1
|
Tolstenkov O, Mikhaleva Y, Glover JC. A miniaturized nigrostriatal-like circuit regulating locomotor performance in a protochordate. Curr Biol 2023; 33:3872-3883.e6. [PMID: 37643617 DOI: 10.1016/j.cub.2023.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/14/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023]
Abstract
To gain insight into the evolution of motor control systems at the origin of vertebrates, we have investigated higher-order motor circuitry in the protochordate Oikopleura dioica. We have identified a highly miniaturized circuit in Oikopleura with a projection from a single pair of dopaminergic neurons to a small set of synaptically coupled GABAergic neurons, which in turn exert a disinhibitory descending projection onto the locomotor central pattern generator. The circuit is reminiscent of the nigrostriatopallidal system in the vertebrate basal ganglia, in which disinhibitory circuits release specific movements under the modulatory control of dopamine. We demonstrate further that dopamine is required to optimize locomotor performance in Oikopleura, mirroring its role in vertebrates. A dopamine-regulated disinhibitory locomotor control circuit reminiscent of the vertebrate nigrostriatopallidal system was thus already present at the origin of ancestral chordates and has been maintained in the face of extreme nervous system miniaturization in the urochordate lineage.
Collapse
Affiliation(s)
- Oleg Tolstenkov
- Sars International Centre for Marine Molecular Biology, University of Bergen; Thormøhlensgate 55, 5008 Bergen, Norway
| | - Yana Mikhaleva
- Sars International Centre for Marine Molecular Biology, University of Bergen; Thormøhlensgate 55, 5008 Bergen, Norway
| | - Joel C Glover
- Sars International Centre for Marine Molecular Biology, University of Bergen; Thormøhlensgate 55, 5008 Bergen, Norway; Laboratory of Neural Development and Optical Recording (NDEVOR), Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway.
| |
Collapse
|
2
|
Konishi M, Kishi K, Morita R, Yamada A, Onuma TA, Nishida H. Formation of the brain by stem cell divisions of large neuroblasts in Oikopleura dioica, a simple chordate. Dev Genes Evol 2023:10.1007/s00427-023-00704-y. [PMID: 37231211 DOI: 10.1007/s00427-023-00704-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023]
Abstract
Stem cell division contributes to the generation of various cell types during animal development, especially a diverse pool of neural cells in the nervous system. One example is reiterated unequal stem cell divisions, in which a large stem cell undergoes a series of oriented unequal divisions to produce a chain of small daughter cells that differentiate. We show that reiterated unequal stem cell divisions are involved in the formation of the brain in simple chordate appendicularians (larvaceans). Two large neuroblasts in the anterior and middle of the brain-forming region of hatched larvae were observed. They produced at least 30 neural cells out of 96 total brain cells before completion of brain formation at 10 hours after fertilization by reiterated unequal stem cell divisions. The daughter cells of the anterior neuroblast were postmitotic, and the number was at least 19. The neuroblast produced small daughter neural cells posteriorly every 20 min. The neural cells first moved toward the dorsal side, turned in the anterior direction, aligned in a single line according to their birth order, and showed collective movement to accumulate in the anterior part of the brain. The anterior neuroblast originated from the right-anterior blastomeres of the eight-cell embryos and the right a222 blastomere of the 64-cell embryo. The posterior neuroblast also showed reiterated unequal stem cell divisions, and generated at least 11 neural cells. Sequential unequal stem cell divisions without stem cell growth have been observed in protostomes, such as insects and annelids. The results provide the first examples of this kind of stem cell division during brain formation in non-vertebrate deuterostomes.
