine how CD9 and JUNO cooperate in gamete fusion, we analyzed the molecular profiles of each molecule in CD9- and JUNO-disrupted oocytes. Consequently, we found that CD9 is crucial for the exclusion of GPI-anchored proteins, such as JUNO and CD55, from the cortical actin cap region, suggesting strict molecular organization of the unique surface of this region. Through distinct surface compartmentalization due to CD9 governing, GPI-anchored proteins are confined to the appropriate fusion site of the oocyte.
Collapse
Affiliation(s)
- Naokazu Inoue
- Department of Cell Science, Institute of Biomedical Sciences, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima City, Fukushima 960-1295, Japan
| | - Takako Saito
- Department of Cell Science, Institute of Biomedical Sciences, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima City, Fukushima 960-1295, Japan
| | - Ikuo Wada
- Department of Cell Science, Institute of Biomedical Sciences, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima City, Fukushima 960-1295, Japan
| |
Collapse
|
44
|
Jankovičová J, Neuerová Z, Sečová P, Bartóková M, Bubeníčková F, Komrsková K, Postlerová P, Antalíková J. Tetraspanins in mammalian reproduction: spermatozoa, oocytes and embryos. Med Microbiol Immunol 2020; 209:407-425. [PMID: 32424440 DOI: 10.1007/s00430-020-00676-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/02/2020] [Indexed: 12/21/2022]
Abstract
It is known that tetraspanin proteins are involved in many physiological somatic cell mechanisms. Additionally, research has indicated they also have a role in various infectious diseases and cancers. This review focuses on the molecular interactions underlying the tetraspanin web formation in gametes. Primarily, tetraspanins act in the reproductive tract as organizers of membrane complexes, which include the proteins involved in the contact and association of sperm and oocyte membranes. In addition, recent data shows that tetraspanins are likely to be involved in these processes in a complex way. In mammalian fertilization, an important role is attributed to CD molecules belonging to the tetraspanin superfamily, particularly CD9, CD81, CD151, and also CD63; mostly as part of extracellular vesicles, the significance of which and their potential in reproduction is being intensively investigated. In this article, we reviewed the existing knowledge regarding the expression of tetraspanins CD9, CD81, CD151, and CD63 in mammalian spermatozoa, oocytes, and embryos and their involvement in reproductive processes, including pathological events.
Collapse
Affiliation(s)
- Jana Jankovičová
- Laboratory of Reproductive Physiology, Center of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Zdeňka Neuerová
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Petra Sečová
- Laboratory of Reproductive Physiology, Center of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Michaela Bartóková
- Laboratory of Reproductive Physiology, Center of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Filipa Bubeníčková
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Kateřina Komrsková
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavla Postlerová
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Jana Antalíková
- Laboratory of Reproductive Physiology, Center of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| |
Collapse
|
45
|
Kulus M, Kranc W, Jeseta M, Sujka-Kordowska P, Konwerska A, Ciesiółka S, Celichowski P, Moncrieff L, Kocherova I, Józkowiak M, Kulus J, Wieczorkiewicz M, Piotrowska-Kempisty H, Skowroński MT, Bukowska D, Machatkova M, Hanulakova S, Mozdziak P, Jaśkowski JM, Kempisty B, Antosik P. Cortical Granule Distribution and Expression Pattern of Genes Regulating Cellular Component Size, Morphogenesis, and Potential to Differentiation are Related to Oocyte Developmental Competence and Maturational Capacity In Vivo and In Vitro. Genes (Basel) 2020; 11:genes11070815. [PMID: 32708880 PMCID: PMC7397037 DOI: 10.3390/genes11070815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Polyspermia is an adverse phenomenon during mammalian fertilization when more than one sperm fuses with a single oocyte. The egg cell is prepared to prevent polyspermia by, among other ways, producing cortical granules (CGs), which are specialized intracellular structures containing enzymes that aim to harden the zona pellucida and block the fusion of subsequent sperm. This work focused on exploring the expression profile of genes that may be associated with cortical reactions, and evaluated the distribution of CGs in immature oocytes and the peripheral density of CGs in mature oocytes. Oocytes were isolated and then processed for in vitro maturation (IVM). Transcriptomic analysis of genes belonging to five ontological groups has been conducted. Six genes showed increased expression after IVM (ARHGEF2, MAP1B, CXCL12, FN1, DAB2, and SOX9), while the majority of genes decreased expression after IVM. Using CG distribution analysis in immature oocytes, movement towards the cortical zone of the oocyte during meiotic competence acquisition was observed. CGs peripheral density decreased with the rise in meiotic competence during the IVM process. The current results reveal important new insights into the in vitro maturation of oocytes. Our results may serve as a basis for further studies to investigate the cortical reaction of oocytes.
