1
|
Lange S, Inal JM. Animal Models of Human Disease 2.0. Int J Mol Sci 2024; 25:13743. [PMID: 39769507 PMCID: PMC11679604 DOI: 10.3390/ijms252413743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
The use of animal models is crucial for advancing translational research by identifying effective treatment targets and strategies for clinical application in human disease [...].
Collapse
Affiliation(s)
- Sigrun Lange
- Pathobiology and Extracellular Vesicles Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
| | - Jameel M. Inal
- Cell Communication in Disease Pathology, School of Human Sciences, London Metropolitan University, London N7 8DB, UK;
- Biosciences Research Group, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9EU, UK
| |
Collapse
|
2
|
Tait CM, Chinnaiya K, Manning E, Murtaza M, Ashton JP, Furley N, Hill CJ, Alves CH, Wijnholds J, Erdmann KS, Furley A, Rashbass P, Das RM, Storey KG, Placzek M. Crumbs2 mediates ventricular layer remodelling to form the spinal cord central canal. PLoS Biol 2020; 18:e3000470. [PMID: 32150534 PMCID: PMC7108746 DOI: 10.1371/journal.pbio.3000470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 03/31/2020] [Accepted: 02/18/2020] [Indexed: 11/27/2022] Open
Abstract
In the spinal cord, the central canal forms through a poorly understood process termed dorsal collapse that involves attrition and remodelling of pseudostratified ventricular layer (VL) cells. Here, we use mouse and chick models to show that dorsal ventricular layer (dVL) cells adjacent to dorsal midline Nestin(+) radial glia (dmNes+RG) down-regulate apical polarity proteins, including Crumbs2 (CRB2) and delaminate in a stepwise manner; live imaging shows that as one cell delaminates, the next cell ratchets up, the dmNes+RG endfoot ratchets down, and the process repeats. We show that dmNes+RG secrete a factor that promotes loss of cell polarity and delamination. This activity is mimicked by a secreted variant of Crumbs2 (CRB2S) which is specifically expressed by dmNes+RG. In cultured MDCK cells, CRB2S associates with apical membranes and decreases cell cohesion. Analysis of Crb2F/F/Nestin-Cre+/- mice, and targeted reduction of Crb2/CRB2S in slice cultures reveal essential roles for transmembrane CRB2 (CRB2TM) and CRB2S on VL cells and dmNes+RG, respectively. We propose a model in which a CRB2S-CRB2TM interaction promotes the progressive attrition of the dVL without loss of overall VL integrity. This novel mechanism may operate more widely to promote orderly progenitor delamination.
Collapse
Affiliation(s)
- Christine M Tait
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Kavitha Chinnaiya
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Elizabeth Manning
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Mariyam Murtaza
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - John-Paul Ashton
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Nicholas Furley
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Chris J Hill
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - C Henrique Alves
- Department of Ophthalmology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Kai S Erdmann
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Andrew Furley
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Penny Rashbass
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Raman M Das
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Kate G Storey
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Marysia Placzek
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
3
|
Tse MK, Hung TS, Chan CM, Wong T, Dorothea M, Leclerc C, Moreau M, Miller AL, Webb SE. Identification of Ca 2+ signaling components in neural stem/progenitor cells during differentiation into neurons and glia in intact and dissociated zebrafish neurospheres. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1352-1368. [PMID: 29931586 DOI: 10.1007/s11427-018-9315-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/03/2018] [Indexed: 01/30/2023]
Abstract
The development of the CNS in vertebrate embryos involves the generation of different sub-types of neurons and glia in a complex but highly-ordered spatio-temporal manner. Zebrafish are commonly used for exploring the development, plasticity and regeneration of the CNS, and the recent development of reliable protocols for isolating and culturing neural stem/progenitor cells (NSCs/NPCs) from the brain of adult fish now enables the exploration of mechanisms underlying the induction/specification/differentiation of these cells. Here, we refined a protocol to generate proliferating and differentiating neurospheres from the entire brain of adult zebrafish. We demonstrated via RT-qPCR that some isoforms of ip3r, ryr and stim are upregulated/downregulated significantly in differentiating neurospheres, and via immunolabelling that 1,4,5-inositol trisphosphate receptor (IP3R) type-1 and ryanodine receptor (RyR) type-2 are differentially expressed in cells with neuron- or radial glial-like properties. Furthermore, ATP but not caffeine (IP3R and RyR agonists, respectively), induced the generation of Ca2+ transients in cells exhibiting neuron- or glial-like morphology. These results indicate the differential expression of components of the Ca2+-signaling toolkit in proliferating and differentiating cells. Thus, given the complexity of the intact vertebrate brain, neurospheres might be a useful system for exploring neurodegenerative disease diagnosis protocols and drug development using Ca2+ signaling as a read-out.
