1
|
Schäfer N, Kaya Y, Rebl H, Stüeken M, Rebl A, Nguinkal JA, Franz GP, Brunner RM, Goldammer T, Grunow B, Verleih M. Insights into early ontogenesis: characterization of stress and development key genes of pikeperch (Sander lucioperca) in vivo and in vitro. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:515-532. [PMID: 33559015 PMCID: PMC8026417 DOI: 10.1007/s10695-021-00929-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/18/2021] [Indexed: 05/11/2023]
Abstract
There are still numerous difficulties in the successful farming of pikeperch in the anthropogenic environment of various aquaculture systems, especially during early developmental steps in the hatchery. To investigate the physiological processes involved on the molecular level, we determined the basal expression patterns of 21 genes involved in stress and immune responses and early ontogenesis of pikeperch between 0 and 175 days post hatch (dph). Their transcription patterns most likely reflect the challenges of growth and feed conversion. The gene coding for apolipoprotein A (APOE) was strongly expressed at 0 dph, indicating its importance for yolk sac utilization. Genes encoding bone morphogenetic proteins 4 and 7 (BMP4, BMP7), creatine kinase M (CKM), and SRY-box transcription factor 9 (SOX9) were highly abundant during the peak phases of morphological changes and acclimatization processes at 4-18 dph. The high expression of genes coding for peroxisome proliferator-activated receptors alpha and delta (PPARA, PPARD) at 121 and 175 dph, respectively, suggests their importance during this strong growth phase of juvenile stages. As an alternative experimental model to replace further in vivo investigations of ontogenetically important processes, we initiated the first approach towards a long-lasting primary cell culture from whole pikeperch embryos. The present study provides a set of possible biomarkers to support the monitoring of pikeperch farming and provides a first basis for the establishment of a suitable cell model of this emerging aquaculture species.
Collapse
Affiliation(s)
- Nadine Schäfer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Yagmur Kaya
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Henrike Rebl
- Department of Cell Biology, Rostock University Medical Center, 18059, Rostock, Germany
| | - Marcus Stüeken
- Institute of Fisheries, Department of Aquaculture, Mecklenburg-Vorpommern Research Centre for Agriculture and Fisheries, 17194, Hohen Wangelin, Germany
| | - Alexander Rebl
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Julien A Nguinkal
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - George P Franz
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Ronald M Brunner
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Tom Goldammer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
- Faculty of Agriculture and Environmental Sciences, University of Rostock, 18059, Rostock, Germany
| | - Bianka Grunow
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| | - Marieke Verleih
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
2
|
Dantsev IS, Ivkin EV, Tryakin AA, Godlevski DN, Latyshev OY, Rudenko VV, Mikhaylenko DS, Chernykh VB, Volodko EA, Okulov AB, Loran OB, Nemtsova MV. Genes associated with testicular germ cell tumors and testicular dysgenesis in patients with testicular microlithiasis. Asian J Androl 2019; 20:593-599. [PMID: 30027931 PMCID: PMC6219295 DOI: 10.4103/aja.aja_54_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Testicular microlithiasis (TM) is one of the symptoms of testicular dysgenesis syndrome (TDS). TM is particularly interesting as an informative marker of testicular germ cell tumors (TGCTs). KIT ligand gene (KITLG), BCL2 antagonist/killer 1 (BAK1), and sprouty RTK signaling antagonist 4 (SPRY4) genes are associated with a high risk of TGCTs, whereas bone morphogenetic protein 7 gene (BMP7), transforming growth factor beta receptor 3 gene (TGFBR3), and homeobox D cluster genes (HOXD) are related to TDS. Using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis, we investigated allele and genotype frequencies for KITLG (rs995030, rs1508595), SPRY4 (rs4624820, rs6897876), BAK1 (rs210138), BMP7 (rs388286), TGFBR3 (rs12082710), and HOXD (rs17198432) in 142 TGCT patients, 137 TM patients, and 153 fertile men (control group). We found significant differences in the KITLG GG_rs995030 genotype in TM (P = 0.01) and TGCT patients (P = 0.0005) compared with the control. We also revealed strong associations between KITLG_rs1508595 and TM (G allele, P = 0.003; GG genotype, P = 0.01) and between KITLG_rs1508595 and TGCTs (G allele, P = 0.0001; GG genotype, P = 0.0007). Moreover, there was a significant difference in BMP7_rs388286 between the TGCT group and the control (T allele, P = 0.00004; TT genotype, P = 0.00006) and between the TM group and the control (T allele, P = 0.04). HOXD also demonstrated a strong association with TGCTs (rs17198432 A allele, P = 0.0001; AA genotype, P = 0.001). Furthermore, significant differences were found between the TGCT group and the control in the BAK1_rs210138 G allele (P = 0.03) and the GG genotype (P = 0.01). KITLG and BMP7 genes, associated with the development of TGCTs, may also be related to TM. In summary, the KITLG GG_rs995030, GG_rs1508595, BMP7 TT_rs388286, HOXD AA_rs17198432, and BAK1 GG_rs210138 genotypes were associated with a high risk of TGCT development.
