1
|
Yao C, Wang C, Li Y, Zavortink M, Archambault V, Girton J, Johansen KM, Johansen J. Evidence for a role of spindle matrix formation in cell cycle progression by antibody perturbation. PLoS One 2018; 13:e0208022. [PMID: 30485354 PMCID: PMC6261614 DOI: 10.1371/journal.pone.0208022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/11/2018] [Indexed: 12/27/2022] Open
Abstract
In Drosophila it has recently been demonstrated that a spindle matrix in the form of a membrane-less macromolecular assembly embeds the microtubule-based spindle apparatus. In addition, two of its constituents, Megator and Chromator, were shown to function as spatial regulators of spindle checkpoint proteins. However, whether the spindle matrix plays a wider functional role in spatially regulating cell cycle progression factors was unknown. Here using a live imaging approach we provide evidence that a number of key cell cycle proteins such as Cyclin B, Polo, and Ran co-localize with the spindle matrix during mitosis. Furthermore, prevention of spindle matrix formation by injection of a function blocking antibody against the spindle matrix protein Chromator results in cell cycle arrest prior to nuclear envelope breakdown. In such embryos the spatial dynamics of Polo and Cyclin B enrichment at the nuclear rim and kinetochores is abrogated and Polo is not imported into the nucleus. This is in contrast to colchicine-arrested embryos where the wild-type dynamics of these proteins are maintained. Taken together these results suggest that spindle matrix formation may be a general requirement for the localization and proper dynamics of cell cycle factors promoting signaling events leading to cell cycle progression.
Collapse
Affiliation(s)
- Changfu Yao
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Chao Wang
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Yeran Li
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Michael Zavortink
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | | | - Jack Girton
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Kristen M Johansen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Jørgen Johansen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
2
|
Forer A, Sheykhani R, Berns MW. Anaphase Chromosomes in Crane-Fly Spermatocytes Treated With Taxol (Paclitaxel) Accelerate When Their Kinetochore Microtubules Are Cut: Evidence for Spindle Matrix Involvement With Spindle Forces. Front Cell Dev Biol 2018; 6:77. [PMID: 30087895 PMCID: PMC6066604 DOI: 10.3389/fcell.2018.00077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/29/2018] [Indexed: 01/01/2023] Open
Abstract
Various experiments have indicated that anaphase chromosomes continue to move after their kinetochore microtubules are severed. The chromosomes move poleward at an accelerated rate after the microtubules are cut but they slow down 1-3 min later and move poleward at near the original speed. There are two published interpretations of chromosome movements with severed kinetochore microtubules. One interpretation is that dynein relocates to the severed microtubule ends and propels them poleward by pushing against non-kinetochore microtubules. The other interpretation is that components of a putative "spindle matrix" normally push kinetochore microtubules poleward and continue to do so after the microtubules are severed from the pole. In this study we distinguish between these interpretations by treating cells with taxol. Taxol eliminates microtubule dynamics, alters spindle microtubule arrangements, and inhibits dynein motor activity in vivo. If the dynein interpretation is correct, taxol should interfere with chromosome movements after kinetochore microtubules are severed because it alters the arrangements of spindle microtubules and because it blocks dynein activity. If the "spindle matrix" interpretation is correct, on the other hand, taxol should not interfere with the accelerated movements. Our results support the spindle matrix interpretation: anaphase chromosomes in taxol-treated crane-fly spermatocytes accelerated after their kinetochore microtubules were severed.
Collapse
Affiliation(s)
- Arthur Forer
- Biology Department, York University, North York, ON, Canada
| | | | - Michael W Berns
- Beckman Laser Institute and Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States.,Department of Bioengineering and Institute for Engineering in Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
3
|
Abstract
The spindle matrix has been proposed to facilitate mitotic spindle assembly. In this issue, Huang et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201706103) show that the spindle matrix protein BuGZ is sufficient to form micron-scale compartments that recruit and activate Aurora A, a critical kinase for spindle assembly.
