1
|
Bian Y, Hahn H, Uhmann A. The hidden hedgehog of the pituitary: hedgehog signaling in development, adulthood and disease of the hypothalamic-pituitary axis. Front Endocrinol (Lausanne) 2023; 14:1219018. [PMID: 37476499 PMCID: PMC10355329 DOI: 10.3389/fendo.2023.1219018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Hedgehog signaling plays pivotal roles in embryonic development, adult homeostasis and tumorigenesis. However, its engagement in the pituitary gland has been long underestimated although Hedgehog signaling and pituitary embryogenic development are closely linked. Thus, deregulation of this signaling pathway during pituitary development results in malformation of the gland. Research of the last years further implicates a regulatory role of Hedgehog signaling in the function of the adult pituitary, because its activity is also interlinked with homeostasis, hormone production, and most likely also formation of neoplasms of the gland. The fact that this pathway can be efficiently targeted by validated therapeutic strategies makes it a promising candidate for treating pituitary diseases. We here summarize the current knowledge about the importance of Hedgehog signaling during pituitary development and review recent data that highlight the impact of Hedgehog signaling in the healthy and the diseased adult pituitary gland.
Collapse
|
2
|
Yan CY, Wu FY, Sun F, Fang Y, Zhang RJ, Zhang CR, Zhang CX, Wang Z, Yang RM, Yang L, Dong M, Zhang QY, Ye XP, Song HD, Zhao SX. The isl2a transcription factor regulates pituitary development in zebrafish. Front Endocrinol (Lausanne) 2023; 14:920548. [PMID: 36824359 PMCID: PMC9941339 DOI: 10.3389/fendo.2023.920548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND ISL LIM homeobox 2, also known as insulin gene enhancer protein ISL-2 (ISL2), is a transcription factor gene that participates in a wide range of developmental events. However, the role of ISL2 in the hypothalamus-pituitary-thyroid axis is largely unknown. In the present study, we characterized the expression patterns of ISL2 and revealed its regulative role during embryogenesis using zebrafish. METHODS We used the CRISPR/Cas9 system to successfully establish homozygous ISL2-orthologue (isl2a and isl2b) knockout zebrafish. Moreover, we utilized these knockout zebrafish to analyze the pituitary and thyroid phenotypes in vivo. For further molecular characterization, in situ hybridization and immunofluorescence were performed. RESULTS The isl2a mutant zebrafish presented with thyroid hypoplasia, reduced whole-body levels of thyroid hormones, increased early mortality, gender imbalance, and morphological retardation during maturity. Additionally, thyrotropes, a pituitary cell type, was notably decreased during development. Importantly, the transcriptional levels of pituitary-thyroid axis hormones-encoding genes, such as tshba, cga, and tg, were significantly decreased in isl2a mutants. Finally, the thyroid dysplasia in isl2a mutant larvae may be attributed to a reduction in proliferation rather than changes in apoptosis. CONCLUSIONS In summary, isl2a regulates the transcriptional levels of marker genes in hypothalamus-pituitary-thyroid axis, and isl2a knockout causing low thyroid hormone levels in zebrafish. Thus, isl2a identified by the present study, is a novel regulator for pituitary cell differentiation in zebrafish, resulting in thyroid gland hypoplasia and phenotypes of hypothyroidism.
Collapse
Affiliation(s)
- Chen-Yan Yan
- Department of Molecular Diagnostics and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
- Geriatric Medicine Center, Department of Endocrinology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Feng-Yao Wu
- Department of Molecular Diagnostics and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Feng Sun
- Department of Molecular Diagnostics and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Ya Fang
- Department of Molecular Diagnostics and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Rui-Jia Zhang
- Department of Molecular Diagnostics and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Chang-Run Zhang
- Department of Molecular Diagnostics and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Cao-Xu Zhang
- Department of Molecular Diagnostics and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Zheng Wang
- Department of Molecular Diagnostics and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Rui-Meng Yang
- Department of Molecular Diagnostics and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Liu Yang
- Department of Molecular Diagnostics and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Mei Dong
- Department of Molecular Diagnostics and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Qian-Yue Zhang
- Department of Molecular Diagnostics and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Xiao-Ping Ye
- Department of Molecular Diagnostics and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Huai-Dong Song
- Department of Molecular Diagnostics and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
- *Correspondence: Shuang-Xia Zhao, ; Huai-Dong Song,
| | - Shuang-Xia Zhao
- Department of Molecular Diagnostics and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
- *Correspondence: Shuang-Xia Zhao, ; Huai-Dong Song,
| |
Collapse
|
3
|
Price RM, Budzyński MA, Kundra S, Teves SS. Advances in visualizing transcription factor - DNA interactions. Genome 2020; 64:449-466. [PMID: 33113335 DOI: 10.1139/gen-2020-0086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
At the heart of the transcription process is the specific interaction between transcription factors (TFs) and their target DNA sequences. Decades of molecular biology research have led to unprecedented insights into how TFs access the genome to regulate transcription. In the last 20 years, advances in microscopy have enabled scientists to add imaging as a powerful tool in probing two specific aspects of TF-DNA interactions: structure and dynamics. In this review, we examine how applications of diverse imaging technologies can provide structural and dynamic information that complements insights gained from molecular biology assays. As a case study, we discuss how applications of advanced imaging techniques have reshaped our understanding of TF behavior across the cell cycle, leading to a rethinking in the field of mitotic bookmarking.