Collapse
Affiliation(s)
- Ilya S Dantsev
- Russian Medical Academy of Postgraduate Education, Moscow 123995, Russia
| | - Evgeniy V Ivkin
- Russian Medical Academy of Postgraduate Education, Moscow 123995, Russia
| | | | | | - Oleg Yu Latyshev
- Russian Medical Academy of Postgraduate Education, Moscow 123995, Russia
| | | | | | - Vyacheslav B Chernykh
- Research Centre of Medical Genetics, Moscow 115478, Russia.,N. I. Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Elena A Volodko
- Russian Medical Academy of Postgraduate Education, Moscow 123995, Russia
| | - Aleksey B Okulov
- Russian Medical Academy of Postgraduate Education, Moscow 123995, Russia
| | - Oleg B Loran
- Russian Medical Academy of Postgraduate Education, Moscow 123995, Russia
| | - Marina V Nemtsova
- Research Centre of Medical Genetics, Moscow 115478, Russia.,I. M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| |
Collapse
|
3
|
Valensi M, Goldman G, Marchant D, Van Den Berghe L, Jonet L, Daruich A, Robert MP, Krejci E, Klein C, Mascarelli F, Versaux-Botteri C, Moulin A, Putterman M, Guimiot F, Molina T, Terris B, Brémond-Gignac D, Behar-Cohen F, Abitbol MM. Sostdc1 is expressed in all major compartments of developing and adult mammalian eyes. Graefes Arch Clin Exp Ophthalmol 2019; 257:2401-2427. [PMID: 31529323 DOI: 10.1007/s00417-019-04462-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/20/2019] [Accepted: 09/04/2019] [Indexed: 01/16/2023] Open
Abstract
PURPOSE This study was conducted in order to study Sostdc1 expression in rat and human developing and adult eyes. METHODS Using the yeast signal sequence trap screening method, we identified the Sostdc1 cDNA encoding a protein secreted by the adult rat retinal pigment epithelium. We determined by in situ hybridization, RT-PCR, immunohistochemistry, and western blot analysis Sostdc1 gene and protein expression in developing and postnatal rat ocular tissue sections. We also investigated Sostdc1 immunohistolocalization in developing and adult human ocular tissues. RESULTS We demonstrated a prominent Sostdc1 gene expression in the developing rat central nervous system (CNS) and eyes at early developmental stages from E10.5 days postconception (dpc) to E13 dpc. Specific Sostdc1 immunostaining was also detected in most adult cells of rat ocular tissue sections. We also identified the rat ocular embryonic compartments characterized by a specific Sostdc1 immunohistostaining and specific Pax6, Sox2, Otx2, and Vsx2 immunohistostaining from embryonic stages E10.5 to E13 dpc. Furthermore, we determined the localization of SOSTDC1 immunoreactivity in ocular tissue sections of developing and adult human eyes. Indeed, we detected SOSTDC1 immunostaining in developing and adult human retinal pigment epithelium (RPE) and neural retina (NR) as well as in several developing and adult human ocular compartments, including the walls of choroidal and scleral vessels. Of utmost importance, we observed a strong SOSTDC1 expression in a pathological ocular specimen of type 2 Peters' anomaly complicated by retinal neovascularization as well in the walls ofother pathological extra-ocular vessels. CONCLUSION: As rat Sostdc1 and human SOSTDC1 are dual antagonists of the Wnt/β-catenin and BMP signaling pathways, these results underscore the potential crucial roles of these pathways and their antagonists, such as Sostdc1 and SOSTDC1, in developing and adult mammalian normal eyes as well as in syndromic and nonsyndromic congenital eye diseases.