Collapse
Affiliation(s)
- Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (P.A.)
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (W.K.); (I.K.)
| | - Michal Jeseta
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic;
- Department of Veterinary Sciences, Czech University of Life Sciences in Prague, 165 00 Prague, Czech Republic
| | - Patrycja Sujka-Kordowska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.S.-K.); (A.K.); (S.C.); (P.C.); (L.M.)
- Department of Anatomy and Histology, University of Zielona Gora, 65-046 Zielona Gora, Poland
| | - Aneta Konwerska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.S.-K.); (A.K.); (S.C.); (P.C.); (L.M.)
| | - Sylwia Ciesiółka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.S.-K.); (A.K.); (S.C.); (P.C.); (L.M.)
| | - Piotr Celichowski
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.S.-K.); (A.K.); (S.C.); (P.C.); (L.M.)
| | - Lisa Moncrieff
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.S.-K.); (A.K.); (S.C.); (P.C.); (L.M.)
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Ievgeniia Kocherova
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (W.K.); (I.K.)
| | - Małgorzata Józkowiak
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland; (M.J.); (H.P.-K.)
| | - Jakub Kulus
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.K.); (D.B.); (J.M.J.)
| | - Maria Wieczorkiewicz
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.W.); (M.T.S.)
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland; (M.J.); (H.P.-K.)
| | - Mariusz T. Skowroński
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.W.); (M.T.S.)
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.K.); (D.B.); (J.M.J.)
| | - Marie Machatkova
- Veterinary Research Institute, 621 00 Brno, Czech Republic; (M.M.); (S.H.)
| | - Sarka Hanulakova
- Veterinary Research Institute, 621 00 Brno, Czech Republic; (M.M.); (S.H.)
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Jędrzej M. Jaśkowski
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.K.); (D.B.); (J.M.J.)
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (P.A.)
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (W.K.); (I.K.)
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic;
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.S.-K.); (A.K.); (S.C.); (P.C.); (L.M.)
- Correspondence: ; Tel.: +48-61-854-6418
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (P.A.)
| |
Collapse
|
46
|
Sperm proteins SOF1, TMEM95, and SPACA6 are required for sperm-oocyte fusion in mice. Proc Natl Acad Sci U S A 2020; 117:11493-11502. [PMID: 32393636 PMCID: PMC7261011 DOI: 10.1073/pnas.1922650117] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sperm-oocyte membrane fusion is one of the most important events for fertilization. So far, IZUMO1 and Fertilization Influencing Membrane Protein (FIMP) on the sperm membrane and CD9 and JUNO (IZUMO1R/FOLR4) on the oocyte membrane have been identified as fusion-required proteins. However, the molecular mechanisms for sperm-oocyte fusion are still unclear. Here, we show that testis-enriched genes, sperm-oocyte fusion required 1 (Sof1/Llcfc1/1700034O15Rik), transmembrane protein 95 (Tmem95), and sperm acrosome associated 6 (Spaca6), encode sperm proteins required for sperm-oocyte fusion in mice. These knockout (KO) spermatozoa carry IZUMO1 but cannot fuse with the oocyte plasma membrane, leading to male sterility. Transgenic mice which expressed mouse Sof1, Tmem95, and Spaca6 rescued the sterility of Sof1, Tmem95, and Spaca6 KO males, respectively. SOF1 and SPACA6 remain in acrosome-reacted spermatozoa, and SPACA6 translocates to the equatorial segment of these spermatozoa. The coexpression of SOF1, TMEM95, and SPACA6 in IZUMO1-expressing cultured cells did not enhance their ability to adhere to the oocyte membrane or allow them to fuse with oocytes. SOF1, TMEM95, and SPACA6 may function cooperatively with IZUMO1 and/or unknown fusogens in sperm-oocyte fusion.