Collapse
Affiliation(s)
- Man Kit Tse
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Ting Shing Hung
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Ching Man Chan
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Tiffany Wong
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Mike Dorothea
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Catherine Leclerc
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, F-31062, France
| | - Marc Moreau
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, F-31062, France
| | - Andrew L Miller
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Sarah E Webb
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
4
|
Surbhi, Rastogi A, Malik S, Rani S, Kumar V. Seasonal neuronal plasticity in song-control and auditory forebrain areas in subtropical nonmigratory and palearctic-indian migratory male songbirds. J Comp Neurol 2016; 524:2914-29. [DOI: 10.1002/cne.24000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Surbhi
- DST-IRHPA Center for Excellence in Biological Rhythms Research and Indo-U.S. Center for Biological Timing, University of Delhi; Delhi 110 007 India
- Department of Zoology; University of Delhi; Delhi 110 007 India
| | - Ashutosh Rastogi
- DST-IRHPA Center for Excellence in Biological Rhythms Research and Indo-U.S. Center for Biological Timing, University of Delhi; Delhi 110 007 India
- Department of Zoology; University of Lucknow; Lucknow 226 007 India
| | - Shalie Malik
- DST-IRHPA Center for Excellence in Biological Rhythms Research and Indo-U.S. Center for Biological Timing, University of Delhi; Delhi 110 007 India
- Department of Zoology; University of Lucknow; Lucknow 226 007 India
| | - Sangeeta Rani
- DST-IRHPA Center for Excellence in Biological Rhythms Research and Indo-U.S. Center for Biological Timing, University of Delhi; Delhi 110 007 India
- Department of Zoology; University of Lucknow; Lucknow 226 007 India
| | - Vinod Kumar
- DST-IRHPA Center for Excellence in Biological Rhythms Research and Indo-U.S. Center for Biological Timing, University of Delhi; Delhi 110 007 India
- Department of Zoology; University of Delhi; Delhi 110 007 India
| |
Collapse
|
5
|
Imran S, Ferretti P, Vrzal R. Different regulation of aryl hydrocarbon receptor-regulated genes in response to dioxin in undifferentiated and neuronally differentiated human neuroblastoma SH-SY5Y cells. Toxicol Mech Methods 2015; 25:689-97. [DOI: 10.3109/15376516.2015.1070227] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Saima Imran
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic and
| | - Patrizia Ferretti
- Stem Cells and Regenerative Medicine Section, UCL Institute of Child Health, London, UK
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic and
| |
Collapse
|
6
|
Zhang Z, Li F, Sun T. Does repair of spinal cord injury follow the evolutionary theory? Neural Regen Res 2015; 7:849-52. [PMID: 25737713 PMCID: PMC4342713 DOI: 10.3969/j.issn.1673-5374.2012.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/11/2012] [Indexed: 01/13/2023] Open
Abstract
Lower vertebrates, such as fish and amphibians, and higher vertebrates in embryonic development can acquire complete regeneration of complex body structures, including the spinal cord, an important part of the central nervous system. However, with species evolution and development, this regenerative capacity gradually weakens and even disappears, but the cellular and molecular mechanisms remain poorly understood. We explored the differences in mechanisms of spinal cord regeneration capability between lower and higher vertebrates, investigated differences in their cellular and molecular mechanisms and between the spinal cord structures of lower vertebrates and mammals, such as rat and monkey, to search for theoretical evidence and therapeutic targets for nerve regeneration in human spinal cord.