Collapse
Affiliation(s)
- Maud Valensi
- Centre de Recherches des Cordeliers, UMR_S INSERM 1138, Equipe 17, Université Paris Descartes, 15 rue de l'école de médecine, 75006, Paris, France
| | - Gabrielle Goldman
- APHP, Service de Pathologie de L'Hôpital Cochin-Hôtel-Dieu, Université Paris Descartes, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Dominique Marchant
- Centre de Recherches des Cordeliers, UMR_S INSERM 1138, Equipe 17, Université Paris Descartes, 15 rue de l'école de médecine, 75006, Paris, France
- Sorbonne Paris Cité, UFR SMBH, Laboratoire Hypoxie et poumons, Université Paris 13, EA 2363, 93017, Bobigny, France
| | - Loïc Van Den Berghe
- Centre de Recherches des Cordeliers, UMR_S INSERM 1138, Equipe 17, Université Paris Descartes, 15 rue de l'école de médecine, 75006, Paris, France
- Inserm UMR 1037, CRCT (Cancer Research Center of Toulouse), 31037, Toulouse, France
| | - Laurent Jonet
- Centre de Recherches des Cordeliers, UMR_S INSERM 1138, Equipe 17, Université Paris Descartes, 15 rue de l'école de médecine, 75006, Paris, France
| | - Alejandra Daruich
- Centre de Recherches des Cordeliers, UMR_S INSERM 1138, Equipe 17, Université Paris Descartes, 15 rue de l'école de médecine, 75006, Paris, France
- AP-HP, Hôpital Universitaire Necker-Enfants-Malades, Service d'Ophtalmologie, 149 rue de Sèvres, 75015, Paris, France
| | - Matthieu P Robert
- AP-HP, Hôpital Universitaire Necker-Enfants-Malades, Service d'Ophtalmologie, 149 rue de Sèvres, 75015, Paris, France
- COGnition and Action Group, UMR 8257, CNRS, Université Paris Descartes, Paris, France
| | - Eric Krejci
- COGnition and Action Group, UMR 8257, CNRS, Université Paris Descartes, Paris, France
| | - Christophe Klein
- Centre d'Imagerie Cellulaire et de Cytométrie (CICC), Centre de Recherche des Cordeliers (CRC), Université Pierre et Marie Curie - Paris 6, Université Paris Descartes - Paris 5, UMR_S 1138, 75006, Paris, France
| | - Frédéric Mascarelli
- Centre de Recherches des Cordeliers, UMR_S INSERM 1138, Equipe 17, Université Paris Descartes, 15 rue de l'école de médecine, 75006, Paris, France
| | - Claudine Versaux-Botteri
- Centre de Recherches des Cordeliers, UMR_S INSERM 1138, Equipe 17, Université Paris Descartes, 15 rue de l'école de médecine, 75006, Paris, France
| | - Alexandre Moulin
- Département de Pathologie, Hôpital Ophtalmique Jules-Gonin , 15, avenue de France, 1004, Lausanne, Switzerland
| | - Marc Putterman
- APHP, Service de Pathologie de l'Hôpital Universitaire Necker-Enfants-Malades, Université Paris Descartes, 149 rue de Sèvres, 75015, Paris, France
| | - Fabien Guimiot
- Unité Fonctionnelle de Foeto-Pathologie, Hôpital Universitaire Robert Debré, 48 Boulevard Serrurier, 75019, Paris, France
| | - Thierry Molina
- APHP, Service de Pathologie de l'Hôpital Universitaire Necker-Enfants-Malades, Université Paris Descartes, 149 rue de Sèvres, 75015, Paris, France
| | - Benoît Terris
- APHP, Service de Pathologie de L'Hôpital Cochin-Hôtel-Dieu, Université Paris Descartes, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Dominique Brémond-Gignac
- AP-HP, Hôpital Universitaire Necker-Enfants-Malades, Service d'Ophtalmologie, 149 rue de Sèvres, 75015, Paris, France
| | - Francine Behar-Cohen
- Centre de Recherches des Cordeliers, UMR_S INSERM 1138, Equipe 17, Université Paris Descartes, 15 rue de l'école de médecine, 75006, Paris, France
- AP-HP, Service d'Ophtalmologie, Hôpital Universitaire Cochin-Hôtel-Dieu, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Marc M Abitbol
- Centre de Recherches des Cordeliers, UMR_S INSERM 1138, Equipe 17, Université Paris Descartes, 15 rue de l'école de médecine, 75006, Paris, France.
