1
|
Haag ES, Fitch DHA, Delattre M. From "the Worm" to "the Worms" and Back Again: The Evolutionary Developmental Biology of Nematodes. Genetics 2018; 210:397-433. [PMID: 30287515 PMCID: PMC6216592 DOI: 10.1534/genetics.118.300243] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 08/03/2018] [Indexed: 12/13/2022] Open
Abstract
Since the earliest days of research on nematodes, scientists have noted the developmental and morphological variation that exists within and between species. As various cellular and developmental processes were revealed through intense focus on Caenorhabditis elegans, these comparative studies have expanded. Within the genus Caenorhabditis, they include characterization of intraspecific polymorphisms and comparisons of distinct species, all generally amenable to the same laboratory culture methods and supported by robust genomic and experimental tools. The C. elegans paradigm has also motivated studies with more distantly related nematodes and animals. Combined with improved phylogenies, this work has led to important insights about the evolution of nematode development. First, while many aspects of C. elegans development are representative of Caenorhabditis, and of terrestrial nematodes more generally, others vary in ways both obvious and cryptic. Second, the system has revealed several clear examples of developmental flexibility in achieving a particular trait. This includes developmental system drift, in which the developmental control of homologous traits has diverged in different lineages, and cases of convergent evolution. Overall, the wealth of information and experimental techniques developed in C. elegans is being leveraged to make nematodes a powerful system for evolutionary cellular and developmental biology.
Collapse
Affiliation(s)
- Eric S Haag
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | | | - Marie Delattre
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS, INSERM, Ecole Normale Supérieure de Lyon, 69007, France
| |
Collapse
|
2
|
Kraus C, Schiffer PH, Kagoshima H, Hiraki H, Vogt T, Kroiher M, Kohara Y, Schierenberg E. Differences in the genetic control of early egg development and reproduction between C. elegans and its parthenogenetic relative D. coronatus. EvoDevo 2017; 8:16. [PMID: 29075433 PMCID: PMC5648466 DOI: 10.1186/s13227-017-0081-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/10/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The free-living nematode Diploscapter coronatus is the closest known relative of Caenorhabditis elegans with parthenogenetic reproduction. It shows several developmental idiosyncracies, for example concerning the mode of reproduction, embryonic axis formation and early cleavage pattern (Lahl et al. in Int J Dev Biol 50:393-397, 2006). Our recent genome analysis (Hiraki et al. in BMC Genomics 18:478, 2017) provides a solid foundation to better understand the molecular basis of developmental idiosyncrasies in this species in an evolutionary context by comparison with selected other nematodes. Our genomic data also yielded indications for the view that D. coronatus is a product of interspecies hybridization. RESULTS In a genomic comparison between D. coronatus, C. elegans, other representatives of the genus Caenorhabditis and the more distantly related Pristionchus pacificus and Panagrellus redivivus, certain genes required for central developmental processes in C. elegans like control of meiosis and establishment of embryonic polarity were found to be restricted to the genus Caenorhabditis. The mRNA content of early D. coronatus embryos was sequenced and compared with similar stages in C. elegans and Ascaris suum. We identified 350 gene families transcribed in the early embryo of D. coronatus but not in the other two nematodes. Looking at individual genes transcribed early in D. coronatus but not in C. elegans and A. suum, we found that orthologs of most of these are present in the genomes of the latter species as well, suggesting heterochronic shifts with respect to expression behavior. Considerable genomic heterozygosity and allelic divergence lend further support to the view that D. coronatus may be the result of an interspecies hybridization. Expression analysis of early acting single-copy genes yields no indication for silencing of one parental genome. CONCLUSIONS Our comparative cellular and molecular studies support the view that the genus Caenorhabditis differs considerably from the other studied nematodes in its control of development and reproduction. The easy-to-culture parthenogenetic D. coronatus, with its high-quality draft genome and only a single chromosome when haploid, offers many new starting points on the cellular, molecular and genomic level to explore alternative routes of nematode development and reproduction.
