1
|
NGF-Dependent and BDNF-Dependent DRG Sensory Neurons Deploy Distinct Degenerative Signaling Mechanisms. eNeuro 2021; 8:ENEURO.0277-20.2020. [PMID: 33372032 PMCID: PMC7877462 DOI: 10.1523/eneuro.0277-20.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
The nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are trophic factors required by distinct population of sensory neurons during development of the nervous system. Neurons that fail to receive appropriate trophic support are lost during this period of naturally occurring cell death. In the last decade, our understanding of the signaling pathways regulating neuronal death following NGF deprivation has advanced substantially. However, the signaling mechanisms promoting BDNF deprivation-induced sensory neuron degeneration are largely unknown. Using a well-established in vitro culture model of dorsal root ganglion (DRG), we have examined degeneration mechanisms triggered on BDNF withdrawal in sensory neurons. Our results indicate differences and similarities between the molecular signaling pathways behind NGF and BDNF deprivation-induced death. For instance, we observed that the inhibition of Trk receptors (K252a), PKC (Gö6976), protein translation (cycloheximide; CHX), or caspases (zVAD-fmk) provides protection from NGF deprivation-induced death but not from degeneration evoked by BDNF-withdrawal. Interestingly, degeneration of BDNF-dependent sensory neurons requires BAX and appears to rely on reactive oxygen species (ROS) generation rather than caspases to induce degeneration. These results highlight the complexity and divergence of mechanisms regulating developmental sensory neuron death.
Collapse
|
2
|
Ferrini F, Salio C, Boggio EM, Merighi A. Interplay of BDNF and GDNF in the Mature Spinal Somatosensory System and Its Potential Therapeutic Relevance. Curr Neuropharmacol 2021; 19:1225-1245. [PMID: 33200712 PMCID: PMC8719296 DOI: 10.2174/1570159x18666201116143422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/17/2020] [Accepted: 10/05/2020] [Indexed: 11/22/2022] Open
Abstract
The growth factors BDNF and GDNF are gaining more and more attention as modulators of synaptic transmission in the mature central nervous system (CNS). The two molecules undergo a regulated secretion in neurons and may be anterogradely transported to terminals where they can positively or negatively modulate fast synaptic transmission. There is today a wide consensus on the role of BDNF as a pro-nociceptive modulator, as the neurotrophin has an important part in the initiation and maintenance of inflammatory, chronic, and/or neuropathic pain at the peripheral and central level. At the spinal level, BDNF intervenes in the regulation of chloride equilibrium potential, decreases the excitatory synaptic drive to inhibitory neurons, with complex changes in GABAergic/glycinergic synaptic transmission, and increases excitatory transmission in the superficial dorsal horn. Differently from BDNF, the role of GDNF still remains to be unraveled in full. This review resumes the current literature on the interplay between BDNF and GDNF in the regulation of nociceptive neurotransmission in the superficial dorsal horn of the spinal cord. We will first discuss the circuitries involved in such a regulation, as well as the reciprocal interactions between the two factors in nociceptive pathways. The development of small molecules specifically targeting BDNF, GDNF and/or downstream effectors is opening new perspectives for investigating these neurotrophic factors as modulators of nociceptive transmission and chronic pain. Therefore, we will finally consider the molecules of (potential) pharmacological relevance for tackling normal and pathological pain.