Collapse
Affiliation(s)
- Misako Konishi
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Kanae Kishi
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Ryo Morita
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Atsuko Yamada
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Takeshi A Onuma
- Faculty of Science, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
3
|
Glover JC. Oikopleura. Curr Biol 2020; 30:R1243-R1245. [DOI: 10.1016/j.cub.2020.07.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Razy-Krajka F, Stolfi A. Regulation and evolution of muscle development in tunicates. EvoDevo 2019; 10:13. [PMID: 31249657 PMCID: PMC6589888 DOI: 10.1186/s13227-019-0125-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/08/2019] [Indexed: 12/16/2022] Open
Abstract
For more than a century, studies on tunicate muscle formation have revealed many principles of cell fate specification, gene regulation, morphogenesis, and evolution. Here, we review the key studies that have probed the development of all the various muscle cell types in a wide variety of tunicate species. We seize this occasion to explore the implications and questions raised by these findings in the broader context of muscle evolution in chordates.
Collapse
Affiliation(s)
- Florian Razy-Krajka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| |
Collapse
|
5
|
Gap junction-dependent coordination of intercellular calcium signalling in the developing appendicularian tunicate Oikopleura dioica. Dev Biol 2019; 450:9-22. [PMID: 30905687 DOI: 10.1016/j.ydbio.2019.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/09/2019] [Accepted: 03/10/2019] [Indexed: 01/03/2023]
Abstract
We characterized spontaneous Ca2+ signals in Oikopleura dioica embryos from pre-fertilization to gastrula stages following injection of GCaMP6 mRNA into unfertilized eggs. The unfertilized egg exhibited regular, transient elevations in intracellular Ca2+ concentration with an average duration of 4-6 s and an average frequency of about 1 every 2.5 min. Fertilization was accompanied by a longer Ca2+ transient that lasted several minutes. Thereafter, regular Ca2+ transients were reinstated that spread within seconds among blastomeres and gradually increased in duration (by about 50%) and decreased in frequency (by about 20%) by gastrulation. Peak amplitudes also exhibited a dynamic, with a transitory drop occurring at about the 4-cell stage and a subsequent rise. Each peak was preceded by about 15 s by a smaller and shorter Ca2+ increase (about 5% of the main peak amplitude, average duration 3 s), which we term the "minipeak". By gastrulation, Ca2+ transients exhibited a stereotyped initiation site on either side of the 32-64-cell embryo, likely in the nascent muscle precursor cells, and spread thereafter symmetrically in a stereotyped spatial pattern that engaged blastomeres giving rise to all the major tissue lineages. The rapid spread of the transients relative to the intertransient interval created a coordinated wave that, on a coarse time scale, could be considered an approximate synchronization. Treatment with the divalent cations Ni2+ or Cd2+ gradually diminished peak amplitudes, had only moderate effects on wave frequency, but markedly disrupted wave synchronization and normal development. The T-type Ca2+ channel blocker mibefradil similarly disrupted normal development, and eliminated the minipeaks, but did not affect wave synchronization. To assess the role of gap junctions in calcium wave spread and coordination, we first characterized the expression of two Oikopleura connexins, Od-CxA and Od-CxB, both of which are expressed during pre-gastrulation and gastrula stages, and then co-injected double-stranded inhibitory RNAs together with CGaMP6 to suppress connexin expression. Connexin mRNA knockdown led to a gradual increase in Ca2+ transient peak width, a decrease of interpeak interval and a marked disruption of wave synchronization. As seen with divalent cations and mibefradil, this desynchronization was accompanied by a disruption of normal development.