Collapse
Affiliation(s)
- Christopher Kraus
- Zoologisches Institut, Universität zu Köln, Cologne, NRW Germany
- Present Address: Institute for Genetics, Universität zu Köln, Cologne, NRW Germany
| | - Philipp H. Schiffer
- Zoologisches Institut, Universität zu Köln, Cologne, NRW Germany
- Genetics, Evolution and Environment, University College London, London, WC16BT UK
| | | | | | - Theresa Vogt
- Zoologisches Institut, Universität zu Köln, Cologne, NRW Germany
- Present Address: Molecular Cell Biology, Institute I for Anatomy University Clinic Cologne, University of Cologne, Cologne, Germany
| | - Michael Kroiher
- Zoologisches Institut, Universität zu Köln, Cologne, NRW Germany
| | - Yuji Kohara
- National Institute of Genetics, Mishima, Japan
| | | |
Collapse
|
3
|
Thieleke-Matos C, Osório DS, Carvalho AX, Morais-de-Sá E. Emerging Mechanisms and Roles for Asymmetric Cytokinesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:297-345. [PMID: 28526136 DOI: 10.1016/bs.ircmb.2017.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cytokinesis completes cell division by physically separating the contents of the mother cell between the two daughter cells. This event requires the highly coordinated reorganization of the cytoskeleton within a precise window of time to ensure faithful genomic segregation. In addition, recent progress in the field highlighted the importance of cytokinesis in providing particularly important cues in the context of multicellular tissues. The organization of the cytokinetic machinery and the asymmetric localization or inheritance of the midbody remnants is critical to define the spatial distribution of mechanical and biochemical signals. After a brief overview of the conserved steps of animal cytokinesis, we review the mechanisms controlling polarized cytokinesis focusing on the challenges of epithelial cytokinesis. Finally, we discuss the significance of these asymmetries in defining embryonic body axes, determining cell fate, and ensuring the correct propagation of epithelial organization during proliferation.
Collapse
Affiliation(s)
- C Thieleke-Matos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cell Division and Genomic stability, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - D S Osório
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cytoskeletal Dynamics, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - A X Carvalho
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cytoskeletal Dynamics, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - E Morais-de-Sá
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cell Division and Genomic stability, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
4
|
Newman SA. Why are there eggs? Biochem Biophys Res Commun 2014; 450:1225-30. [DOI: 10.1016/j.bbrc.2014.03.132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 01/19/2023]
|
5
|
Schiffer PH, Kroiher M, Kraus C, Koutsovoulos GD, Kumar S, R Camps JI, Nsah NA, Stappert D, Morris K, Heger P, Altmüller J, Frommolt P, Nürnberg P, Thomas WK, Blaxter ML, Schierenberg E. The genome of Romanomermis culicivorax: revealing fundamental changes in the core developmental genetic toolkit in Nematoda. BMC Genomics 2013; 14:923. [PMID: 24373391 PMCID: PMC3890508 DOI: 10.1186/1471-2164-14-923] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 12/17/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The genetics of development in the nematode Caenorhabditis elegans has been described in exquisite detail. The phylum Nematoda has two classes: Chromadorea (which includes C. elegans) and the Enoplea. While the development of many chromadorean species resembles closely that of C. elegans, enoplean nematodes show markedly different patterns of early cell division and cell fate assignment. Embryogenesis of the enoplean Romanomermis culicivorax has been studied in detail, but the genetic circuitry underpinning development in this species has not been explored. RESULTS We generated a draft genome for R. culicivorax and compared its gene content with that of C. elegans, a second enoplean, the vertebrate parasite Trichinella spiralis, and a representative arthropod, Tribolium castaneum. This comparison revealed that R. culicivorax has retained components of the conserved ecdysozoan developmental gene toolkit lost in C. elegans. T. spiralis has independently lost even more of this toolkit than has C. elegans. However, the C. elegans toolkit is not simply depauperate, as many novel genes essential for embryogenesis in C. elegans are not found in, or have only extremely divergent homologues in R. culicivorax and T. spiralis. Our data imply fundamental differences in the genetic programmes not only for early cell specification but also others such as vulva formation and sex determination. CONCLUSIONS Despite the apparent morphological conservatism, major differences in the molecular logic of development have evolved within the phylum Nematoda. R. culicivorax serves as a tractable system to contrast C. elegans and understand how divergent genomic and thus regulatory backgrounds nevertheless generate a conserved phenotype. The R. culicivorax draft genome will promote use of this species as a research model.