Collapse
Affiliation(s)
- Rachel M Price
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.,Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Marek A Budzyński
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.,Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Shivani Kundra
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.,Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Sheila S Teves
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.,Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
4
|
Patterns of spon1b:GFP expression during early zebrafish brain development. BMC Res Notes 2020; 13:14. [PMID: 31910899 PMCID: PMC6945593 DOI: 10.1186/s13104-019-4876-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/24/2019] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE F-spondin is part of a group of evolutionarily conserved extracellular matrix proteins in vertebrates. It is highly expressed in the embryonic floor plate, and it can bind to the ECM and promote neuronal outgrowth. A characterization of F-spondin expression patterns in the adult zebrafish brain was previously reported by our group. However, given its importance during development, we aimed to obtain a detailed description of green fluorescent protein (GFP) expression driven by the spon1b promotor, in the developing zebrafish brain of the transgenic Tg(spon1b:GFP) line, using light sheet fluorescence microscopy (LSFM). RESULTS Images obtained in live embryos from 22 to 96 h post fertilization confirmed our earlier reports on the presence of spon1b:GFP expressing cells in the telencephalon and diencephalon (olfactory bulbs, habenula, optic tectum, nuclei of the medial longitudinal fasciculus), and revealed new spon1b:GFP populations in the pituitary anlage, dorso-rostral cluster, and ventro-rostral cluster. LSFM made it possible to follow the dynamics of cellular migration patterns during development. CONCLUSIONS spon1b:GFP larval expression patterns starts in early development in specific neuronal structures of the developing brain associated with sensory-motor modulation. LSFM evaluation of the transgenic Tg(spon1b:GFP) line provides an effective approach to characterize GFP expression patterns in vivo.
Collapse
|
5
|
Eachus H, Bright C, Cunliffe VT, Placzek M, Wood JD, Watt PJ. Disrupted-in-Schizophrenia-1 is essential for normal hypothalamic-pituitary-interrenal (HPI) axis function. Hum Mol Genet 2017; 26:1992-2005. [PMID: 28334933 PMCID: PMC5437527 DOI: 10.1093/hmg/ddx076] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/23/2017] [Indexed: 02/01/2023] Open
Abstract
Psychiatric disorders arise due to an interplay of genetic and environmental factors, including stress. Studies in rodents have shown that mutants for Disrupted-In-Schizophrenia-1 (DISC1), a well-accepted genetic risk factor for mental illness, display abnormal behaviours in response to stress, but the mechanisms through which DISC1 affects stress responses remain poorly understood. Using two lines of zebrafish homozygous mutant for disc1, we investigated behaviour and functioning of the hypothalamic-pituitary-interrenal (HPI) axis, the fish equivalent of the hypothalamic-pituitary-adrenal (HPA) axis. Here, we show that the role of DISC1 in stress responses is evolutionarily conserved and that DISC1 is essential for normal functioning of the HPI axis. Adult zebrafish homozygous mutant for disc1 show aberrant behavioural responses to stress. Our studies reveal that in the embryo, disc1 is expressed in neural progenitor cells of the hypothalamus, a conserved region of the vertebrate brain that centrally controls responses to environmental stressors. In disc1 mutant embryos, proliferating rx3+ hypothalamic progenitors are not maintained normally and neuronal differentiation is compromised: rx3-derived ff1b+ neurons, implicated in anxiety-related behaviours, and corticotrophin releasing hormone (crh) neurons, key regulators of the stress axis, develop abnormally, and rx3-derived pomc+ neurons are disorganised. Abnormal hypothalamic development is associated with dysfunctional behavioural and neuroendocrine stress responses. In contrast to wild type siblings, disc1 mutant larvae show altered crh levels, fail to upregulate cortisol levels when under stress and do not modulate shoal cohesion, indicative of abnormal social behaviour. These data indicate that disc1 is essential for normal development of the hypothalamus and for the correct functioning of the HPA/HPI axis.