Collapse
Affiliation(s)
- Zhicheng Zhang
- PLA Institute of Orthopedics, Beijing Army General Hospital, Beijing 100700, China
| | - Fang Li
- PLA Institute of Orthopedics, Beijing Army General Hospital, Beijing 100700, China
| | - Tiansheng Sun
- PLA Institute of Orthopedics, Beijing Army General Hospital, Beijing 100700, China
| |
Collapse
|
7
|
Abstract
Recent studies in Drosophila, Hydra, planarians, zebrafish, mice, indicate that cell death can open paths to regeneration in adult animals. Indeed injury can induce cell death, itself triggering regeneration following an immediate instructive mechanism, whereby the dying cells release signals that induce cellular responses over short and/or long-range distances. Cell death can also provoke a sustained derepressing response through the elimination of cells that suppress regeneration in homeostatic conditions. Whether common properties support what we name "regenerative cell death," is currently unclear. As key parameters, we review here the injury proapoptotic signals, the signals released by the dying cells, the cellular responses, and their respective timing. ROS appears as a common signal triggering cell death through MAPK and/or JNK pathway activation. But the modes of ROS production vary, from a brief pulse upon wounding, to repeated waves as observed in the zebrafish fin where ROS supports two peaks of cell death. Indeed regenerative cell death can be restricted to the injury phase, as in Hydra, Drosophila, or biphasic, immediate, and delayed, as in planarians and zebrafish. The dying cells release in a caspase-dependent manner a variety of signaling molecules, cytokines, growth factors, but also prostaglandins or ATP as recorded in Drosophila, Hydra, mice, and zebrafish, respectively. Interestingly, the ROS-producing cells often resist to cell death, implying a complex paracrine mode of signaling to launch regeneration, involving ROS-producing cells, ROS-sensing cells that release signaling molecules upon caspase activation, and effector cells that respond to these signals by proliferating, migrating, and/or differentiating.
Collapse
Affiliation(s)
- Sophie Vriz
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris, France; University Paris-Diderot, Paris, France
| | - Silke Reiter
- Department of Genetics and Evolution, University of Geneva, Switzerland
| | - Brigitte Galliot
- Department of Genetics and Evolution, University of Geneva, Switzerland.
| |
Collapse
|
8
|
Vellema M, Hertel M, Urbanus SL, Van der Linden A, Gahr M. Evaluating the predictive value of doublecortin as a marker for adult neurogenesis in canaries (Serinus canaria). J Comp Neurol 2014; 522:1299-315. [DOI: 10.1002/cne.23476] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Michiel Vellema
- Department of Behavioural Neurobiology; Max Planck Institute for Ornithology; D-82319 Seewiesen Germany
- Bio-Imaging Lab; University of Antwerp; B-2020 Antwerp Belgium
| | - Moritz Hertel
- Department of Behavioural Neurobiology; Max Planck Institute for Ornithology; D-82319 Seewiesen Germany
| | - Susan L. Urbanus
- Institute of Genetics; University of Munich; D-82152 Martinsried Germany
| | | | - Manfred Gahr
- Department of Behavioural Neurobiology; Max Planck Institute for Ornithology; D-82319 Seewiesen Germany
| |
Collapse
|
9
|
U KP, Subramanian V, Nicholas AP, Thompson PR, Ferretti P. Modulation of calcium-induced cell death in human neural stem cells by the novel peptidylarginine deiminase-AIF pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1162-71. [PMID: 24607566 PMCID: PMC3996523 DOI: 10.1016/j.bbamcr.2014.02.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/19/2014] [Accepted: 02/24/2014] [Indexed: 11/29/2022]
Abstract
PADs (peptidylarginine deiminases) are calcium-dependent enzymes that change protein-bound arginine to citrulline (citrullination/deimination) affecting protein conformation and function. PAD up-regulation following chick spinal cord injury has been linked to extensive tissue damage and loss of regenerative capability. Having found that human neural stem cells (hNSCs) expressed PAD2 and PAD3, we studied PAD function in these cells and investigated PAD3 as a potential target for neuroprotection by mimicking calcium-induced secondary injury responses. We show that PAD3, rather than PAD2 is a modulator of cell growth/death and that PAD activity is not associated with caspase-3-dependent cell death, but is required for AIF (apoptosis inducing factor)-mediated apoptosis. PAD inhibition prevents association of PAD3 with AIF and AIF cleavage required for its translocation to the nucleus. Finally, PAD inhibition also hinders calcium-induced cytoskeleton disassembly and association of PAD3 with vimentin, that we show to be associated also with AIF; together this suggests that PAD-dependent cytoskeleton disassembly may play a role in AIF translocation to the nucleus. This is the first study highlighting a role of PAD activity in balancing hNSC survival/death, identifying PAD3 as an important upstream regulator of calcium-induced apoptosis, which could be targeted to reduce neural loss, and shedding light on the mechanisms involved.