Collapse
Affiliation(s)
- Francesco Ferrini
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
- Department of Psychiatry & Neuroscience, Université Laval, Québec, Canada
| | - Chiara Salio
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Elena M. Boggio
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
- National Institute of Neuroscience, Grugliasco, Italy
| |
Collapse
|
3
|
Toll-like receptor-4/p38 MAPK signaling in the dorsal horn contributes to P2X4 receptor activation and BDNF over-secretion in cancer induced bone pain. Neurosci Res 2017; 125:37-45. [DOI: 10.1016/j.neures.2017.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 12/30/2022]
|
4
|
Xia C, Shen S, Hashmi F, Qiao LY. Colitis-induced bladder afferent neuronal activation is regulated by BDNF through PLCγ pathway. Exp Neurol 2015; 285:126-135. [PMID: 26687970 DOI: 10.1016/j.expneurol.2015.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/14/2015] [Accepted: 12/10/2015] [Indexed: 02/08/2023]
Abstract
Patients with inflammatory bowel disease (IBD) or irritable bowel syndrome (IBS) often experience increased sensory responsiveness in the urinary bladder reflecting neurogenic bladder overactivity. Here we demonstrate that colitis-induced up-regulation of the phospholipase C gamma (PLCγ) pathway downstream of brain-derived neurotrophic factor (BDNF) in bladder afferent neurons in the dorsal root ganglia (DRG) plays essential roles in activating these neurons thereby leading to bladder hyperactivity. Upon induction of colitis with 2,4,6-trinitrobenzenesulfonic acid (TNBS) in rats, we found that the phosphorylation (activation) level of cAMP responsive element-binding (p-CREB) protein, a molecular switch of neuronal plasticity, was increased in specifically labeled bladder afferent neurons in the thoracolumbar and lumbosacral DRGs. In rats having reduced levels of BDNF (BDNF+/-), colitis failed to elevate CREB protein activity in bladder afferent neurons. Physiological examination also demonstrated that colitis-induced urinary frequency was not shown in BDNF+/- rats, implicating an essential role of BDNF in mediating colon-to-bladder sensory cross-sensitization. We further implemented in vivo and in vitro studies and demonstrated that BDNF-mediated colon-to-bladder sensory cross-activation involved the TrkB-PLCγ-calcium/calmodulin-dependent protein kinase II (CaMKII) cascade. In contrast, the PI3K/Akt pathway was not activated in bladder afferent neurons during colitis and was not involved in BDNF action in the DRG. Our results suggest that colon-to-bladder sensory cross-sensitization is regulated by specific signal transduction initiated by the up-regulation of BDNF in the DRG.
Collapse
Affiliation(s)
- Chunmei Xia
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Shanwei Shen
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Fiza Hashmi
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Li-Ya Qiao
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
5
|
Mu Y, Zhou H, Wu WJ, Hu LC, Chen HB. Dynamic expression of miR-206-3p during mouse skin development is independent of keratinocyte differentiation. Mol Med Rep 2015; 12:8113-20. [PMID: 26500069 DOI: 10.3892/mmr.2015.4456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 09/16/2015] [Indexed: 11/05/2022] Open
Abstract
MicroRNA-206 (miR-206), the homolog of which in mice is termed miR-206-3p, is a muscle-specific miRNA known to be important in the development of skeletal muscle, and is involved in smooth muscle innervation of the airway through the post‑transcriptional suppression of brain‑derived neurotrophic factor (Bdnf). miR‑206‑3p is also expressed at significant levels in adult and embryonic skin; however, its functional roles in adult skin and during skin development remain to be fully elucidated. In the present study, the spatiotemporal expression of miR‑206‑3p and its target‑gene, Bdnf, during mouse skin development were investigated. The expression level of miR‑206‑3p increased from 13.5 days postcoitus (dpc), peaked at 17.5 dpc and declined following birth. The observed temporal profile of the expression of miR‑206‑3p was accompanied by an inverse change in the protein expression levels of BDNF. However, the mRNA expression levels of Bdnf did not parallel those of BDNF protein. The localization of the expression of miR‑206‑3p was similar, or located near that of ubiquitin carboxyl‑terminal hydrolase L1 during skin development. An in vitro keratinocyte model demonstrated no significant differences between primary and differentiated keratinocytes in the expression levels of either miR‑206‑3p (P=0.227) or Bdnf (mRNA, P=0.118; mature BDNF, P=0.106; pro‑BDNF, P=0.905). These findings indicate a potential role for miR‑206‑3p in cutaneous innervation, which largely relies on BDNF neurotrophic support and is independent of keratinocyte differentiation. The results of the present study suggested that this novel mechanism may be targeted for developing potential therapeutic approaches.