Collapse
Affiliation(s)
- Jeffrey B Woodruff
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX .,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
4
|
Li S, Koe CT, Tay ST, Tan ALK, Zhang S, Zhang Y, Tan P, Sung WK, Wang H. An intrinsic mechanism controls reactivation of neural stem cells by spindle matrix proteins. Nat Commun 2017; 8:122. [PMID: 28744001 PMCID: PMC5526931 DOI: 10.1038/s41467-017-00172-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 06/08/2017] [Indexed: 11/09/2022] Open
Abstract
The switch between quiescence and proliferation is central for neurogenesis and its alteration is linked to neurodevelopmental disorders such as microcephaly. However, intrinsic mechanisms that reactivate Drosophila larval neural stem cells (NSCs) to exit from quiescence are not well established. Here we show that the spindle matrix complex containing Chromator (Chro) functions as a key intrinsic regulator of NSC reactivation downstream of extrinsic insulin/insulin-like growth factor signalling. Chro also prevents NSCs from re-entering quiescence at later stages. NSC-specific in vivo profiling has identified many downstream targets of Chro, including a temporal transcription factor Grainy head (Grh) and a neural stem cell quiescence-inducing factor Prospero (Pros). We show that spindle matrix proteins promote the expression of Grh and repress that of Pros in NSCs to govern their reactivation. Our data demonstrate that nuclear Chro critically regulates gene expression in NSCs at the transition from quiescence to proliferation. The spindle matrix proteins, including Chro, are known to regulate mitotic spindle assembly in the cytoplasm. Here the authors show that in Drosophila larval brain, Chro promotes neural stem cell (NSC) reactivation and prevents activated NSCs from entering quiescence, and that Chro carries out such a role by regulating the expression of key transcription factors in the nucleus.
Collapse
Affiliation(s)
- Song Li
- Neuroscience & Behavioural Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Chwee Tat Koe
- Neuroscience & Behavioural Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Su Ting Tay
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Angie Lay Keng Tan
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Shenli Zhang
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Yingjie Zhang
- Neuroscience & Behavioural Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Patrick Tan
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Cellular and Molecular Research, National Cancer Centre, Singapore, 169610, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, 119074, Singapore.,Genome Institute of Singapore, 60 Biopolis Street, Genome 02-01, Singapore, 138672, Singapore
| | - Wing-Kin Sung
- Genome Institute of Singapore, 60 Biopolis Street, Genome 02-01, Singapore, 138672, Singapore.,Department of Computer Science, National University of Singapore, Singapore, 117417, Singapore
| | - Hongyan Wang
- Neuroscience & Behavioural Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore. .,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
5
|
Deng H, Kerppola TK. Visualization of the Genomic Loci That Are Bound by Specific Multiprotein Complexes by Bimolecular Fluorescence Complementation Analysis on Drosophila Polytene Chromosomes. Methods Enzymol 2017; 589:429-455. [PMID: 28336073 DOI: 10.1016/bs.mie.2017.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
We have developed a procedure that enables visualization of the genomic loci that are bound by complexes formed by a specific combination of chromatin-binding proteins. This procedure is based on imaging bimolecular fluorescence complementation (BiFC) complexes on Drosophila polytene chromosomes. BiFC complexes are formed by the facilitated association of two fluorescent protein fragments that are fused to proteins that interact with, or are in close proximity to, each other. The intensity of BiFC complex fluorescence at individual genomic loci is greatly enhanced by the parallel alignment of hundreds of chromatids within the polytene chromosomes. The loci that are bound by the complexes are mapped by comparing the locations of BiFC complex fluorescence with the stereotypical banding patterns of the chromosomes. We describe strategies for the design, expression, and validation of fusion proteins for the analysis of BiFC complex binding on polytene chromosomes. We detail protocols for the preparation of polytene chromosome spreads that have been optimized for the purpose of BiFC complex visualization. Finally, we provide guidance for the interpretation of results from studies of BiFC complex binding on polytene chromosomes and for comparison of the genomic loci that are bound by BiFC complexes with those that are bound by subunits of the corresponding endogenous complexes. The visualization of BiFC complex binding on polytene chromosomes provides a unique method to visualize multiprotein complex binding at specific loci, throughout the genome, in individual cells.