- AP-HP, Hôpital Universitaire Necker-Enfants-Malades, Service d'Ophtalmologie, 149 rue de Sèvres, 75015, Paris, France.
| |
Collapse
|
4
|
The genetic architecture of aniridia and Gillespie syndrome. Hum Genet 2018; 138:881-898. [PMID: 30242502 PMCID: PMC6710220 DOI: 10.1007/s00439-018-1934-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022]
Abstract
Absence of part or all of the iris, aniridia, is a feature of several genetically distinct conditions. This review focuses on iris development and then the clinical features and molecular genetics of these iris malformations. Classical aniridia, a panocular eye malformation including foveal hypoplasia, is the archetypal phenotype associated with heterozygous PAX6 loss-of-function mutations. Since this was identified in 1991, many genetic mechanisms of PAX6 inactivation have been elucidated, the commonest alleles being intragenic mutations causing premature stop codons, followed by those causing C-terminal extensions. Rarely, aniridia cases are associated with FOXC1, PITX2 and/or their regulatory regions. Aniridia can also occur as a component of many severe global eye malformations. Gillespie syndrome—a triad of partial aniridia, non-progressive cerebellar ataxia and intellectual disability—is phenotypically and genotypically distinct from classical aniridia. The causative gene has recently been identified as ITPR1. The same characteristic Gillespie syndrome-like iris, with aplasia of the pupillary sphincter and a scalloped margin, is seen in ACTA2-related multisystemic smooth muscle dysfunction syndrome. WAGR syndrome (Wilms tumour, aniridia, genitourinary anomalies and mental retardation/intellectual disability), is caused by contiguous deletion of PAX6 and WT1 on chromosome 11p. Deletions encompassing BDNF have been causally implicated in the obesity and intellectual disability associated with the condition. Lastly, we outline a genetic investigation strategy for aniridia in light of recent developments, suggesting an approach based principally on chromosomal array and gene panel testing. This strategy aims to test all known aniridia loci—including the rarer, life-limiting causes—whilst remaining simple and practical.
Collapse
|
5
|
Karolak MJ, Guay JA, Oxburgh L. Inactivation of MAP3K7 in FOXD1-expressing cells results in loss of mesangial PDGFRΒ and juvenile kidney scarring. Am J Physiol Renal Physiol 2018; 315:F336-F344. [PMID: 29667914 DOI: 10.1152/ajprenal.00493.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transforming growth factor-β (TGFβ) plays a central role in renal scarring, controlling extracellular matrix deposition by interstitial cells and mesangial cells. TGFβ signals through Smad and mitogen-activated protein kinase (MAPK) pathways. To understand the role of MAPK in interstitial and mesangial cells, we genetically inactivated TGFβ-activated kinase-1 ( Map3k7) using Foxd1+/cre. Embryonic kidney development was unperturbed in mutants, but spontaneous scarring of the kidney ensued during the first postnatal week, with retention of embryonic nephrogenic rests and accumulation of collagen IV in the mesangium. MAPK signaling in the mesangium of mutant mice was skewed, with depressed p38 but elevated c-Jun NH2-terminal kinase (JNK) activation at postnatal day 3. Despite normal expression of platelet-derived growth factor receptor-β (PDGFRβ) in the mesangium of mutants at birth, expression was lost concomitantly with the increase in JNK activation, and studies in isolated mesangial cells revealed that JNK negatively regulates Pdgfrβ. In summary, we show that MAP3K7 balances MAPK signaling in mesangial cells, suppressing postnatal JNK activation. We propose that the balance of MAPK signaling is essential for appropriate postnatal regulation of mesangial PDGFRβ expression.
Collapse
Affiliation(s)
- Michele J Karolak
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | - Justin A Guay
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | - Leif Oxburgh
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| |
Collapse
|
6
|
Tsujimura T, Idei M, Yoshikawa M, Takase O, Hishikawa K. Roles and regulation of bone morphogenetic protein-7 in kidney development and diseases. World J Stem Cells 2016; 8:288-296. [PMID: 27679685 PMCID: PMC5031890 DOI: 10.4252/wjsc.v8.i9.288] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/12/2016] [Accepted: 07/22/2016] [Indexed: 02/07/2023] Open
Abstract
The gene encoding bone morphogenetic protein-7 (BMP7) is expressed in the developing kidney in embryos and also in the mature organ in adults. During kidney development, expression of BMP7 is essential to determine the final number of nephrons in and proper size of the organ. The secreted BMP7 acts on the nephron progenitor cells to exert its dual functions: To maintain and expand the progenitor population and to provide them with competence to respond to differentiation cues, each relying on distinct signaling pathways. Intriguingly, in the adult organ, BMP7 has been implicated in protection against and regeneration from injury. Exogenous administration of recombinant BMP7 to animal models of kidney diseases has shown promising effects in counteracting inflammation, apoptosis and fibrosis evoked upon injury. Although the expression pattern of BMP7 has been well described, the mechanisms by which it is regulated have remained elusive and the processes by which the secretion sites of BMP7 impinge upon its functions in kidney development and diseases have not yet been assessed. Understanding the regulatory mechanisms will pave the way towards gaining better insight into the roles of BMP7, and to achieving desired control of the gene expression as a therapeutic strategy for kidney diseases.