Collapse
|
6
|
Almazán A, Ferrández-Roldán A, Albalat R, Cañestro C. Developmental atlas of appendicularian Oikopleura dioica actins provides new insights into the evolution of the notochord and the cardio-paraxial muscle in chordates. Dev Biol 2019; 448:260-270. [DOI: 10.1016/j.ydbio.2018.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/13/2018] [Accepted: 09/05/2018] [Indexed: 12/22/2022]
|
7
|
Ferrández-Roldán A, Martí-Solans J, Cañestro C, Albalat R. Oikopleura dioica: An Emergent Chordate Model to Study the Impact of Gene Loss on the Evolution of the Mechanisms of Development. Results Probl Cell Differ 2019; 68:63-105. [PMID: 31598853 DOI: 10.1007/978-3-030-23459-1_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The urochordate Oikopleura dioica is emerging as a nonclassical animal model in the field of evolutionary developmental biology (a.k.a. evo-devo) especially attractive for investigating the impact of gene loss on the evolution of mechanisms of development. This is because this organism fulfills the requirements of an animal model (i.e., has a simple and accessible morphology, a short generation time and life span, and affordable culture in the laboratory and amenable experimental manipulation), but also because O. dioica occupies a key phylogenetic position to understand the diversification and origin of our own phylum, the chordates. During its evolution, O. dioica genome has suffered a drastic process of compaction, becoming the smallest known chordate genome, a process that has been accompanied by exacerbating amount of gene losses. Interestingly, however, despite the extensive gene losses, including entire regulatory pathways essential for the embryonic development of other chordates, O. dioica retains the typical chordate body plan. This unexpected situation led to the formulation of the so-called inverse paradox of evo-devo, that is, when a genetic diversity is able to maintain a phenotypic unity. This chapter reviews the biological features of O. dioica as a model animal, along with the current data on the evolution of its genes and genome. We pay special attention to the numerous examples of gene losses that have taken place during the evolution of this unique animal model, which is helping us to understand to which the limits of evo-devo can be pushed off.
Collapse
Affiliation(s)
- Alfonso Ferrández-Roldán
- Facultat de Biologia, Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Josep Martí-Solans
- Facultat de Biologia, Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Cristian Cañestro
- Facultat de Biologia, Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Ricard Albalat
- Facultat de Biologia, Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
8
|
Lynagh T, Mikhaleva Y, Colding JM, Glover JC, Pless SA. Acid-sensing ion channels emerged over 600 Mya and are conserved throughout the deuterostomes. Proc Natl Acad Sci U S A 2018; 115:8430-8435. [PMID: 30061402 PMCID: PMC6099870 DOI: 10.1073/pnas.1806614115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are proton-gated ion channels broadly expressed in the vertebrate nervous system, converting decreased extracellular pH into excitatory sodium current. ASICs were previously thought to be a vertebrate-specific branch of the DEG/ENaC family, a broadly conserved but functionally diverse family of channels. Here, we provide phylogenetic and experimental evidence that ASICs are conserved throughout deuterostome animals, showing that ASICs evolved over 600 million years ago. We also provide evidence of ASIC expression in the central nervous system of the tunicate, Oikopleura dioica Furthermore, by comparing broadly related ASICs, we identify key molecular determinants of proton sensitivity and establish that proton sensitivity of the ASIC4 isoform was lost in the mammalian lineage. Taken together, these results suggest that contributions of ASICs to neuronal function may also be conserved broadly in numerous animal phyla.