Collapse
|
47
|
Spermatozoa lacking Fertilization Influencing Membrane Protein (FIMP) fail to fuse with oocytes in mice. Proc Natl Acad Sci U S A 2020; 117:9393-9400. [PMID: 32295885 PMCID: PMC7196805 DOI: 10.1073/pnas.1917060117] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
As the human body is composed of 60 trillion cells that originate from a fertilized egg, sperm–oocyte fusion is the initial event of our life. Few sperm–oocyte fusion factors have been unveiled to date, and only IZUMO1 has been identified as a sperm-specific fusion-mediating protein. Here, we identified the testis-specific 4930451I11Rik gene important for male fertility, playing a role in sperm–oocyte fusion during fertilization. Based on its functional role, we renamed this gene fertilization influencing membrane protein (Fimp). We discovered a factor responsible for sperm–oocyte fusion in mammals, and this knowledge could be used to develop in vitro and in vivo infertility treatments as well as male contraceptives. Sperm–oocyte fusion is a critical event in mammalian fertilization, categorized by three indispensable proteins. Sperm membrane protein IZUMO1 and its counterpart oocyte membrane protein JUNO make a protein complex allowing sperm to interact with the oocyte, and subsequent sperm–oocyte fusion. Oocyte tetraspanin protein CD9 also contributes to sperm–oocyte fusion. However, the fusion process cannot be explained solely by these three essential factors. In this study, we focused on analyzing a testis-specific gene 4930451I11Rik and generated mutant mice using the CRISPR/Cas9 system. Although IZUMO1 remained in 4930451I11Rik knockout (KO) spermatozoa, the KO spermatozoa were unable to fuse with oocytes and the KO males were severely subfertile. 4930451I11Rik encodes two isoforms: a transmembrane (TM) form and a secreted form. Both CRISPR/Cas9-mediated TM deletion and transgenic (Tg) rescue with the TM form revealed that only the TM form plays a critical role in sperm–oocyte fusion. Thus, we renamed this TM form Fertilization Influencing Membrane Protein (FIMP). The mCherry-tagged FIMP TM form was localized to the sperm equatorial segment where the sperm–oocyte fusion event occurs. Thus, FIMP is a sperm-specific transmembrane protein that is necessary for the sperm–oocyte fusion process.
Collapse
|
48
|
Umeda R, Satouh Y, Takemoto M, Nakada-Nakura Y, Liu K, Yokoyama T, Shirouzu M, Iwata S, Nomura N, Sato K, Ikawa M, Nishizawa T, Nureki O. Structural insights into tetraspanin CD9 function. Nat Commun 2020; 11:1606. [PMID: 32231207 PMCID: PMC7105497 DOI: 10.1038/s41467-020-15459-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 03/06/2020] [Indexed: 01/16/2023] Open
Abstract
Tetraspanins play critical roles in various physiological processes, ranging from cell adhesion to virus infection. The members of the tetraspanin family have four membrane-spanning domains and short and large extracellular loops, and associate with a broad range of other functional proteins to exert cellular functions. Here we report the crystal structure of CD9 and the cryo-electron microscopic structure of CD9 in complex with its single membrane-spanning partner protein, EWI-2. The reversed cone-like molecular shape of CD9 generates membrane curvature in the crystalline lipid layers, which explains the CD9 localization in regions with high membrane curvature and its implications in membrane remodeling. The molecular interaction between CD9 and EWI-2 is mainly mediated through the small residues in the transmembrane region and protein/lipid interactions, whereas the fertilization assay revealed the critical involvement of the LEL region in the sperm-egg fusion, indicating the different dependency of each binding domain for other partner proteins. Tetraspanins play critical roles in various physiological processes, ranging from cell adhesion to virus infection. Here authors report the crystal structure of CD9 and the cryo-electron microscopic structure of CD9 in complex with its single membrane-spanning partner protein, EWI-2.
Collapse
Affiliation(s)
- Rie Umeda
- Department of Biological Sciences Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yuhkoh Satouh
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, 371-8512, Japan.,Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
| | - Mizuki Takemoto
- Department of Biological Sciences Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.,Preferred Networks, Inc., Bunkyo-ku, Tokyo, Japan
| | - Yoshiko Nakada-Nakura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kehong Liu
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Yokoyama
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, Japan
| | - Norimichi Nomura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, 371-8512, Japan.,Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, 371-8512, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
| | - Tomohiro Nishizawa
- Department of Biological Sciences Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan. .,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology, Bunkyo-ku, Tokyo, Japan.