Collapse
Affiliation(s)
- Kin Pong U
- Developmental Biology Unit, UCL Institute of Child Health, London WC1N 1EH, UK
| | | | - Antony P Nicholas
- Department of Neurology, University of Alabama at Birmingham and Birmingham VA Medical Center, Birmingham, AL 35294, USA
| | - Paul R Thompson
- Department of Chemistry, TSRI, Scripps Florida, FL 33458, USA
| | - Patrizia Ferretti
- Developmental Biology Unit, UCL Institute of Child Health, London WC1N 1EH, UK.
| |
Collapse
|
10
|
Chick stem cells: current progress and future prospects. Stem Cell Res 2013; 11:1378-92. [PMID: 24103496 PMCID: PMC3989061 DOI: 10.1016/j.scr.2013.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 09/06/2013] [Accepted: 09/13/2013] [Indexed: 12/15/2022] Open
Abstract
Chick embryonic stem cells (cESCs) can be derived from cells obtained from stage X embryos (blastoderm stage); these have the ability to contribute to all somatic lineages in chimaeras, but not to the germ line. However, lines of stem cells that are able to contribute to the germ line can be established from chick primordial germ cells (cPGCs) and embryonic germ cells (cEGCs). This review provides information on avian stem cells, emphasizing different sources of cells and current methods for derivation and culture of pluripotent cells from chick embryos. We also review technologies for isolation and derivation of chicken germ cells and the production of transgenic birds. Chick embryonic stem cells (cESCs) can be derived from a variety of sources. cESCs can contribute to all somatic cell types but not to the germ line. germ cells can be isolated from early embryos, embryonic blood and gonads. germ cells can establish self-renewing lines and contribute to the germline.
Collapse
|
11
|
The (real) neurogenic/gliogenic potential of the postnatal and adult brain parenchyma. ISRN NEUROSCIENCE 2013; 2013:354136. [PMID: 24967310 PMCID: PMC4045543 DOI: 10.1155/2013/354136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 01/08/2013] [Indexed: 11/17/2022]
Abstract
During the last two decades basic research in neuroscience has remarkably expanded due to the discovery of neural stem cells (NSCs) and adult neurogenesis in the mammalian central nervous system (CNS). The existence of such unexpected plasticity triggered hopes for alternative approaches to brain repair, yet deeper investigation showed that constitutive mammalian neurogenesis is restricted to two small "neurogenic sites" hosting NSCs as remnants of embryonic germinal layers and subserving homeostatic roles in specific neural systems. The fact that in other classes of vertebrates adult neurogenesis is widespread in the CNS and useful for brain repair sometimes creates misunderstandings about the real reparative potential in mammals. Nevertheless, in the mammalian CNS parenchyma, which is commonly considered as "nonneurogenic," some processes of gliogenesis and, to a lesser extent, neurogenesis also occur. This "parenchymal" cell genesis is highly heterogeneous as to the position, identity, and fate of the progenitors. In addition, even the regional outcomes are different. In this paper the heterogeneity of mammalian parenchymal neurogliogenesis will be addressed, also discussing the most common pitfalls and misunderstandings of this growing and promising research field.