Collapse
Affiliation(s)
- Timothy Lynagh
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Yana Mikhaleva
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006 Bergen, Norway
| | - Janne M Colding
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Joel C Glover
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006 Bergen, Norway
- Department of Molecular Medicine, University of Oslo, 0372 Oslo, Norway
| | - Stephan A Pless
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
9
|
Valero-Gracia A, Marino R, Crocetta F, Nittoli V, Tiozzo S, Sordino P. Comparative localization of serotonin-like immunoreactive cells in Thaliacea informs tunicate phylogeny. Front Zool 2016; 13:45. [PMID: 27708681 PMCID: PMC5041399 DOI: 10.1186/s12983-016-0177-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/16/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Thaliaceans is one of the understudied classes of the phylum Tunicata. In particular, their phylogenetic relationships remain an issue of debate. The overall pattern of serotonin (5-HT) distribution is an excellent biochemical trait to interpret internal relationships at order level. In the experiments reported here we compared serotonin-like immunoreactivity at different life cycle stages of two salpid, one doliolid, and one pyrosomatid species. This multi-species comparison provides new neuroanatomical data for better resolving the phylogeny of the class Thaliacea. RESULTS Adults of all four examined thaliacean species exhibited serotonin-like immunoreactivity in neuronal and non-neuronal cell types, whose anatomical position with respect to the nervous system is consistently identifiable due to α-tubulin immunoreactivity. The results indicate an extensive pattern that is consistent with the presence of serotonin in cell bodies of variable morphology and position, with some variation within and among orders. Serotonin-like immunoreactivity was not found in immature forms such as blastozooids (Salpida), tadpole larvae (Doliolida) and young zooids (Pyrosomatida). CONCLUSIONS Comparative anatomy of serotonin-like immunoreactivity in all three thaliacean clades has not been reported previously. These results are discussed with regard to studies of serotonin-like immunoreactivity in adult ascidians. Lack of serotonin-like immunoreactivity in the endostyle of Salpida and Doliolida compared to Pyrosomella verticillata might be the result of secondary loss of serotonin control over ciliary beating and mucus secretion. These data, when combined with other plesiomorphic characters, support the hypothesis that Pyrosomatida is basal to these clades within Phlebobranchiata and that Salpida and Doliolida constitute sister-groups.
Collapse
Affiliation(s)
- Alberto Valero-Gracia
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Rita Marino
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Fabio Crocetta
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, GR-19013 Anavyssos, Greece
| | - Valeria Nittoli
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Stefano Tiozzo
- Observatoire Océanographique, CNRS, Sorbonne Universités, UPMC Univ Paris 06, Laboratoire de Biologie du Développement de Villefranche-sur-mer, 06230 Villefranche-sur-Mer, France
| | - Paolo Sordino
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
10
|
Kreneisz O, Glover JC. Developmental Characterization of Tail Movements in the Appendicularian Urochordate Oikopleura dioica. BRAIN, BEHAVIOR AND EVOLUTION 2015; 86:191-209. [PMID: 26516763 DOI: 10.1159/000439517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 08/18/2015] [Indexed: 11/19/2022]
Abstract
Using high-speed video cinematography, we characterized kinematically the spontaneous tail movements made by the appendicularian urochordate Oikopleura dioica. Videos of young adult (1-day-old) animals discriminated 4 cardinal movement types: bending, nodding, swimming and filtering, each of which had a characteristic signature including cyclicity, event or cycle duration, cycle frequency, cycle frequency variation, laterality, tail muscle segment coordination and episode duration. Bending exhibited a more common, unilateral form (single bending) and a rarer, bilateral form (alternating bending). Videos of developing animals showed that bending and swimming appeared in rudimentary form starting just after hatching and exhibited developmental changes in movement excursion, duration and frequency, whereas nodding and filtering appeared in the fully mature form in young adults at the time of first house production. More complex behaviors were associated with inflating, entering and exiting the house. We also assessed the influence of descending inputs by separating the tail (which contains all muscles and most likely the neural circuits that generate most motor outputs) from the head. Isolated tails spontaneously generated either bending or swimming movements in abnormally protracted episodes. This together with other observations of interactions between bending and swimming behaviors indicates the presence of several types of descending inputs that regulate the activity of the pattern generating circuitry in the tail nervous system.