| | - Osamu Nureki
- Department of Biological Sciences Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
49
|
Sperm SPACA6 protein is required for mammalian Sperm-Egg Adhesion/Fusion. Sci Rep 2020; 10:5335. [PMID: 32210282 PMCID: PMC7093486 DOI: 10.1038/s41598-020-62091-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/06/2020] [Indexed: 12/30/2022] Open
Abstract
Three genes are known to be essential for gamete adhesion/fusion (Cd9, Izumo1 and Juno). Here, we confirmed that Spaca6 null males are infertile and showed that their sperm accumulate in the perivitelline space but are unable to fuse with oocyte. Like IZUMO1, SPACA6 which is expressed by human sperm, is remained on the equatorial segment after acrosomal reaction and is involved in human fertilization since an anti-SPACA6 antibody inhibited it. Despite the similarity of the phenotypes caused by Spaca6 and Izumo1 knockouts, these are not redundant and the essential relocation of IZUMO1 is not affected by the lack of SPACA6. We propose a model in which IZUMO1 and SPACA6 would be part of a molecular complex necessary for gamete fusion and that their concomitant presence would be required for the recruitment of another essential molecular actor, such as a fusogen, for the fusion to take place.
Collapse
|
50
|
Navarro-Hernandez IC, López-Ortega O, Acevedo-Ochoa E, Cervantes-Díaz R, Romero-Ramírez S, Sosa-Hernández VA, Meza-Sánchez DE, Juárez-Vega G, Pérez-Martínez CA, Chávez-Munguía B, Galván-Hernández A, Antillón A, Ortega-Blake I, Santos-Argumedo L, Hernández-Hernández JM, Maravillas-Montero JL. Tetraspanin 33 (TSPAN33) regulates endocytosis and migration of human B lymphocytes by affecting the tension of the plasma membrane. FEBS J 2020; 287:3449-3471. [PMID: 31958362 DOI: 10.1111/febs.15216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/20/2019] [Accepted: 01/16/2020] [Indexed: 12/31/2022]
Abstract
B lymphocytes are a leukocyte subset capable of developing several functions apart from differentiating into antibody-secreting cells. These processes are triggered by external activation signals that induce changes in the plasma membrane properties, regulated by the formation of different lipid-bilayer subdomains that are associated with the underlying cytoskeleton through different linker molecules, thus allowing the functional specialization of regions within the membrane. Among these, there are tetraspanin-enriched domains. Tetraspanins constitute a superfamily of transmembrane proteins that establish lateral associations with other molecules, determining its activity and localization. In this study, we identified TSPAN33 as an active player during B-lymphocyte cytoskeleton and plasma membrane-related phenomena, including protrusion formation, adhesion, phagocytosis, and cell motility. By using an overexpression model of TSPAN33 in human Raji cells, we detected a specific distribution of this protein that includes membrane microvilli, the Golgi apparatus, and extracellular vesicles. Additionally, we identified diminished phagocytic ability and altered cell adhesion properties due to the aberrant expression of integrins. Accordingly, these cells presented an enhanced migratory phenotype, as shown by its augmented chemotaxis and invasion rates. When we evaluated the mechanic response of cells during fibronectin-induced spreading, we found that TSPAN33 expression inhibited changes in roughness and membrane tension. Contrariwise, TSPAN33 knockdown cells displayed opposite phenotypes to those observed in the overexpression model. Altogether, our data indicate that TSPAN33 represents a regulatory element of the adhesion and migration of B lymphocytes, suggesting a novel implication of this tetraspanin in the control of the mechanical properties of their plasma membrane.
Collapse
Affiliation(s)
- Itze C Navarro-Hernandez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico.,Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Orestes López-Ortega
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ernesto Acevedo-Ochoa
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico.,Unidad de Investigación Médica en Inmunoquímica, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico
| | - Rodrigo Cervantes-Díaz
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico.,Facultad De Medicina, Universidad Nacional Autónoma De México, Mexico
| | - Sandra Romero-Ramírez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico.,Facultad De Medicina, Universidad Nacional Autónoma De México, Mexico
| | - Víctor A Sosa-Hernández
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico.,Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - David E Meza-Sánchez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico
| | - Guillermo Juárez-Vega
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico
| | - César A Pérez-Martínez
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Armando Antillón
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Iván Ortega-Blake
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Leopoldo Santos-Argumedo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - José M Hernández-Hernández
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - José L Maravillas-Montero
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico
| |
Collapse
|