Collapse
|
12
|
Bonfanti L, Nacher J. New scenarios for neuronal structural plasticity in non-neurogenic brain parenchyma: the case of cortical layer II immature neurons. Prog Neurobiol 2012; 98:1-15. [PMID: 22609484 DOI: 10.1016/j.pneurobio.2012.05.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 04/25/2012] [Accepted: 05/08/2012] [Indexed: 11/20/2022]
Abstract
The mammalian central nervous system, due to its interaction with the environment, must be endowed with plasticity. Conversely, the nervous tissue must be substantially static to ensure connectional invariability. Structural plasticity can be viewed as a compromise between these requirements. In adult mammals, brain structural plasticity is strongly reduced with respect to other animal groups in the phylogenetic tree. It persists under different forms, which mainly consist of remodeling of neuronal shape and connectivity, and, to a lesser extent, the production of new neurons. Adult neurogenesis is mainly restricted within two neurogenic niches, yet some gliogenic and neurogenic processes also occur in the so-called non-neurogenic tissue, starting from parenchymal progenitors. In this review we focus on a population of immature, non-newly generated neurons in layer II of the cerebral cortex, which were previously thought to be newly generated since they heavily express the polysialylated form of the neural cell adhesion molecule and doublecortin. These unusual neurons exhibit characteristics defining an additional type of structural plasticity, different from either synaptic plasticity or adult neurogenesis. Evidences concerning their morphology, antigenic features, ultrastructure, phenotype, origin, fate, and reaction to different kind of stimulations are gathered and analyzed. Their possible role is discussed in the context of an enriched complexity and heterogeneity of mammalian brain structural plasticity.
Collapse
Affiliation(s)
- Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano (TO), and Department of Veterinary Morphophysiology, University of Turin, Turin, Italy.
| | | |
Collapse
|
13
|
Prasongchean W, Bagni M, Calzarossa C, De Coppi P, Ferretti P. Amniotic Fluid Stem Cells Increase Embryo Survival Following Injury. Stem Cells Dev 2012; 21:675-88. [DOI: 10.1089/scd.2011.0281] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
| | - Marinella Bagni
- Developmental Biology Unit, UCL Institute of Child Health, London, United Kingdom
| | | | - Paolo De Coppi
- Surgery Unit, UCL Institute of Child Health, London, United Kingdom
| | - Patrizia Ferretti
- Developmental Biology Unit, UCL Institute of Child Health, London, United Kingdom
| |
Collapse
|
14
|
Ferretti P. Is there a relationship between adult neurogenesis and neuron generation following injury across evolution? Eur J Neurosci 2011; 34:951-62. [DOI: 10.1111/j.1460-9568.2011.07833.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
15
|
Lange S, Gögel S, Leung KY, Vernay B, Nicholas AP, Causey CP, Thompson PR, Greene ND, Ferretti P. Protein deiminases: new players in the developmentally regulated loss of neural regenerative ability. Dev Biol 2011; 355:205-14. [PMID: 21539830 PMCID: PMC4768803 DOI: 10.1016/j.ydbio.2011.04.015] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 04/06/2011] [Accepted: 04/14/2011] [Indexed: 01/25/2023]
Abstract
Spinal cord regenerative ability is lost with development, but the mechanisms underlying this loss are still poorly understood. In chick embryos, effective regeneration does not occur after E13, when spinal cord injury induces extensive apoptotic response and tissue damage. As initial experiments showed that treatment with a calcium chelator after spinal cord injury reduced apoptosis and cavitation, we hypothesized that developmentally regulated mediators of calcium-dependent processes in secondary injury response may contribute to loss of regenerative ability. To this purpose we screened for such changes in chick spinal cords at stages of development permissive (E11) and non-permissive (E15) for regeneration. Among the developmentally regulated calcium-dependent proteins identified was PAD3, a member of the peptidylarginine deiminase (PAD) enzyme family that converts protein arginine residues to citrulline, a process known as deimination or citrullination. This post-translational modification has not been previously associated with response to injury. Following injury, PAD3 up-regulation was greater in spinal cords injured at E15 than at E11. Consistent with these differences in gene expression, deimination was more extensive at the non-regenerating stage, E15, both in the gray and white matter. As deimination paralleled the extent of apoptosis, we investigated the effect of blocking PAD activity on cell death and deiminated-histone 3, one of the PAD targets we identified by mass-spectrometry analysis of spinal cord deiminated proteins. Treatment with the PAD inhibitor, Cl-amidine, reduced the abundance of deiminated-histone 3, consistent with inhibition of PAD activity, and significantly reduced apoptosis and tissue loss following injury at E15. Altogether, our findings identify PADs and deimination as developmentally regulated modulators of secondary injury response, and suggest that PADs might be valuable therapeutic targets for spinal cord injury.