Collapse
Affiliation(s)
- Yuan Mu
- Department of Clinical Laboratory, Nanjing Children's Hospital, Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Hong Zhou
- Department of Clinical Laboratory and Hematology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wei-Jiang Wu
- Department of Histology and Embryology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Li-Chao Hu
- Department of Clinical Laboratory and Hematology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Hong-Bing Chen
- Department of Clinical Laboratory, Nanjing Children's Hospital, Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
6
|
Abstract
UNLABELLED Extracellular signal-regulated kinases 1 and 2 (ERK1/2) are highly homologous yet distinct components of signal transduction pathways known to regulate cell survival and function. Recent evidence indicates an isoform-specific role for ERK2 in pain processing and peripheral sensitization. However, the function of ERK2 in primary sensory neurons has not been directly tested. To dissect the isoform-specific function of ERK2 in sensory neurons, we used mice with Cre-loxP-mediated deletion of ERK2 in Nav1.8(+) sensory neurons that are predominantly nociceptors. We find that ERK2, unlike ERK1, is required for peripheral sensitization and cold sensation. We also demonstrate that ERK2, but not ERK1, is required to preserve epidermal innervation in a subset of peptidergic neurons. Additionally, deletion of both ERK isoforms in Nav1.8(+) sensory neurons leads to neuron loss not observed with deletion of either isoform alone, demonstrating functional redundancy in the maintenance of sensory neuron survival. Thus, ERK1 and ERK2 exhibit both functionally distinct and redundant roles in sensory neurons. SIGNIFICANCE STATEMENT ERK1/2 signaling affects sensory neuron function and survival. However, it was not clear whether ERK isoform-specific roles exist in these processes postnatally. Previous work from our laboratory suggested either functional redundancy of ERK isoforms or a predominant role for ERK2 in pain; however, the tools to discriminate between these possibilities were not available at the time. In the present study, we use new genetic knock-out lines to demonstrate that ERK2 in sensory neurons is necessary for development of inflammatory pain and for postnatal maintenance of peptidergic epidermal innervation. Interestingly, postnatal loss of both ERK isoforms leads to a profound loss of sensory neurons. Therefore, ERK1 and ERK2 display both functionally distinct and redundant roles in sensory neurons.
Collapse
|
7
|
Schimmang T, Durán Alonso B, Zimmermann U, Knipper M. Is there a relationship between brain-derived neurotrophic factor for driving neuronal auditory circuits with onset of auditory function and the changes following cochlear injury or during aging? Neuroscience 2014; 283:26-43. [PMID: 25064058 DOI: 10.1016/j.neuroscience.2014.07.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 01/06/2023]
Abstract
Brain-derived neurotrophic factor, BDNF, is one of the most important neurotrophic factors acting in the peripheral and central nervous system. In the auditory system its function was initially defined by using constitutive knockout mouse mutants and shown to be essential for survival of neurons and afferent innervation of hair cells in the peripheral auditory system. Further examination of BDNF null mutants also revealed a more complex requirement during re-innervation processes involving the efferent system of the cochlea. Using adult mouse mutants defective in BDNF signaling, it could be shown that a tonotopical gradient of BDNF expression within cochlear neurons is required for maintenance of a specific spatial innervation pattern of outer hair cells and inner hair cells. Additionally, BDNF is required for maintenance of voltage-gated potassium channels (KV) in cochlear neurons, which may form part of a maturation step within the ascending auditory pathway with onset of hearing and might be essential for cortical acuity of sound-processing and experience-dependent plasticity. A presumptive harmful role of BDNF during acoustic trauma and consequences of a loss of cochlear BDNF during aging are discussed in the context of a partial reversion of this maturation step. We compare the potentially beneficial and harmful roles of BDNF for the mature auditory system with those BDNF functions known in other sensory circuits, such as the vestibular, visual, olfactory, or somatosensory system.
Collapse
Affiliation(s)
- T Schimmang
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, E-47003 Valladolid, Spain.
| | - B Durán Alonso
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, E-47003 Valladolid, Spain
| | - U Zimmermann
- University of Tübingen, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - M Knipper
- University of Tübingen, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| |
Collapse
|
8
|
Abstract
Neuropathic pain often fails to respond to conventional pain management procedures. here we review the aetiology of neuropathic pain as would result from peripheral neuropathy or injury. We show that inflammatory mediators released from damaged nerves and tissue are responsible for triggering ectopic activity in primary afferents and that this, in turn, provokes increased spinal cord activity and the development of ‘central sensitization’. Although evidence is mounting to support the role of interleukin-1β, prostaglandins and other cytokines in the onset of neuropathic pain, the clinical efficacy of drugs which antagonize or prevent the actions of these mediators is yet to be determined. basic science findings do, however, support the use of pre-emptive analgesia during procedures which involve nerve manipulation and the use of anti-inflammatory steroids as soon as possible following traumatic nerve injury.