Collapse
Affiliation(s)
- Huai Deng
- University of Michigan, Ann Arbor, MI, United States
| | | |
Collapse
|
6
|
Sengupta S, Rath U, Yao C, Zavortink M, Wang C, Girton J, Johansen KM, Johansen J. Digitor/dASCIZ Has Multiple Roles in Drosophila Development. PLoS One 2016; 11:e0166829. [PMID: 27861562 PMCID: PMC5115829 DOI: 10.1371/journal.pone.0166829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/05/2016] [Indexed: 12/02/2022] Open
Abstract
In this study we provide evidence that the spindle matrix protein Skeletor in Drosophila interacts with the human ASCIZ (also known as ATMIN and ZNF822) ortholog, Digitor/dASCIZ. This interaction was first detected in a yeast two-hybrid screen and subsequently confirmed by pull-down assays. We also confirm a previously documented function of Digitor/dASCIZ as a regulator of Dynein light chain/Cut up expression. Using transgenic expression of a mCitrine-labeled Digitor construct, we show that Digitor/dASCIZ is a nuclear protein that is localized to interband and developmental puff chromosomal regions during interphase but redistributes to the spindle region during mitosis. Its mitotic localization and physical interaction with Skeletor suggest the possibility that Digitor/dASCIZ plays a direct role in mitotic progression as a member of the spindle matrix complex. Furthermore, we have characterized a P-element insertion that is likely to be a true null Digitor/dASCIZ allele resulting in complete pupal lethality when homozygous, indicating that Digitor/dASCIZ is an essential gene. Phenotypic analysis of the mutant provided evidence that Digitor/dASCIZ plays critical roles in regulation of metamorphosis and organogenesis as well as in the DNA damage response. In the Digitor/dASCIZ null mutant larvae there was greatly elevated levels of γH2Av, indicating accumulation of DNA double-strand breaks. Furthermore, reduced levels of Digitor/dASCIZ decreased the resistance to paraquat-induced oxidative stress resulting in increased mortality in a stress test paradigm. We show that an early developmental consequence of the absence of Digitor/dASCIZ is reduced third instar larval brain size although overall larval development appeared otherwise normal at this stage. While Digitor/dASCIZ mutant larvae initiate pupation, all mutant pupae failed to eclose and exhibited various defects in metamorphosis such as impaired differentiation, incomplete disc eversion, and faulty apoptosis. Altogether we provide evidence that Digitor/dASCIZ is a nuclear protein that performs multiple roles in Drosophila larval and pupal development.
Collapse
Affiliation(s)
- Saheli Sengupta
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Uttama Rath
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Changfu Yao
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Michael Zavortink
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Chao Wang
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Jack Girton
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Kristen M. Johansen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail: (JJ); (KMJ)
| | - Jørgen Johansen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail: (JJ); (KMJ)
| |
Collapse
|
7
|
Zabidi MA, Stark A. Regulatory Enhancer-Core-Promoter Communication via Transcription Factors and Cofactors. Trends Genet 2016; 32:801-814. [PMID: 27816209 DOI: 10.1016/j.tig.2016.10.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/08/2016] [Accepted: 10/10/2016] [Indexed: 01/20/2023]
Abstract
Gene expression is regulated by genomic enhancers that recruit transcription factors and cofactors to activate transcription from target core promoters. Over the past years, thousands of enhancers and core promoters in animal genomes have been annotated, and we have learned much about the domain structure in which regulatory genomes are organized in animals. Enhancer-core-promoter targeting occurs at several levels, including regulatory domains, DNA accessibility, and sequence-encoded core-promoter specificities that are likely mediated by different regulatory proteins. We review here current knowledge about enhancer-core-promoter targeting, regulatory communication between enhancers and core promoters, and the protein factors involved. We conclude with an outlook on open questions that we find particularly interesting and that will likely lead to additional insights in the upcoming years.
Collapse
Affiliation(s)
- Muhammad A Zabidi
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Dr. Bohr-Gasse 7, 1030 Vienna, Austria.
| |
Collapse
|
8
|
Forer A, Johansen KM, Johansen J. Movement of chromosomes with severed kinetochore microtubules. PROTOPLASMA 2015; 252:775-781. [PMID: 25576435 DOI: 10.1007/s00709-014-0752-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
Experiments dating from 1966 and thereafter showed that anaphase chromosomes continued to move poleward after their kinetochore microtubules were severed by ultraviolet microbeam irradiation. These observations were initially met with scepticism as they contradicted the prevailing view that kinetochore fibre microtubules pulled chromosomes to the pole. However, recent experiments using visible light laser microbeam irradiations have corroborated these earlier experiments as anaphase chromosomes again were shown to move poleward after their kinetochore microtubules were severed. Thus, multiple independent studies using different techniques have shown that chromosomes can indeed move poleward without direct microtubule connections to the pole, with only a kinetochore 'stub' of microtubules. An issue not yet settled is: what propels the disconnected chromosome? There are two not necessarily mutually exclusive proposals in the literature: (1) chromosome movement is propelled by the kinetochore stub interacting with non-kinetochore microtubules and (2) chromosome movement is propelled by a spindle matrix acting on the stub. In this review, we summarise the data indicating that chromosomes can move with severed kinetochore microtubules and we discuss proposed mechanisms for chromosome movement with severed kinetochore microtubules.