Collapse
Affiliation(s)
- Orsolya Kreneisz
- Sars International Centre for Marine Molecular Biology, University of Oslo, Oslo, Norway
| | | |
Collapse
|
11
|
Kugler JE, Kerner P, Bouquet JM, Jiang D, Di Gregorio A. Evolutionary changes in the notochord genetic toolkit: a comparative analysis of notochord genes in the ascidian Ciona and the larvacean Oikopleura. BMC Evol Biol 2011; 11:21. [PMID: 21251251 PMCID: PMC3034685 DOI: 10.1186/1471-2148-11-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 01/20/2011] [Indexed: 11/12/2022] Open
Abstract
Background The notochord is a defining feature of the chordate clade, and invertebrate chordates, such as tunicates, are uniquely suited for studies of this structure. Here we used a well-characterized set of 50 notochord genes known to be targets of the notochord-specific Brachyury transcription factor in one tunicate, Ciona intestinalis (Class Ascidiacea), to begin determining whether the same genetic toolkit is employed to build the notochord in another tunicate, Oikopleura dioica (Class Larvacea). We identified Oikopleura orthologs of the Ciona notochord genes, as well as lineage-specific duplicates for which we determined the phylogenetic relationships with related genes from other chordates, and we analyzed their expression patterns in Oikopleura embryos. Results Of the 50 Ciona notochord genes that were used as a reference, only 26 had clearly identifiable orthologs in Oikopleura. Two of these conserved genes appeared to have undergone Oikopleura- and/or tunicate-specific duplications, and one was present in three copies in Oikopleura, thus bringing the number of genes to test to 30. We were able to clone and test 28 of these genes. Thirteen of the 28 Oikopleura orthologs of Ciona notochord genes showed clear expression in all or in part of the Oikopleura notochord, seven were diffusely expressed throughout the tail, six were expressed in tissues other than the notochord, while two probes did not provide a detectable signal at any of the stages analyzed. One of the notochord genes identified, Oikopleura netrin, was found to be unevenly expressed in notochord cells, in a pattern reminiscent of that previously observed for one of the Oikopleura Hox genes. Conclusions A surprisingly high number of Ciona notochord genes do not have apparent counterparts in Oikopleura, and only a fraction of the evolutionarily conserved genes show clear notochord expression. This suggests that Ciona and Oikopleura, despite the morphological similarities of their notochords, have developed rather divergent sets of notochord genes after their split from a common tunicate ancestor. This study demonstrates that comparisons between divergent tunicates can lead to insights into the basic complement of genes sufficient for notochord development, and elucidate the constraints that control its composition.
Collapse
Affiliation(s)
- Jamie E Kugler
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
12
|
|
13
|
Nishida H. Development of the appendicularian Oikopleura dioica: Culture, genome, and cell lineages. Dev Growth Differ 2008; 50 Suppl 1:S239-56. [PMID: 18494706 DOI: 10.1111/j.1440-169x.2008.01035.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
14
|
Søviknes AM, Glover JC. Continued growth and cell proliferation into adulthood in the notochord of the appendicularian Oikopleura dioica. THE BIOLOGICAL BULLETIN 2008; 214:17-28. [PMID: 18258772 DOI: 10.2307/25066656] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The appendicularian urochordate Oikopleura dioica retains a free-swimming chordate body plan throughout life, in contrast to ascidian urochordates, whose metamorphosis to a sessile adult form involves the loss of chordate structures such as the notochord and dorsal nerve cord. Development to adult stages in Oikopleura involves a lengthening of the tail and notochord and an elaboration of the repertoire of tail movements. To investigate the cellular basis for this lengthening, we have used confocal microscopy and BrdU labeling to examine the development of the Oikopleura notochord from hatching through adult stages. We show that as the notochord undergoes the typical urochordate transition from a stacked row of cells to a tubular structure, cell number begins to increase. Addition of new notochord cells continues into adulthood, multiplying the larval complement of 20 cells by about 8-fold by the third day of life. In parallel, the notochord lengthens by about 4-fold. BrdU incorporation and a cell-cycle marker confirm that notochord cells continue to proliferate well into adulthood. The extensive postlarval proliferation of notochord cells, together with their arrangement in four circumferentially distributed longitudinal rows, presumably provides the Oikopleura tail with the necessary mechanical support for the complex movements exhibited at adult stages.
Collapse
Affiliation(s)
- Anne Mette Søviknes
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen High Technology Centre, Thormøhlensgt. 55, N-5008 Bergen, Norway
| | | |
Collapse
|