Collapse
|
9
|
Devesa I, Ferrer-Montiel A. Neurotrophins, endocannabinoids and thermo-transient receptor potential: a threesome in pain signalling. Eur J Neurosci 2014; 39:353-62. [PMID: 24494676 DOI: 10.1111/ejn.12455] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/10/2013] [Accepted: 11/15/2013] [Indexed: 01/11/2023]
Abstract
Because of the social and economic costs of chronic pain, there is a growing interest in unveiling the cellular and molecular mechanisms underlying it with the aim of developing more effective medications. Pain signalling is a multicomponent process that involves the peripheral and central nervous systems. At the periphery, nociceptor sensitisation by pro-inflammatory mediators is a primary step in pain transduction. Although pain is multifactorial at cellular and molecular levels, it is widely accepted that neurotrophin (TrkA, p75NTR, Ret and GFRs), cannabinoid (CB1 and CB2), and thermo-transient receptor potential (TRPs; TRPV1, TRPA1 and TRPM8) receptors play a pivotal role. They form a threesome for which endocannabinoids appear to be a first line of defence against pain, while neurotrophins and thermoTRPs are the major generators of painful signals. However, endocannabinoids may exhibit nociceptive activity while some neurotrophins may display anti-nociception. Accordingly, a clear-cut knowledge of the modulation and context-dependent function of these signalling cascades, along with the molecular and dynamic details of their crosstalk, is critical for understanding and controlling pain transduction. Here, the recent progress in this fascinating topic, as well as the tantalizing questions that remain unanswered, will be discussed. Furthermore, we will underline the need for using a systems biology approach (referred to as systems pain) to uncover the dynamics and interplay of these intricate signalling cascades, taking into consideration the molecular complexity and cellular heterogeneity of nociceptor populations. Nonetheless, the available information confirms that pharmacological modulation of this signalling triad is a highly valuable therapeutic strategy for effectively treating pain syndromes.
Collapse
Affiliation(s)
- Isabel Devesa
- Instituto de Biología Molecular y Celular, Universitas Miguel Hernández, Av de la Universidad, 03202, Elche, Alicante, Spain
| | | |
Collapse
|
10
|
Jin XH, Wang LN, Zuo JL, Yang JP, Liu SL. P2X4 receptor in the dorsal horn partially contributes to brain-derived neurotrophic factor oversecretion and toll-like receptor-4 receptor activation associated with bone cancer pain. J Neurosci Res 2014; 92:1690-702. [PMID: 24984884 DOI: 10.1002/jnr.23443] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/05/2014] [Accepted: 05/30/2014] [Indexed: 01/23/2023]
Abstract
Previous studies have suggested that the microglial P2X7 purinoceptor is involved in the release of tumor necrosis factor-α (TNFα) following activation of toll-like receptor-4 (TLR4), which is associated with nociceptive behavior. In addition, this progress is evoked by the activation of the P2X4 purinoceptor (P2X4R). Although P2X4R is also localized within spinal microglia in the dorsal horn, little is known about its role in cancer-induced bone pain (CIBP), which is in some ways unique. With the present rat model of CIBP, we demonstrate a critical role of the microglial P2X4R in the enhanced nociceptive transmission, which is associated with TLR4 activation and secretion of brain-derived neurotrophic factor (BDNF) and TNFα in the dorsal horn. We assessed mechanical threshold and spontaneous pain of CIBP rats. Moreover, P2X4R small interfering RNA (siRNA) was administered intrathecally, and real-time PCR, Western blots, immunofluorescence histochemistry, and ELISA were used to detect the expression of P2X4R, TLR4, OX-42, phosphorylated-p38 MAPK (p-p38), BDNF, and TNFα. Compared with controls, intrathecal injection of P2X4R siRNA could prevent nociceptive behavior induced by ATP plus lipopolysaccharide and CIBP and reduce the expression of P2X4R, TLR4, p-p38, BDNF, and TNFα. In addition, the increase of BDNF protein in rat microglial cells depended on P2X4 receptor signaling, which is partially associated with TLR4 activation. The ability of microglial P2X4R to activate TLR4 in spinal cord leading to behavioral hypersensitivity and oversecretion of BDNF could provide an opportunity for the prevention and treatment of CIBP.