Collapse
Affiliation(s)
- Arthur Forer
- Biology Department, York University, North York, Ontario, M3J 1P3, Canada,
| | | | | |
Collapse
|
9
|
The spindle matrix protein, Chromator, is a novel tubulin binding protein that can interact with both microtubules and free tubulin. PLoS One 2014; 9:e103855. [PMID: 25072297 PMCID: PMC4114980 DOI: 10.1371/journal.pone.0103855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/03/2014] [Indexed: 11/19/2022] Open
Abstract
The chromodomain protein, Chromator, is localized to chromosomes during interphase; however, during cell division together with other nuclear proteins Chromator redistributes to form a macro molecular spindle matrix complex that embeds the microtubule spindle apparatus. It has been demonstrated that the CTD of Chromator is sufficient for localization to the spindle matrix and that expression of this domain alone could partially rescue Chro mutant microtubule spindle defects. Furthermore, the presence of frayed and unstable microtubule spindles during mitosis after Chromator RNAi depletion in S2 cells indicated that Chromator may interact with microtubules. In this study using a variety of biochemical assays we have tested this hypothesis and show that Chromator not only has binding activity to microtubules with a Kd of 0.23 µM but also to free tubulin. Furthermore, we have mapped the interaction with microtubules to a relatively small stretch of 139 amino acids in the carboxy-terminal region of Chromator. This sequence is likely to contain a novel microtubule binding interface since database searches did not find any sequence matches with known microtubule binding motifs.
Collapse
|
10
|
Zhimulev IF, Zykova TY, Goncharov FP, Khoroshko VA, Demakova OV, Semeshin VF, Pokholkova GV, Boldyreva LV, Demidova DS, Babenko VN, Demakov SA, Belyaeva ES. Genetic organization of interphase chromosome bands and interbands in Drosophila melanogaster. PLoS One 2014; 9:e101631. [PMID: 25072930 PMCID: PMC4114487 DOI: 10.1371/journal.pone.0101631] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/09/2014] [Indexed: 12/18/2022] Open
Abstract
Drosophila melanogaster polytene chromosomes display specific banding pattern; the underlying genetic organization of this pattern has remained elusive for many years. In the present paper, we analyze 32 cytology-mapped polytene chromosome interbands. We estimated molecular locations of these interbands, described their molecular and genetic organization and demonstrate that polytene chromosome interbands contain the 5' ends of housekeeping genes. As a rule, interbands display preferential "head-to-head" orientation of genes. They are enriched for "broad" class promoters characteristic of housekeeping genes and associate with open chromatin proteins and Origin Recognition Complex (ORC) components. In two regions, 10A and 100B, coding sequences of genes whose 5'-ends reside in interbands map to constantly loosely compacted, early-replicating, so-called "grey" bands. Comparison of expression patterns of genes mapping to late-replicating dense bands vs genes whose promoter regions map to interbands shows that the former are generally tissue-specific, whereas the latter are represented by ubiquitously active genes. Analysis of RNA-seq data (modENCODE-FlyBase) indicates that transcripts from interband-mapping genes are present in most tissues and cell lines studied, across most developmental stages and upon various treatment conditions. We developed a special algorithm to computationally process protein localization data generated by the modENCODE project and show that Drosophila genome has about 5700 sites that demonstrate all the features shared by the interbands cytologically mapped to date.
Collapse
Affiliation(s)
- Igor F. Zhimulev
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
- * E-mail:
| | - Tatyana Yu. Zykova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Fyodor P. Goncharov
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Varvara A. Khoroshko
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Olga V. Demakova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Valeriy F. Semeshin
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Galina V. Pokholkova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Lidiya V. Boldyreva
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Darya S. Demidova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Vladimir N. Babenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey A. Demakov
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Elena S. Belyaeva
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
11
|
Abstract
We review the properties and uses of cell lines in Drosophila research, emphasizing the variety of lines, the large body of genomic and transcriptional data available for many of the lines, and the variety of ways the lines have been used to provide tools for and insights into the developmental, molecular, and cell biology of Drosophila and mammals.