Collapse
Affiliation(s)
- Helen Eachus
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.,The Bateson Centre, Department of Biomedical Science, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Charlotte Bright
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Vincent T Cunliffe
- The Bateson Centre, Department of Biomedical Science, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Marysia Placzek
- The Bateson Centre, Department of Biomedical Science, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Jonathan D Wood
- The Bateson Centre, Department of Biomedical Science, Firth Court, Western Bank, Sheffield S10 2TN, UK.,Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Penelope J Watt
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
6
|
Abstract
The neuroendocrine hypothalamus is composed of the tuberal and anterodorsal hypothalamus, together with the median eminence/neurohypophysis. It centrally governs wide-ranging physiological processes, including homeostasis of energy balance, circadian rhythms and stress responses, as well as growth and reproductive behaviours. Homeostasis is maintained by integrating sensory inputs and effecting responses via autonomic, endocrine and behavioural outputs, over diverse time-scales and throughout the lifecourse of an individual. Here, we summarize studies that begin to reveal how different territories and cell types within the neuroendocrine hypothalamus are assembled in an integrated manner to enable function, thus supporting the organism's ability to survive and thrive. We discuss how signaling pathways and transcription factors dictate the appearance and regionalization of the hypothalamic primordium, the maintenance of progenitor cells, and their specification and differentiation into neurons. We comment on recent studies that harness such programmes for the directed differentiation of human ES/iPS cells. We summarize how developmental plasticity is maintained even into adulthood and how integration between the hypothalamus and peripheral body is established in the median eminence and neurohypophysis. Analysis of model organisms, including mouse, chick and zebrafish, provides a picture of how complex, yet elegantly coordinated, developmental programmes build glial and neuronal cells around the third ventricle of the brain. Such conserved processes enable the hypothalamus to mediate its function as a central integrating and response-control mediator for the homeostatic processes that are critical to life. Early indications suggest that deregulation of these events may underlie multifaceted pathological conditions and dysfunctional physiology in humans, such as obesity.
Collapse
Affiliation(s)
- Sarah Burbridge
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Iain Stewart
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Marysia Placzek
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
7
|
Wang H, Semenova S, Kuusela S, Panula P, Lehtonen S. Tankyrases regulate glucoregulatory mechanisms and somatic growth via the central melanocortin system in zebrafish larvae. FASEB J 2015; 29:4435-48. [PMID: 26169937 DOI: 10.1096/fj.15-271817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/30/2015] [Indexed: 11/11/2022]
Abstract
The central melanocortin system is a key regulator of energy homeostasis. Recent studies indicate that tankyrases (TNKSs), which poly(ADP-ribosyl)ate target proteins and direct them toward proteasomal degradation, affect overall metabolism, but the exact molecular mechanisms remain unclear. We used zebrafish larvae as a model to study the mechanisms by which TNKS1b, the zebrafish ortholog of mammalian TNKS1, regulates glucose homeostasis and somatic growth. In situ hybridization revealed that TNKS1b mRNA is prominently expressed in the hypothalamus and pituitary of the embryonic and larval brain. In the pituitary, TNKS1b is coexpressed with pro-opiomelanocortin a (pomca) gene in corticotropes and melanotropes. Knockdown of TNKS1b reduced the linear growth of the larvae, stimulated insulin gene and glucose transporter 4 protein, and suppressed gluconeogenic phosphoenolpyruvate carboxykinase 1 gene. This result indicates rapid glucose utilization and reduction of gluconeogenesis in TNKS1b-deficient larvae. Knockdown of TNKS1b down-regulated pomca expression and diminished α-melanocyte-stimulating hormone in the pars intermedia. Furthermore, down-regulation of TNKS1b suppressed the expression of melanocortin receptor 3 and increased the expression of melanocortin receptor 4. The collective data suggest that TNKS1b modulates glucoregulatory mechanisms and the somatic growth of zebrafish larvae via the central melanocortin system.