Collapse
Affiliation(s)
| | - Michael Kroiher
- Zoologisches Institut, Universität zu Köln, Cologne, NRW, Germany
| | | | - Georgios D Koutsovoulos
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Sujai Kumar
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Julia I R Camps
- Zoologisches Institut, Universität zu Köln, Cologne, NRW, Germany
| | - Ndifon A Nsah
- Zoologisches Institut, Universität zu Köln, Cologne, NRW, Germany
| | - Dominik Stappert
- Institute für Entwicklungsbiologie, Universität zu Köln, Cologne, NRW, Germany
| | - Krystalynne Morris
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA
| | - Peter Heger
- Zoologisches Institut, Universität zu Köln, Cologne, NRW, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, Universität zu Köln, Cologne, NRW, Germany
| | - Peter Frommolt
- Cologne Center for Genomics, Universität zu Köln, Cologne, NRW, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics, Universität zu Köln, Cologne, NRW, Germany
| | - W Kelley Thomas
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA
| | - Mark L Blaxter
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | | |
Collapse
|
6
|
Schulze J, Houthoofd W, Uenk J, Vangestel S, Schierenberg E. Plectus - a stepping stone in embryonic cell lineage evolution of nematodes. EvoDevo 2012; 3:13. [PMID: 22748136 PMCID: PMC3464786 DOI: 10.1186/2041-9139-3-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/24/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent studies have challenged the widespread view that the pattern of embryogenesis found in Caenorhabditis elegans (clade 9) is characteristic of nematodes in general. To understand this still largely unexplored landscape of developmental events, we set out to examine more distantly related nematodes in detail for temporospatial differences in pattern formation and cell specification. Members of the genus Plectus (clade 6) seem to be suitable candidates to show variety, with certain idiosyncratic features during early development and the convenient availability of cultivatable species. METHODS The study was conducted using 4-D lineage analysis, 3-D modeling of developing embryos and laser-induced ablation of individual blastomeres. RESULTS Detailed cell lineage studies of several Plectus species reveal that pattern formation and cell fate assignment differ markedly from C. elegans. Descendants of the first somatic founder cell S1 (AB) - but not the progeny of other founder cells - demonstrate extremely variable spatial arrangements illustrating that here distinct early cell-cell interactions between invariant partners, as found in C. elegans, cannot take place. Different from C. elegans, in Plectus alternative positional variations among early S1 blastomeres resulting in a 'situs inversus' pattern, nevertheless give rise to adults with normal left-right asymmetries. In addition, laser ablations of early blastomeres uncover inductions between variable cell partners. CONCLUSIONS Our results suggest that embryonic cell specification in Plectus is not correlated with cell lineage but with position. With this peculiarity, Plectus appears to occupy an intermediate position between basal nematodes displaying a variable early development and the C. elegans-like invariant pattern. We suggest that indeterminate pattern formation associated with late, position-dependent fate assignment represents a plesiomorphic character among nematodes predominant in certain basal clades but lost in derived clades. Thus, the behavior of S1 cells in Plectus can be considered an evolutionary relict in a transition phase between two different developmental strategies.
Collapse
Affiliation(s)
- Jens Schulze
- Biocenter, University of Cologne, Zülpicher Strasse 47b, Cologne, 50674, Germany
| | - Wouter Houthoofd
- Department of Biology, Ghent University, Ledeganckstraat 35, Ghent, 9000, Belgium
| | - Jana Uenk
- Biocenter, University of Cologne, Zülpicher Strasse 47b, Cologne, 50674, Germany
| | - Sandra Vangestel
- Department of Biology, Ghent University, Ledeganckstraat 35, Ghent, 9000, Belgium
| | - Einhard Schierenberg
- Biocenter, University of Cologne, Zülpicher Strasse 47b, Cologne, 50674, Germany
| |
Collapse
|
7
|
Schulze J, Schierenberg E. Evolution of embryonic development in nematodes. EvoDevo 2011; 2:18. [PMID: 21929824 PMCID: PMC3195109 DOI: 10.1186/2041-9139-2-18] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 09/20/2011] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Nematodes can be subdivided into basal Enoplea (clades 1 and 2) and more derived Chromadorea (clades 3 to 12). Embryogenesis of Caenorhabditis elegans (clade 9) has been analyzed in most detail. Their establishment of polarity and asymmetric cleavage requires the differential localization of PAR proteins. Earlier studies on selected other nematodes revealed that embryonic development of nematodes is more diverse than the essentially invariant development of C. elegans and the classic study object Ascaris had suggested. To obtain a more detailed picture of variations and evolutionary trends we compared embryonic cell lineages and pattern formation in embryos of all 12 nematode clades. METHODS The study was conducted using 4-D microscopy and 3-D modeling of developing embryos. RESULTS We found dramatic differences compared to C. elegans in Enoplea but also considerable variations among Chromadorea. We discovered 'Polarity Organizing Centers' (POCs) that orient cleavage spindles along the anterior-posterior axis in distinct cells over consecutive cell generations. The resulting lineally arranged blastomeres represent a starting point for the establishment of bilateral symmetry within individual lineages. We can discern six different early cleavage types and suggest that these variations are due to modifications in the activity of the POCs in conjunction with changes in the distribution of PAR proteins. In addition, our studies indicate that lineage complexity advanced considerably during evolution, that is we observe trends towards an increase of somatic founder cells, from monoclonal to polyclonal lineages and from a variable (position-dependent) to an invariable (lineage-dependent) way of cell fate specification. In contrast to the early phase of embryogenesis, the second half ('morphogenesis') appears similar in all studied nematodes. Comparison of early cleavage between the basal nematode Tobrilus stefanskii and the tardigrade Hypsibius dujardini revealed surprising similarities indicating that the presence of POCs is not restricted to nematode embryos. CONCLUSIONS The pattern of cleavage, spatial arrangement and differentiation of cells diverged dramatically during the history of the phylum Nematoda without corresponding changes in the phenotype. While in all studied representatives the same distinctive developmental steps need to be taken, cell behavior leading to these is not conserved.