Collapse
Affiliation(s)
- Lucy Cherbas
- Drosophila Genomics Resource Center, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA; Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA.
| | - Lei Gong
- Drosophila Genomics Resource Center, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA.
| |
Collapse
|
12
|
Schweizer N, Weiss M, Maiato H. The dynamic spindle matrix. Curr Opin Cell Biol 2014; 28:1-7. [DOI: 10.1016/j.ceb.2014.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/09/2014] [Accepted: 01/11/2014] [Indexed: 10/25/2022]
|
13
|
Golovnin AK, Shapovalov IS, Kostyuchenko MV, Shamsutdinov MF, Georgiev PG, Melnikova LS. Chromator protein directly interacts with the common part of the Drosophila melanogaster Mod(mdg4) family proteins. DOKL BIOCHEM BIOPHYS 2014; 454:21-4. [PMID: 24633607 DOI: 10.1134/s1607672914010074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Indexed: 11/22/2022]
Affiliation(s)
- A K Golovnin
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, Moscow, 119334, Russia
| | | | | | | | | | | |
Collapse
|
14
|
Wang C, Yao C, Li Y, Cai W, Bao X, Girton J, Johansen J, Johansen KM. Evidence against a role for the JIL-1 kinase in H3S28 phosphorylation and 14-3-3 recruitment to active genes in Drosophila. PLoS One 2013; 8:e62484. [PMID: 23638096 PMCID: PMC3640051 DOI: 10.1371/journal.pone.0062484] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 03/21/2013] [Indexed: 01/19/2023] Open
Abstract
JIL-1 is the major kinase controlling phosphorylation of histone H3S10 and has been demonstrated to function to counteract heterochromatization and gene silencing. However, an alternative model has been proposed in which JIL-1 is required for transcription to occur, additionally phosphorylates H3S28, and recruits 14-3-3 to active genes. Since these findings are incompatible with our previous demonstration that there are robust levels of transcription in the complete absence of JIL-1 and that JIL-1 is not present at developmental or heat shock-induced polytene chromosome puffs, we have reexamined JIL-1’s possible role in H3S28 phosphorylation and 14-3-3 recruitment. Using two different H3S28ph antibodies we show by immunocytochemistry and immunoblotting that in Drosophila the H3S28ph mark is not present at detectable levels above background on polytene chromosomes at interphase but only on chromosomes at pro-, meta-, and anaphase during cell division in S2 cells and third instar larval neuroblasts. Moreover, this mitotic H3S28ph signal is also present in a JIL-1 null mutant background at undiminished levels suggesting that JIL-1 is not the mitotic H3S28ph kinase. We also demonstrate that H3S28ph is not enriched at heat shock puffs. Using two different pan-specific 14-3-3 antibodies as well as an enhancer trap 14-3-3ε-GFP line we show that 14-3-3, while present in salivary gland nuclei, does not localize to chromosomes but only to the nuclear matrix surrounding the chromosomes. In our hands 14-3-3 is not recruited to developmental or heat shock puffs. Furthermore, using a lacO repeat tethering system to target LacI-JIL-1 to ectopic sites on polytene chromosomes we show that only H3S10ph is present and upregulated at such sites, not H3S28ph or 14-3-3. Thus, our results argue strongly against a model where JIL-1 is required for H3S28 phosphorylation and 14-3-3 recruitment at active genes.