Collapse
Affiliation(s)
- Xiao-Hong Jin
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | | | | | | | | |
Collapse
|
11
|
Ceni C, Unsain N, Zeinieh MP, Barker PA. Neurotrophins in the regulation of cellular survival and death. Handb Exp Pharmacol 2014; 220:193-221. [PMID: 24668474 DOI: 10.1007/978-3-642-45106-5_8] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The neurotrophins play crucial roles regulating survival and apoptosis in the developing and injured nervous system. The four neurotrophins exert profound and crucial survival effects on developing peripheral neurons, and their expression and action is intimately tied to successful innervation of peripheral targets. In the central nervous system, they are dispensable for neuronal survival during development but support neuronal survival after lesion or other forms of injury. Neurotrophins also regulate apoptosis of both peripheral and central neurons, and we now recognize that there are regulatory advantages to having the same molecules regulate life and death decisions. This chapter examines the biological contexts in which these events take place and highlights the specific ligands, receptors, and signaling mechanisms that allow them to occur.
Collapse
Affiliation(s)
- Claire Ceni
- Centre for Neuronal Survival, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC, Canada, H3A 2B4
| | | | | | | |
Collapse
|
12
|
Xiang J, Yang H, Zhao T, Sun M, Xu X, Zhou XF, Li SH, Li XJ. Huntingtin-associated protein 1 regulates postnatal neurogenesis and neurotrophin receptor sorting. J Clin Invest 2013; 124:85-98. [PMID: 24355921 DOI: 10.1172/jci69206] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/15/2013] [Indexed: 01/08/2023] Open
Abstract
Defective neurogenesis in the postnatal brain can lead to many neurological and psychiatric disorders, yet the mechanism behind postnatal neurogenesis remains to be investigated. Huntingtin-associated protein 1 (HAP1) participates in intracellular trafficking in neurons, and its absence leads to postnatal death in mice. Here, we used tamoxifen-induced (TM-induced) Cre recombination to deplete HAP1 in mice at different ages. We found that HAP1 reduction selectively affects survival and growth of postnatal mice, but not adults. Neurogenesis, but not gliogenesis, was affected in HAP1-null neurospheres and mouse brain. In the absence of HAP1, postnatal hypothalamic neurons exhibited reduced receptor tropomyosin-related kinase B (TRKB) levels and decreased survival. HAP1 stabilized the association of TRKB with the intracellular sorting protein sortilin, prevented TRKB degradation, and promoted its anterograde transport. Our findings indicate that intracellular sorting of neurotrophin receptors is critical for postnatal neurogenesis and could provide a therapeutic target for defective postnatal neurogenesis.
Collapse
|
13
|
Valdes-Sánchez T, Rodriguez-Jimenez FJ, García-Cruz DM, Escobar-Ivirico JL, Alastrue-Agudo A, Erceg S, Monleón M, Moreno-Manzano V. Methacrylate-endcapped caprolactone and FM19G11 provide a proper niche for spinal cord-derived neural cells. J Tissue Eng Regen Med 2013; 9:734-9. [PMID: 23533014 DOI: 10.1002/term.1735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/14/2013] [Accepted: 01/30/2013] [Indexed: 01/30/2023]
Abstract
Spinal cord injury (SCI) is a cause of paralysis. Although some strategies have been proposed to palliate the severity of this condition, so far no effective therapies have been found to reverse it. Recently, we have shown that acute transplantation of ependymal stem/progenitor cells (epSPCs), which are spinal cord-derived neural precursors, rescue lost neurological function after SCI in rodents. However, in a chronic scenario with axon repulsive reactive scar, cell transplantation alone is not sufficient to bridge a spinal cord lesion, therefore a combinatorial approach is necessary to fill cavities in the damaged tissue with biomaterial that supports stem cells and ensures that better neural integration and survival occur. Caprolactone 2-(methacryloyloxy) ethyl ester (CLMA) is a monomer [obtained as a result of ε-caprolactone and 2-hydroxyethyl methacrylate (HEMA) ring opening/esterification reaction], which can be processed to obtain a porous non-toxic 3D scaffold that shows good biocompatibility with epSPC cultures. epSPCs adhere to the scaffolds and maintain the ability to expand the culture through the biomaterial. However, a significant reduction of cell viability of epSPCs after 6 days in vitro was detected. FM19G11, which has been shown to enhance self-renewal properties, rescues cell viability at 6 days. Moreover, addition of FM19G11 enhances the survival rates of mature neurons from the dorsal root ganglia when cultured with epSPCs on 3D CLMA scaffolds. Overall, CLMA porous scaffolds constitute a good niche to support neural cells for cell transplantation approaches that, in combination with FM19G11, offer a new framework for further trials in spinal cord regeneration.