Collapse
Affiliation(s)
- Hong Wang
- *Department of Pathology and Institute of Biomedicine, Anatomy and Neuroscience Centre, University of Helsinki, Helsinki, Finland
| | - Svetlana Semenova
- *Department of Pathology and Institute of Biomedicine, Anatomy and Neuroscience Centre, University of Helsinki, Helsinki, Finland
| | - Sara Kuusela
- *Department of Pathology and Institute of Biomedicine, Anatomy and Neuroscience Centre, University of Helsinki, Helsinki, Finland
| | - Pertti Panula
- *Department of Pathology and Institute of Biomedicine, Anatomy and Neuroscience Centre, University of Helsinki, Helsinki, Finland
| | - Sanna Lehtonen
- *Department of Pathology and Institute of Biomedicine, Anatomy and Neuroscience Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Graf M, Teo Qi-Wen ER, Sarusie MV, Rajaei F, Winkler C. Dmrt5 controls corticotrope and gonadotrope differentiation in the zebrafish pituitary. Mol Endocrinol 2014; 29:187-99. [PMID: 25489906 DOI: 10.1210/me.2014-1176] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Dmrt transcription factors control sex determination or sex-specific differentiation across all invertebrate and vertebrate species, in which they have been studied so far. In addition to important functions in the reproductive system, also nongonadal roles have been assigned to several dmrt family members. One example is dmrt5, which was shown to guide neurogenesis in the forebrain of some vertebrates including fish. Here we show that in zebrafish, dmrt5 is also expressed adjacent to the pituitary anlage and later in the anterior pars distalis in which it organizes differentiation of endocrine cells. We find that pituitary induction, cell survival, proliferation, and early lineage specification in the pituitary is independent of dmrt5. Instead, dmrt5 is required for terminal differentiation of corticotropes and gonadotropes. Gene knockdown and mutant analysis revealed that dmrt5 promotes corticotrope differentiation via tbx19 expression, whereas it prevents gonadotrope differentiation in the anterior pars distalis. In dmrt5 morphants and mutants, reduced corticotrope numbers may result in irregular positioning and reduced maintenance of lactotropes. In conclusion, our study establishes a novel function for dmrt5 for cell differentiation in the anterior pituitary. Intriguingly, its effect on gonadotrope numbers defines a first nongonadal role for a dmrt family member that appears crucial for the activity of the reproductive system.
Collapse
Affiliation(s)
- Martin Graf
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543
| | | | | | | | | |
Collapse
|
9
|
|
10
|
Related pituitary cell lineages develop into interdigitated 3D cell networks. Proc Natl Acad Sci U S A 2011; 108:12515-20. [PMID: 21746936 DOI: 10.1073/pnas.1105929108] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The pituitary gland has long been considered to be a random patchwork of hormone-producing cells. By using pituitary-scale tridimensional imaging for two of the least abundant cell lineages, the corticotropes and gonadotropes, we have now uncovered highly organized and interdigitated cell networks that reflect homotypic and heterotypic interactions between cells. Although newly differentiated corticotrope cells appear on the ventral surface of the gland, they rapidly form homotypic strands of cells that extend from the lateral tips of the anterior pituitary along its ventral surface and into the medial gland. As the corticotrope network is established away from the microvasculature, cell morphology changes from rounded, to polygonal, and finally to cells with long cytoplasmic processes or cytonemes that connect corticotropes to the perivascular space. Gonadotropes differentiate later and are positioned in close proximity to corticotropes and capillaries. Blockade of corticotrope terminal differentiation produced by knockout of the gene encoding the transcription factor Tpit results in smaller gonadotropes within an expanded cell network, particularly in the lateral gland. Thus, pituitary-scale tridimensional imaging reveals highly structured cell networks of unique topology for each pituitary lineage. The sequential development of interdigitated cell networks during organogenesis indicate that extensive cell:cell interactions lead to a highly ordered cell positioning rather than random patchwork.