Collapse
|
7
|
Abstract
Bone morphogenetic proteins (BMPs), together with the eponymous transforming growth factor (TGF) β and the Activins form the TGFβ superfamily of ligands. This protein family comprises more than 30 structurally highly related proteins, which determine formation, maintenance, and regeneration of tissues and organs. Their importance for the development of multicellular organisms is evident from their existence in all vertebrates as well as nonvertebrate animals. From their highly specific functions in vivo either a strict relation between a particular ligand and its cognate cellular receptor and/or a stringent regulation to define a distinct temperospatial expression pattern for the various ligands and receptor is expected. However, only a limited number of receptors are found to serve a large number of ligands thus implicating highly promiscuous ligand-receptor interactions instead. Since in tissues a multitude of ligands are often found, which signal via a highly overlapping set of receptors, this raises the question how such promiscuous interactions between different ligands and their receptors can generate concerted and highly specific cellular signals required during embryonic development and tissue homeostasis.
Collapse
Affiliation(s)
- Thomas D Mueller
- Department Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
8
|
Erickson PA, Cleves PA, Ellis NA, Schwalbach KT, Hart JC, Miller CT. A 190 base pair, TGF-β responsive tooth and fin enhancer is required for stickleback Bmp6 expression. Dev Biol 2015; 401:310-23. [PMID: 25732776 DOI: 10.1016/j.ydbio.2015.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/11/2015] [Indexed: 12/17/2022]
Abstract
The ligands of the Bone Morphogenetic Protein (BMP) family of developmental signaling molecules are often under the control of complex cis-regulatory modules and play diverse roles in vertebrate development and evolution. Here, we investigated the cis-regulatory control of stickleback Bmp6. We identified a 190bp enhancer ~2.5 kilobases 5' of the Bmp6 gene that recapitulates expression in developing teeth and fins, with a core 72bp sequence that is sufficient for both domains. By testing orthologous enhancers with varying degrees of sequence conservation from outgroup teleosts in transgenic reporter gene assays in sticklebacks and zebrafish, we found that the function of this regulatory element appears to have been conserved for over 250 million years of teleost evolution. We show that a predicted binding site for the TGFβ effector Smad3 in this enhancer is required for enhancer function and that pharmacological inhibition of TGFβ signaling abolishes enhancer activity and severely reduces endogenous Bmp6 expression. Finally, we used TALENs to disrupt the enhancer in vivo and find that Bmp6 expression is dramatically reduced in teeth and fins, suggesting this enhancer is necessary for expression of the Bmp6 locus. This work identifies a relatively short regulatory sequence that is required for expression in multiple tissues and, combined with previous work, suggests that shared regulatory networks control limb and tooth development.
Collapse
Affiliation(s)
- Priscilla A Erickson
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States
| | - Phillip A Cleves
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States
| | - Nicholas A Ellis
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States
| | - Kevin T Schwalbach
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States
| | - James C Hart
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States
| | - Craig T Miller
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States.
| |
Collapse
|
9
|
Tsujimura T, Klein FA, Langenfeld K, Glaser J, Huber W, Spitz F. A discrete transition zone organizes the topological and regulatory autonomy of the adjacent tfap2c and bmp7 genes. PLoS Genet 2015; 11:e1004897. [PMID: 25569170 PMCID: PMC4288730 DOI: 10.1371/journal.pgen.1004897] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/17/2014] [Indexed: 12/11/2022] Open
Abstract
Despite the well-documented role of remote enhancers in controlling developmental gene expression, the mechanisms that allocate enhancers to genes are poorly characterized. Here, we investigate the cis-regulatory organization of the locus containing the Tfap2c and Bmp7 genes in vivo, using a series of engineered chromosomal rearrangements. While these genes lie adjacent to one another, we demonstrate that they are independently regulated by distinct sets of enhancers, which in turn define non-overlapping regulatory domains. Chromosome conformation capture experiments reveal a corresponding partition of the locus in two distinct structural entities, demarcated by a discrete transition zone. The impact of engineered chromosomal rearrangements on the topology of the locus and the resultant gene expression changes indicate that this transition zone functionally organizes the structural partition of the locus, thereby defining enhancer-target gene allocation. This partition is, however, not absolute: we show that it allows competing interactions across it that may be non-productive for the competing gene, but modulate expression of the competed one. Altogether, these data highlight the prime role of the topological organization of the genome in long-distance regulation of gene expression. The specificity of enhancer-gene interactions is fundamental to the execution of gene regulatory programs underpinning embryonic development and cell differentiation. However, our understanding of the mechanisms conferring specificity to enhancers and target gene interactions is limited. In this study, we characterize the cis-regulatory organization of a large genomic locus consisting of two developmental genes, Tfap2c and Bmp7. We show that this locus is structurally partitioned into two distinct domains by the constitutive action of a discrete transition zone located between the two genes. This separation restricts selectively the functional action of enhancers to the genes present within the same domain. Interestingly, the effects of this region as a boundary are relative, as it allows some competing interactions to take place across domains. We show that these interactions modulate the functional output of a brain enhancer on its primary target gene resulting in the spatial restriction of its expression domain. These results support a functional link between topological chromatin domains and allocation of enhancers to genes. They further show that a precise adjustment of chromatin interaction levels fine-tunes gene regulation by long-range enhancers.