Collapse
Affiliation(s)
- Chao Wang
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Changfu Yao
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Yeran Li
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Weili Cai
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Xiaomin Bao
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Jack Girton
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Jørgen Johansen
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail: (KMJ); (JJ)
| | - Kristen M. Johansen
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail: (KMJ); (JJ)
| |
Collapse
|
15
|
Sheykhani R, Shirodkar PV, Forer A. The role of myosin phosphorylation in anaphase chromosome movement. Eur J Cell Biol 2013; 92:175-86. [PMID: 23566798 DOI: 10.1016/j.ejcb.2013.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 01/26/2013] [Accepted: 02/22/2013] [Indexed: 11/29/2022] Open
Abstract
This work deals with the role of myosin phosphorylation in anaphase chromosome movement. Y27632 and ML7 block two different pathways for phosphorylation of the myosin regulatory light chain (MRLC). Both stopped or slowed chromosome movement when added to anaphase crane-fly spermatocytes. To confirm that the effects of the pharmacological agents were on the presumed targets, we studied cells stained with antibodies against mono- or bi-phosphorylated myosin. For all chromosomes whose movements were affected by a drug, the corresponding spindle fibres of the affected chromosomes had reduced levels of 1P- and 2P-myosin. Thus the drugs acted on the presumed target and myosin phosphorylation is involved in anaphase force production. Calyculin A, an inhibitor of MRLC dephosphorylation, reversed and accelerated the altered movements caused by Y27632 and ML-7, suggesting that another phosphorylation pathway is involved in phosphorylation of spindle myosin. Staurosporine, a more general phosphorylation inhibitor, also reduced the levels of MRLC phosphorylation and caused anaphase chromosomes to stop or slow. The effects of staurosporine on chromosome movements were not reversed by Calyculin A, confirming that another phosphorylation pathway is involved in phosphorylation of spindle myosin.
Collapse
Affiliation(s)
- Rozhan Sheykhani
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | |
Collapse
|
16
|
Interplay Between Spindle Architecture and Function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 306:83-125. [DOI: 10.1016/b978-0-12-407694-5.00003-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Yao C, Rath U, Maiato H, Sharp D, Girton J, Johansen KM, Johansen J. A nuclear-derived proteinaceous matrix embeds the microtubule spindle apparatus during mitosis. Mol Biol Cell 2012; 23:3532-41. [PMID: 22855526 PMCID: PMC3442402 DOI: 10.1091/mbc.e12-06-0429] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/12/2012] [Accepted: 07/26/2012] [Indexed: 01/03/2023] Open
Abstract
The concept of a spindle matrix has long been proposed. Whether such a structure exists, however, and what its molecular and structural composition are have remained controversial. In this study, using a live-imaging approach in Drosophila syncytial embryos, we demonstrate that nuclear proteins reorganize during mitosis to form a highly dynamic, viscous spindle matrix that embeds the microtubule spindle apparatus, stretching from pole to pole. We show that this "internal" matrix is a distinct structure from the microtubule spindle and from a lamin B-containing spindle envelope. By injection of 2000-kDa dextran, we show that the disassembling nuclear envelope does not present a diffusion barrier. Furthermore, when microtubules are depolymerized with colchicine just before metaphase the spindle matrix contracts and coalesces around the chromosomes, suggesting that microtubules act as "struts" stretching the spindle matrix. In addition, we demonstrate that the spindle matrix protein Megator requires its coiled-coil amino-terminal domain for spindle matrix localization, suggesting that specific interactions between spindle matrix molecules are necessary for them to form a complex confined to the spindle region. The demonstration of an embedding spindle matrix lays the groundwork for a more complete understanding of microtubule dynamics and of the viscoelastic properties of the spindle during cell division.
Collapse
Affiliation(s)
- Changfu Yao
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Uttama Rath
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Helder Maiato
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | - David Sharp
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Jack Girton
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Kristen M. Johansen
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Jørgen Johansen
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011
| |
Collapse
|
18
|
Abstract
The evolution of the nucleus, the defining feature of eukaryotic cells, was long shrouded in speculation and mystery. There is now strong evidence that nuclear pore complexes (NPCs) and nuclear membranes coevolved with the endomembrane system, and that the last eukaryotic common ancestor (LECA) had fully functional NPCs. Recent studies have identified many components of the nuclear envelope in living Opisthokonts, the eukaryotic supergroup that includes fungi and metazoan animals. These components include diverse chromatin-binding membrane proteins, and membrane proteins with adhesive lumenal domains that may have contributed to the evolution of nuclear membrane architecture. Further discoveries about the nucleoskeleton suggest that the evolution of nuclear structure was tightly coupled to genome partitioning during mitosis.