Collapse
Affiliation(s)
- Jens Schulze
- University of Cologne, Biocenter, Zuelpicher Str. 47b 50967 Köln, Germany
| | | |
Collapse
|
8
|
Newman SA. Animal egg as evolutionary innovation: a solution to the “embryonic hourglass” puzzle. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:467-83. [DOI: 10.1002/jez.b.21417] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 04/01/2011] [Accepted: 04/07/2011] [Indexed: 12/26/2022]
|
9
|
Abstract
Caenorhabditis elegans is uniquely suited to the analysis of cell lineage patterns. C. elegans has a small number of somatic cells whose position and morphology are almost invariant from animal to animal. Because C. elegans is virtually transparent, cells can be identified in live animals using a simple bright-field microscopy technique, Nomarski differential interference contrast (DIC), or by expression of transgenic fluorescent reporter genes. The small size and rapid development of C. elegans mean that animals can develop while under continuous observation, allowing cell lineages to be analyzed throughout embryonic and postembryonic development. Embryonic cell lineages can also be traced semiautomatically using timelapse imaging of GFP-labeled nuclei. Analysis of mutant cell lineages remains important for defining the roles of developmental control genes.
Collapse
Affiliation(s)
- Claudiu A Giurumescu
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | | |
Collapse
|
10
|
Abstract
Spliced leader trans-splicing occurs in many primitive eukaryotes including nematodes. Most of our knowledge of trans-splicing in nematodes stems from the model organism Caenorhabditis elegans and relatives, and from work with Ascaris. Our investigation of spliced leader trans-splicing in distantly related Dorylaimia nematodes indicates that spliced-leader trans-splicing arose before the nematode phylum and suggests that the spliced leader RNA gene complements in extant nematodes have evolved from a common ancestor with a diverse set of spliced leader RNA genes.
Collapse
|
11
|
Heger P, Marin B, Schierenberg E. Loss of the insulator protein CTCF during nematode evolution. BMC Mol Biol 2009; 10:84. [PMID: 19712444 PMCID: PMC2749850 DOI: 10.1186/1471-2199-10-84] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 08/27/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The zinc finger (ZF) protein CTCF (CCCTC-binding factor) is highly conserved in Drosophila and vertebrates where it has been shown to mediate chromatin insulation at a genomewide level. A mode of genetic regulation that involves insulators and insulator binding proteins to establish independent transcriptional units is currently not known in nematodes including Caenorhabditis elegans. We therefore searched in nematodes for orthologs of proteins that are involved in chromatin insulation. RESULTS While orthologs for other insulator proteins were absent in all 35 analysed nematode species, we find orthologs of CTCF in a subset of nematodes. As an example for these we cloned the Trichinella spiralis CTCF-like gene and revealed a genomic structure very similar to the Drosophila counterpart. To investigate the pattern of CTCF occurrence in nematodes, we performed phylogenetic analysis with the ZF protein sets of completely sequenced nematodes. We show that three ZF proteins from three basal nematodes cluster together with known CTCF proteins whereas no zinc finger protein of C. elegans and other derived nematodes does so. CONCLUSION Our findings show that CTCF and possibly chromatin insulation are present in basal nematodes. We suggest that the insulator protein CTCF has been secondarily lost in derived nematodes like C. elegans. We propose a switch in the regulation of gene expression during nematode evolution, from the common vertebrate and insect type involving distantly acting regulatory elements and chromatin insulation to a so far poorly characterised mode present in more derived nematodes. Here, all or some of these components are missing. Instead operons, polycistronic transcriptional units common in derived nematodes, seemingly adopted their function.