Collapse
Affiliation(s)
- Taro Tsujimura
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Felix A. Klein
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Katja Langenfeld
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Juliane Glaser
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Wolfgang Huber
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - François Spitz
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
10
|
Nikaido M, Noguchi H, Nishihara H, Toyoda A, Suzuki Y, Kajitani R, Suzuki H, Okuno M, Aibara M, Ngatunga BP, Mzighani SI, Kalombo HWJ, Masengi KWA, Tuda J, Nogami S, Maeda R, Iwata M, Abe Y, Fujimura K, Okabe M, Amano T, Maeno A, Shiroishi T, Itoh T, Sugano S, Kohara Y, Fujiyama A, Okada N. Coelacanth genomes reveal signatures for evolutionary transition from water to land. Genome Res 2013; 23:1740-8. [PMID: 23878157 PMCID: PMC3787270 DOI: 10.1101/gr.158105.113] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Coelacanths are known as “living fossils,” as they show remarkable morphological resemblance to the fossil record and belong to the most primitive lineage of living Sarcopterygii (lobe-finned fishes and tetrapods). Coelacanths may be key to elucidating the tempo and mode of evolution from fish to tetrapods. Here, we report the genome sequences of five coelacanths, including four Latimeria chalumnae individuals (three specimens from Tanzania and one from Comoros) and one L. menadoensis individual from Indonesia. These sequences cover two African breeding populations and two known extant coelacanth species. The genome is ∼2.74 Gbp and contains a high proportion (∼60%) of repetitive elements. The genetic diversity among the individuals was extremely low, suggesting a small population size and/or a slow rate of evolution. We found a substantial number of genes that encode olfactory and pheromone receptors with features characteristic of tetrapod receptors for the detection of airborne ligands. We also found that limb enhancers of bmp7 and gli3, both of which are essential for limb formation, are conserved between coelacanth and tetrapods, but not ray-finned fishes. We expect that some tetrapod-like genes may have existed early in the evolution of primitive Sarcopterygii and were later co-opted to adapt to terrestrial environments. These coelacanth genomes will provide a cornerstone for studies to elucidate how ancestral aquatic vertebrates evolved into terrestrial animals.
Collapse
Affiliation(s)
- Masato Nikaido
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Oxburgh L. Control of the bone morphogenetic protein 7 gene in developmental and adult life. Curr Genomics 2011; 10:223-30. [PMID: 19949543 PMCID: PMC2709933 DOI: 10.2174/138920209788488490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 03/20/2009] [Accepted: 03/20/2009] [Indexed: 11/24/2022] Open
Abstract
The TGFβ superfamily growth factor BMP7 performs essential biological functions in embryonic development and regeneration of injured tissue in the adult. BMP7 activity is regulated at numerous levels in the signaling pathway by the expression of extracellular antagonists, decoy receptors and inhibitory cell signaling components. Additionally, expression of the BMP7 gene is tightly controlled both during embryonic development and adult life. In this review, the current status of work on regulation of BMP7 at the genomic level is discussed. In situ hybridization and reporter gene studies have conclusively defined patterns of BMP7 expression in many tissues. Additionally, both in vivo and cell culture studies have defined some of the mechanistic bases for this regulation. In addition to transcriptional activation mediated by binding of activating transcription factors, there is also strong evidence for repression through recruitment of histone modifying enzymes to specific genetic elements. This review summarizes our current understanding of BMP7 gene regulation in embryonic development and adult tissues.