Collapse
Affiliation(s)
- Teresa Valdes-Sánchez
- Neuronal Regeneration Laboratory, Centro de Investigación Principe Felipe (CIPF), Valencia, Spain
| | | | - Dunia M García-Cruz
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Spain
| | | | - Ana Alastrue-Agudo
- Neuronal Regeneration Laboratory, Centro de Investigación Principe Felipe (CIPF), Valencia, Spain
| | - Slaven Erceg
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Sevilla, Spain
| | - Manuel Monleón
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Spain
| | - Victoria Moreno-Manzano
- Neuronal Regeneration Laboratory, Centro de Investigación Principe Felipe (CIPF), Valencia, Spain
| |
Collapse
|
14
|
Purcell EK, Yang A, Liu L, Velkey JM, Morales MM, Duncan RK. BDNF profoundly and specifically increases KCNQ4 expression in neurons derived from embryonic stem cells. Stem Cell Res 2012; 10:29-35. [PMID: 23089626 DOI: 10.1016/j.scr.2012.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 08/15/2012] [Accepted: 08/27/2012] [Indexed: 01/10/2023] Open
Abstract
Neurons resembling the spiral ganglion neurons (SGNs) of the auditory nerve can be generated from embryonic stem cells through induced overexpression of the transcription factor Neurogenin-1 (Neurog1). While recapitulating this developmental pathway produces glutamatergic, bipolar neurons reminiscent of SGNs, these neurons are functionally immature, being characterized by a depolarized resting potential and limited excitability. We explored the effects of two neurotrophins known to be present in the inner ear, brain derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), on the electrophysiology of neurons following Neurog1 induction. Our data reveal a significant reduction in resting membrane potential (RMP) following neurotrophin exposure, with BDNF producing a more robust effect than NT-3. This effect was accompanied by a profound and specific upregulation of the KCNQ4 subtype, where a 9-fold increase was observed with quantitative PCR. The other neuronally expressed KCNQ subtypes (2, 3, and 5) exhibited upregulation which was 3-fold or less in magnitude. Quantitative immunohistochemistry confirmed the increase in KCNQ4 expression at the protein level. The present data show a novel link between BDNF and KCNQ4 expression, yielding insight into the restricted expression pattern of a channel known to play special roles in setting the resting potential of auditory cells and in the etiology of progressive high-frequency hearing loss.
Collapse
|
15
|
Chirivella L, Cano-Jaimez M, Pérez-Sánchez F, Herraez L, Carretero J, Fariñas I, Burks DJ, Kirstein M. IRS2 signalling is required for the development of a subset of sensory spinal neurons. Eur J Neurosci 2012; 35:341-52. [PMID: 22288475 DOI: 10.1111/j.1460-9568.2011.07959.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Insulin and insulin-like growth factor-I play important roles in the development and maintenance of neurons and glial cells of the nervous system. Both factors activate tyrosine kinase receptors, which signal through adapter proteins of the insulin receptor substrate (IRS) family. Although insulin and insulin-like growth factor-I receptors are expressed in dorsal root ganglia (DRG), the function of IRS-mediated signalling in these structures has not been studied. Here we address the role of IRS2-mediated signalling in murine DRG. Studies in cultured DRG neurons from different embryonic stages indicated that a subset of nerve growth factor-responsive neurons is also dependent on insulin for survival at very early time points. Consistent with this, increased apoptosis during gangliogenesis resulted in a partial loss of trkA-positive neurons in DRG of Irs2 mutant embryos. Analyses in adult Irs2(-/-) mice revealed that unmyelinated fibre afferents, which express calcitonin gene-related peptide/substance P and isolectin B4, as well as some myelinated afferents to the skin were affected by the mutation. The diminished innervation of glabrous skin in adult Irs2(-/-) mice correlated with longer paw withdrawal latencies in the hot-plate assay. Collectively, these findings indicate that IRS2 signalling is required for the proper development of spinal sensory neurons involved in the perception of pain.