Collapse
|
11
|
Löhr H, Hammerschmidt M. Zebrafish in Endocrine Systems: Recent Advances and Implications for Human Disease. Annu Rev Physiol 2011; 73:183-211. [DOI: 10.1146/annurev-physiol-012110-142320] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Heiko Löhr
- Institute for Developmental Biology, University of Cologne, D-50923 Cologne, Germany
| | - Matthias Hammerschmidt
- Institute for Developmental Biology, University of Cologne, D-50923 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CEDAD), University of Cologne, D-50923 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, D-50923 Cologne, Germany;
| |
Collapse
|
12
|
Cellular in vivo imaging reveals coordinated regulation of pituitary microcirculation and GH cell network function. Proc Natl Acad Sci U S A 2010; 107:4465-70. [PMID: 20160103 DOI: 10.1073/pnas.0902599107] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Growth hormone (GH) exerts its actions via coordinated pulsatile secretion from a GH cell network into the bloodstream. Practically nothing is known about how the network receives its inputs in vivo and releases hormones into pituitary capillaries to shape GH pulses. Here we have developed in vivo approaches to measure local blood flow, oxygen partial pressure, and cell activity at single-cell resolution in mouse pituitary glands in situ. When secretagogue (GHRH) distribution was modeled with fluorescent markers injected into either the bloodstream or the nearby intercapillary space, a restricted distribution gradient evolved within the pituitary parenchyma. Injection of GHRH led to stimulation of both GH cell network activities and GH secretion, which was temporally associated with increases in blood flow rates and oxygen supply by capillaries, as well as oxygen consumption. Moreover, we observed a time-limiting step for hormone output at the perivascular level; macromolecules injected into the extracellular parenchyma moved rapidly to the perivascular space, but were then cleared more slowly in a size-dependent manner into capillary blood. Our findings suggest that GH pulse generation is not simply a GH cell network response, but is shaped by a tissue microenvironment context involving a functional association between the GH cell network activity and fluid microcirculation.
Collapse
|
13
|
|
14
|
Abstract
The zebrafish is a powerful vertebrate system with great advantages for both forward and reverse genetic screens and as a model for human disease conditions. Light microscopy has been used extensively to study zebrafish development but less frequently have these studies been combined with ultrastructural information. Zebrafish embryos are ideal for electron microscopy (EM) with a single transverse section containing many different cell types and tissues. However, conventional methods of EM do not provide optimal preservation of all tissues and are usually incompatible with immunolabelling and visualisation of expressed fluorescently tagged proteins. Here we examine methods that overcome these problems. We summarise a range of methods, applicable to the ultrastructural analysis of zebrafish embryos, including methods for fast freezing and processing of zebrafish embryos. These methods preserve antigenicity, ultrastructure and GFP fluorescence even after embedding in resin. In addition, they are compatible with electron tomography. These methods provide a new set of research tools that provide an additional level of information, complementing current methods for study of this widely used model system.
Collapse
|
15
|
Pogoda HM, Hammerschmidt M. How to make a teleost adenohypophysis: molecular pathways of pituitary development in zebrafish. Mol Cell Endocrinol 2009; 312:2-13. [PMID: 19728983 DOI: 10.1016/j.mce.2009.03.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 03/12/2009] [Accepted: 03/19/2009] [Indexed: 11/28/2022]
Abstract
The anterior pituitary gland, or adenohypophysis (AH), represents the key component of the vertebrate hypothalamo-hypophyseal axis, where it functions at the interphase of the nervous and endocrine system to regulate basic body functions like growth, metabolism and reproduction. For developmental biologists, the adenohypophysis serves as an excellent model system for the studies of organogenesis and differential cell fate specification. Previous research, mainly done in mouse, identified numerous extrinsic signaling cues and intrinsic transcription factors that orchestrate the gland's developmental progression. In the past years, the zebrafish has emerged as a powerful tool to elucidate the genetic networks controlling vertebrate development, behavior and disease. Based on mutants isolated in forward genetic screens and on gene knock-downs using morpholino oligonucleotide (oligo) antisense technology, our current understanding of the molecular machinery driving adenohypophyseal ontogeny could be considerably improved. In addition, comparative analyses have shed further light onto the evolution of this rather recently invented organ. The goal of this review is to summarize current knowledge of the genetic and molecular control of zebrafish pituitary development, with special focus on most recent findings, including some thus far unpublished data from our own laboratory on the transcription factor Six1. In addition, zebrafish data will be discussed in comparison with current understanding of adenohypophysis development in mouse.
Collapse
Affiliation(s)
- Hans-Martin Pogoda
- Institute for Developmental Biology, University of Cologne, Gyrhofstr. 17, D-50931 Cologne, Germany.
| | | |
Collapse
|
16
|
A dynamic Gli code interprets Hh signals to regulate induction, patterning, and endocrine cell specification in the zebrafish pituitary. Dev Biol 2009; 326:143-54. [DOI: 10.1016/j.ydbio.2008.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 10/30/2008] [Accepted: 11/04/2008] [Indexed: 11/21/2022]
|
17
|
Recent Papers on Zebrafish and Other Aquarium Fish Models. Zebrafish 2008. [DOI: 10.1089/zeb.2008.9987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|