Collapse
Affiliation(s)
- Sigrun Lange
- Developmental Biology Unit, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Stefanie Gögel
- Developmental Biology Unit, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Kit-Yi Leung
- Neural Development Unit, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Bertrand Vernay
- Developmental Biology Unit, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Anthony P. Nicholas
- Department of Neurology, University of Alabama at Birmingham and Birmingham VA Medical Center, Birmingham, Alabama 35294, USA
| | - Corey P. Causey
- University of South Carolina, Department of Chemistry & Biochemistry, Columbia, 29208, USA
| | - Paul R. Thompson
- Department of Chemistry, TSRI, Scripps Florida, Florida 33458 USA
| | | | - Patrizia Ferretti
- Developmental Biology Unit, UCL Institute of Child Health, London WC1N 1EH, UK
| |
Collapse
|
16
|
Gögel S, Lange S, Leung KY, Greene NDE, Ferretti P. Post-translational regulation of Crmp in developing and regenerating chick spinal cord. Dev Neurobiol 2010; 70:456-71. [PMID: 20162635 DOI: 10.1002/dneu.20789] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
It is becoming apparent that regulation at the protein level plays crucial roles in developmental and pathological processes. Therefore, we performed a proteomics screen to identify proteins that are differently expressed or modified at stages of development permissive (E11) and nonpermissive for regeneration (E15) of the chick spinal cord. Proteins regulated either developmentally or in response to spinal-cord injury included collapsin-response-mediator proteins (Crmps), known to modulate microtubule dynamic and axonal growth. No significant changes in Crmp transcripts following injury were observed, indicating regulation mainly at the protein level. Analysis of Crmp-2 protein and its phosphorylated forms, pS522 and pT514, showed that Crmp-2 is developmentally regulated and also expressed in neural progenitors in vivo and in neurospheres. Its cellular localization changed both with development and following spinal-cord injury. In addition, although overall levels of Crmp-2 expression were not affected by injury, abundance of certain phosphorylated forms was altered. pT514 Crmp-2 appeared to be associated with dividing neural progenitors and was greatly reduced at nonpermissive stages for regeneration, whereas it did not seem affected by injury. In contrast, phosphorylation of Crmp-2 at S522 was upregulated early after injury in regenerating spinal cords and the ratio between phosphorylated to total Crmp-2 increased, as indicated by 2D Western blots. Altogether, this study shows highly dynamic regulation of Crmp-2 forms during development and identifies post-translational changes in Crmp-2 as putative contributors to the maintenance of spinal-cord regenerative ability, possibly via a transient stabilization of the neuronal cytoskeleton.
Collapse
Affiliation(s)
- Stefanie Gögel
- Developmental Biology Unit, UCL Institute of Child Health, London, United Kingdom
| | | | | | | | | |
Collapse
|
17
|
Abstract
For many years the mammalian CNS has been seen as an organ that is unable to regenerate. However, it was also long known that lower vertebrate species are capable of impressive regeneration of CNS structures. How did this situation arise through evolution? Increasing cellular and molecular understanding of regeneration in different animal species coupled with studies of adult neurogenesis in mammals is providing a basis for addressing this question. Here we compare CNS regeneration among vertebrates and speculate on how this ability may have emerged or been restricted.
Collapse
|