Collapse
Affiliation(s)
- Peter Heger
- Zoological Institute, University of Cologne, Kerpener Strasse 15, 50937 Köln, Germany.
| | | | | |
Collapse
|
12
|
Schulze J, Schierenberg E. Embryogenesis of Romanomermis culicivorax: an alternative way to construct a nematode. Dev Biol 2009; 334:10-21. [PMID: 19523940 DOI: 10.1016/j.ydbio.2009.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/03/2009] [Accepted: 06/06/2009] [Indexed: 11/17/2022]
Abstract
The current picture of embryonic development in nematodes is essentially shaped by Caenorhabditis elegans and its close relatives. As their pattern of embryogenesis is rather similar, it is often considered to be representative for the taxon Nematoda as a whole. Here we give for the first time a comprehensive description of embryonic development in an ancestrally diverged nematode. Romanomermis culicivorax differs strikingly from C. elegans with respect to cell division pattern, spatial arrangement of blastomeres and tissue formation. Our study reveals a number of unexpected phenomena. These include (i) unique polar interphase microtubule caps forming in early blastomeres destined to undergo asymmetric cleavages, suggesting the presence of a so far undescribed MTOC; (ii) embryonic cell lineages of reduced complexity with predominantly monoclonal sublineages, generating just a single tissue type; (iii) construction of major parts of the body from duplicating building blocks consisting of rings of cells, a pattern showing some resemblance to segmentation; (iv) prominent differences in cell fate assignment which can be best explained with a global shift affecting all somatic founder cells. In summary, our data indicate that during nematode evolution massive alterations in the developmental program took place of how to generate a juvenile.
Collapse
Affiliation(s)
- Jens Schulze
- Zoological Institute, University of Cologne, 50923 Köln, Germany
| | | |
Collapse
|
13
|
Brauchle M. Cell biology and evolution: molecular modules link it all? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1789:354-62. [PMID: 18952201 DOI: 10.1016/j.bbagrm.2008.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 09/05/2008] [Accepted: 09/23/2008] [Indexed: 10/21/2022]
Abstract
Classical studies comparing developing embryos have suggested the importance of modified cell biological processes in the evolution of new phenotypes. Here, I revisit this connection focusing on embryonic development, in particular nematode embryogenesis. I compare phenotypic differences in nematode embryogenesis in two basic cell biological processes, the cell cycle and the localization of the first division axis. The analysis of these and other processes shows that, at the cell biological level, exhaustive variation is found that does not necessarily translate into morphological differences. Modern molecular analyses have led to a view in which molecular complexes, made up of groups of proteins, or modules, that are working together, are responsible for the proper execution of cell biological programs. I discuss how this modular architecture could facilitate the phenotypic changes observed in cell biological processes. Ultimately, understanding the connection between cellular behavior and phenotypic outcome will further elucidate the mechanisms responsible for phenotypic evolution.
Collapse
|
14
|
Structure and evolution of the C. elegans embryonic endomesoderm network. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1789:250-60. [PMID: 18778800 DOI: 10.1016/j.bbagrm.2008.07.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 07/29/2008] [Indexed: 12/19/2022]
Abstract
The specification of the Caenorhabditis elegans endomesoderm has been the subject of study for more than 15 years. Specification of the 4-cell stage endomesoderm precursor, EMS, occurs as a result of the activation of a transcription factor cascade that starts with SKN-1, coupled with input from the Wnt/beta-catenin asymmetry pathway through the nuclear effector POP-1. As development proceeds, transiently-expressed cell fate factors are succeeded by stable, tissue/organ-specific regulators. The pathway is complex and uses motifs found in all transcriptional networks. Here, the regulators that function in the C. elegans endomesoderm network are described. An examination of the motifs in the network suggests how they may have evolved from simpler gene interactions. Flexibility in the network is evident from the multitude of parallel functions that have been identified and from apparent changes in parts of the corresponding network in Caenorhabditis briggsae. Overall, the complexities of C. elegans endomesoderm specification build a picture of a network that is robust, complex, and still evolving.
Collapse
|