Collapse
Affiliation(s)
- Katherine L Wilson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
19
|
The chromodomain-containing NH(2)-terminus of Chromator interacts with histone H1 and is required for correct targeting to chromatin. Chromosoma 2011; 121:209-20. [PMID: 22203189 DOI: 10.1007/s00412-011-0355-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 11/22/2011] [Accepted: 12/09/2011] [Indexed: 01/13/2023]
Abstract
The chromodomain protein, Chromator, can be divided into two main domains, a NH(2)-terminal domain (NTD) containing the chromodomain (ChD) and a COOH-terminal domain (CTD) containing a nuclear localization signal. During interphase Chromator is localized to chromosomes; however, during cell division Chromator redistributes to form a macro molecular spindle matrix complex together with other nuclear proteins that contribute to microtubule spindle dynamics and proper chromosome segregation during mitosis. It has previously been demonstrated that the CTD is sufficient for targeting Chromator to the spindle matrix. In this study, we show that the NTD domain of Chromator is required for proper localization to chromatin during interphase and that chromosome morphology defects observed in Chromator hypomorphic mutant backgrounds can be largely rescued by expression of this domain. Furthermore, we show that the ChD domain can interact with histone H1 and that this interaction is necessary for correct chromatin targeting. Nonetheless, that localization to chromatin still occurs in the absence of the ChD indicates that Chromator possesses a second mechanism for chromatin association and we provide evidence that this association is mediated by other sequences residing in the NTD. Taken together these findings suggest that Chromator's chromatin functions are largely governed by the NH(2)-terminal domain whereas functions related to mitosis are mediated mainly by COOH-terminal sequences.
Collapse
|
20
|
Simon DN, Wilson KL. The nucleoskeleton as a genome-associated dynamic 'network of networks'. Nat Rev Mol Cell Biol 2011; 12:695-708. [PMID: 21971041 DOI: 10.1038/nrm3207] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the cytosol, actin polymers, intermediate filaments and microtubules can anchor to cell surface adhesions and interlink to form intricate networks. This cytoskeleton is anchored to the nucleus through LINC (links the nucleoskeleton and cytoskeleton) complexes that span the nuclear envelope and in turn anchor to networks of filaments in the nucleus. The metazoan nucleoskeleton includes nuclear pore-linked filaments, A-type and B-type lamin intermediate filaments, nuclear mitotic apparatus (NuMA) networks, spectrins, titin, 'unconventional' polymers of actin and at least ten different myosin and kinesin motors. These elements constitute a poorly understood 'network of networks' that dynamically reorganizes during mitosis and is responsible for genome organization and integrity.
Collapse
Affiliation(s)
- Dan N Simon
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
21
|
Johansen KM, Forer A, Yao C, Girton J, Johansen J. Do nuclear envelope and intranuclear proteins reorganize during mitosis to form an elastic, hydrogel-like spindle matrix? Chromosome Res 2011; 19:345-65. [DOI: 10.1007/s10577-011-9187-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Abstract
Eukaryotic cell division uses morphologically different forms of mitosis, referred to as open, partially open and closed mitosis, for accurate chromosome segregation and proper partitioning of other cellular components such as endomembranes and cell fate determinants. Recent studies suggest that the spindle matrix provides a conserved strategy to coordinate the segregation of genetic material and the partitioning of the rest of the cellular contents in all three forms of mitosis.
Collapse
Affiliation(s)
- Yixian Zheng
- Department of Embryology, Carnegie Institute for Science, Baltimore, Maryland 21218, USA.
| |
Collapse
|
23
|
Qi H, Yao C, Cai W, Girton J, Johansen KM, Johansen J. Asator, a tau-tubulin kinase homolog in Drosophila localizes to the mitotic spindle. Dev Dyn 2010; 238:3248-56. [PMID: 19890914 DOI: 10.1002/dvdy.22150] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have used a yeast two-hybrid interaction assay to identify Asator, a tau-tubulin kinase homolog in Drosophila that interacts directly with the spindle matrix protein Megator. Using immunocytochemical labeling by an Asator-specific mAb as well as by transgenic expression of a GFP-labeled Asator construct, we show that Asator is localized to the cytoplasm during interphase but redistributes to the spindle region during mitosis. Determination of transcript levels using qRT-PCR suggested that Asator is expressed throughout development but at relatively low levels. By P-element excision, we generated a null or strong hypomorphic Asator(exc) allele that resulted in complete adult lethality when homozygous, indicating that Asator is an essential gene. That the observed lethality was caused by impaired Asator function was further supported by the partial restoration of viability by transgenic expression of Asator-GFP in the Asator(exc) homozygous mutant background. The finding that Asator localizes to the spindle region during mitosis and directly can interact with Megator suggests that its kinase activity may be involved in regulating microtubule dynamics and microtubule spindle function.
Collapse
Affiliation(s)
- Hongying Qi
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | |
Collapse
|