Collapse
Affiliation(s)
- Leif Oxburgh
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| |
Collapse
|
12
|
Rödelsperger C, Guo G, Kolanczyk M, Pletschacher A, Köhler S, Bauer S, Schulz MH, Robinson PN. Integrative analysis of genomic, functional and protein interaction data predicts long-range enhancer-target gene interactions. Nucleic Acids Res 2010; 39:2492-502. [PMID: 21109530 PMCID: PMC3074119 DOI: 10.1093/nar/gkq1081] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Multicellular organismal development is controlled by a complex network of transcription factors, promoters and enhancers. Although reliable computational and experimental methods exist for enhancer detection, prediction of their target genes remains a major challenge. On the basis of available literature and ChIP-seq and ChIP-chip data for enhanceosome factor p300 and the transcriptional regulator Gli3, we found that genomic proximity and conserved synteny predict target genes with a relatively low recall of 12–27% within 2 Mb intervals centered at the enhancers. Here, we show that functional similarities between enhancer binding proteins and their transcriptional targets and proximity in the protein–protein interactome improve prediction of target genes. We used all four features to train random forest classifiers that predict target genes with a recall of 58% in 2 Mb intervals that may contain dozens of genes, representing a better than two-fold improvement over the performance of prediction based on single features alone. Genome-wide ChIP data is still relatively poorly understood, and it remains difficult to assign biological significance to binding events. Our study represents a first step in integrating various genomic features in order to elucidate the genomic network of long-range regulatory interactions.
Collapse
Affiliation(s)
- Christian Rödelsperger
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Yi T, Tan K, Cho SG, Wang Y, Luo J, Zhang W, Li D, Liu M. Regulation of embryonic kidney branching morphogenesis and glomerular development by KISS1 receptor (Gpr54) through NFAT2- and Sp1-mediated Bmp7 expression. J Biol Chem 2010; 285:17811-20. [PMID: 20375015 DOI: 10.1074/jbc.m110.130740] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
G-protein-coupled receptor 54 (Gpr54, KISS1 receptor) plays critical roles in puberty regulation, tumor metastasis suppression, and vasoconstriction. Bone morphogenetic protein-7 (Bmp7) is required for kidney organogenesis. However, whether Gpr54 is involved in embryonic kidney development and how Bmp7 expression is regulated in the kidney are largely unknown. Here we report that Gpr54 deletion leads to kidney branching morphogenesis and glomerular development retardation in embryonic kidneys in vivo and in explanted kidneys in vitro. Gpr54 inactivation results in a high risk of low glomerular number in adult kidneys. Gpr54 is expressed in condensed mesenchyme at E12.5 and epithelial cells of proximal and distal tubules and collecting ducts at E17.5 and P0 mouse kidney. Deletion of Gpr54 decreases Bmp7 expression and Smad1 phosphorylation in the developing kidney. Using chromatin immunoprecipitation and luciferase assays, we demonstrate that Gpr54 regulates NFAT2- and Sp1-mediated Bmp7 transcription. Furthermore, we show that NFAT2 cooperates with Sp1 to promote Bmp7 transcription activation. Together, these data suggest that Gpr54 regulates Bmp7 expression through NFAT2 and Sp1 and plays an important role in embryonic kidney branching morphogenesis and glomerular development.
Collapse
Affiliation(s)
- Tingfang Yi
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Institute of Bioscience and Technology, Center for Cancer and Stem Cell Biology, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Larman BW, Karolak MJ, Adams DC, Oxburgh L. Chordin-like 1 and twisted gastrulation 1 regulate BMP signaling following kidney injury. J Am Soc Nephrol 2009; 20:1020-31. [PMID: 19357253 DOI: 10.1681/asn.2008070768] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Stimulation of the bone morphogenetic protein (BMP) pathway protects the kidney from acute and chronic injury. Numerous regulators in the kidney control BMP signaling, offering many targets for therapeutic manipulation. Here, we screened for modulators of BMP signaling in the ischemia-sensitive S3 segment and found that Chordin-like 1 is expressed in this segment of both the mouse and human nephron. Chordin-like 1 specifically antagonizes BMP7, which is expressed in the neighboring distal nephron, and this depends on the presence of the protein Twisted gastrulation. Upon ischemia-induced degeneration of the S3 segment, we observed a reduction in Chordin-like 1 expression coincident with intense BMP signaling in tubules of the recovering kidney. Restored expression accompanied proximal tubule epithelia redifferentiation, again coincident with decreased BMP signaling. We propose that Chordin-like 1 reduces BMP7 signaling in healthy proximal tubules, and the loss of this activity upon sloughing of injured epithelia promotes BMP7 signaling in repopulating, dedifferentiated epithelia. As regenerating epithelia differentiate, Chordin-like 1 is again expressed, antagonizing BMP7. These data suggest a mechanism for dynamic regulation of renoprotective BMP7 signaling in the S3 segment of the proximal tubule.
Collapse
Affiliation(s)
- Barry W Larman
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| | | | | | | |
Collapse
|
15
|
Blank U, Seto ML, Adams DC, Wojchowski DM, Karolak MJ, Oxburgh L. An in vivo reporter of BMP signaling in organogenesis reveals targets in the developing kidney. BMC DEVELOPMENTAL BIOLOGY 2008; 8:86. [PMID: 18801194 PMCID: PMC2561030 DOI: 10.1186/1471-213x-8-86] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 09/18/2008] [Indexed: 12/22/2022]
Abstract
Background Bone morphogenetic proteins (BMPs) regulate essential processes during organogenesis, and a functional understanding of these secreted proteins depends on identification of their target cells. In this study, we generate a transgenic reporter for organogenesis studies that we use to define BMP pathway activation in the developing kidney. Results Mouse strains reporting on BMP pathway activation were generated by transgenically expressing β-galactosidase under the control of BMP responsive elements from Id1. Reporter expression corresponds well with immunoassays for pathway activation in all organs studied, validating the model. Using these reporters we have generated a detailed map of cellular targets of BMP signaling in the developing kidney. We find that SMAD dependent BMP signaling is active in collecting duct trunks, but not tips. Furthermore, glomerular endothelial cells, and proximal nephron tubules from the renal vesicle stage onward show pathway activation. Surprisingly, little activation is detected in the nephrogenic zone of the kidney, and in organ culture BMP treatment fails to activate SMAD dependent BMP signaling in nephron progenitor cells. In contrast, signaling is efficiently induced in collecting duct tips. Conclusion Transgenic reporters driven by control elements from BMP responsive genes such as Id1 offer significant advantages in sensitivity and consistency over immunostaining for studies of BMP pathway activation. They also provide opportunities for analysis of BMP signaling in organ and primary cell cultures subjected to experimental manipulation. Using such a reporter, we made the surprising finding that SMAD dependent BMP signaling is inactive in nephron progenitors, and that these cells are refractory to activation by applied growth factors. Furthermore, we find that the BMP pathway is not normally active in collecting duct tips, but that it can be ectopically activated by BMP treatment, offering a possible explanation for the inhibitory effects of BMP treatment on collecting duct growth and branching.
Collapse
Affiliation(s)
- Ulrika Blank
- Department of Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Kumar V, Becker T, Jansen S, van Barneveld A, Boztug K, Wölfl S, Tümmler B, Stanke F. Expression levels of FAS are regulated through an evolutionary conserved element in intron 2, which modulates cystic fibrosis disease severity. Genes Immun 2008; 9:689-96. [PMID: 18685642 DOI: 10.1038/gene.2008.63] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have analyzed frequent naturally occurring variants in the autogene FAS in two independent cystic fibrosis (CF) patient populations. Analysis of FAS expression levels from intestinal epithelial biopsies from 16 unrelated F508del-CFTR homozygotes showed a correlation between FAS intron 2 SNP rs7901656 and signals for Affymetrix GeneChip U133 Plus 2.0 probeset 204781_s_at consistent with a dominant model (P=0.0009). Genotype and haplotype analysis at six informative SNPs spanning the FAS gene locus was carried out on 37 nuclear families representing extreme clinical phenotypes that were selected from the European CF Twin and Sibling Study population of more than 300 affected sibling pairs. Case-control comparison of the haplotype composed of rs2296603-rs7901656-rs1571019 encompassing intron 2 of FAS reached significance (P=0.0246). Comparative phylogenetic analysis and functional annotation of the FAS intron 2 sequence revealed a conserved non-coding sequence surrounding rs7901656 and predicted binding sites for four transcription factors whereby the binding site of c-Rel is altered by rs7901656. Taken together, these findings from two independent CF patient cohorts indicate that allelic variants within FAS intron 2 alter FAS gene expression and that these functional variants modulate the manifestation of CF disease.
Collapse
Affiliation(s)
- V Kumar
- Department of Pediatric Pneumology and Neonatology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Recent Papers on Zebrafish and Other Aquarium Fish Models. Zebrafish 2007. [DOI: 10.1089/zeb.2007.9977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|