Collapse
Affiliation(s)
- Laura Chirivella
- Departamento de Biología Celular and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Universidad de Valencia, Doctor Moliner 50, 46100 Burjassot, Spain
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Uutela M, Lindholm J, Louhivuori V, Wei H, Louhivuori LM, Pertovaara A, Akerman K, Castrén E, Castrén ML. Reduction of BDNF expression in Fmr1 knockout mice worsens cognitive deficits but improves hyperactivity and sensorimotor deficits. GENES BRAIN AND BEHAVIOR 2012; 11:513-23. [PMID: 22435671 DOI: 10.1111/j.1601-183x.2012.00784.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Fragile X syndrome (FXS) is a common cause of inherited intellectual disability and a well-characterized form of autism spectrum disorder. As brain-derived neurotrophic factor (BDNF) is implicated in the pathophysiology of FXS we examined the effects of reduced BDNF expression on the behavioral phenotype of an animal model of FXS, Fmr1 knockout (KO) mice, crossed with mice carrying a deletion of one copy of the Bdnf gene (Bdnf(+/-)). Fmr1 KO mice showed age-dependent alterations in hippocampal BDNF expression that declined after the age of 4 months compared to wild-type controls. Mild deficits in water maze learning in Bdnf(+/-) and Fmr1 KO mice were exaggerated and contextual fear learning significantly impaired in double transgenics. Reduced BDNF expression did not alter basal nociceptive responses or central hypersensitivity in Fmr1 KO mice. Paradoxically, the locomotor hyperactivity and deficits in sensorimotor learning and startle responses characteristic of Fmr1 KO mice were ameliorated by reducing BNDF, suggesting changes in simultaneously and in parallel working hippocampus-dependent and striatum-dependent systems. Furthermore, the obesity normally seen in Bdnf(+/-) mice was eliminated by the absence of fragile X mental retardation protein 1 (FMRP). Reduced BDNF decreased the survival of newborn cells in the ventral part of the hippocampus both in the presence and absence of FMRP. Since a short neurite phenotype characteristic of newborn cells lacking FMRP was not found in cells derived from double mutant mice, changes in neuronal maturation likely contributed to the behavioral phenotype. Our results show that the absence of FMRP modifies the diverse effects of BDNF on the FXS phenotype.
Collapse
Affiliation(s)
- M Uutela
- Institute of Biomedicine, Physiology, University of Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang LN, Yang JP, Ji FH, Zhan Y, Jin XH, Xu QN, Wang XY, Zuo JL. Brain-derived neurotrophic factor modulates N-methyl-D-aspartate receptor activation in a rat model of cancer-induced bone pain. J Neurosci Res 2012; 90:1249-60. [PMID: 22354476 DOI: 10.1002/jnr.22815] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 09/03/2011] [Accepted: 09/15/2011] [Indexed: 01/26/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) released within the spinal cord induces phosphorylation of N-methyl-D-aspartate (NMDA) receptors on the spinal cord neurons. This process is necessary for maintaining pain hypersensitivity after nerve injury. However, little is known about the role of BDNF and NMDA receptors in cancer-induced bone pain (CIBP), whose features are unique. This study demonstrates a critical role of the BDNF-modulated NMDA subunit 1 (NR1) in the induction and maintenance of behavioral hypersensitivity in a rat model of CIBP, both in the spinal cord and in the dorsal root ganglia (DRG). We selectively suppressed BDNF expression by RNA interference (RNAi) using intrathecal administration of BDNF small interfering RNA (siRNA). Then, we assessed mechanical threshold and spontaneous pain in CIBP rats. Real-time PCR, Western blotting, and fluorescent immunohistochemical staining were used to detect BDNF or NR1 both in vivo and in vitro. BDNF and phospho-NR1 were expressed under CIBP experimental conditions, with expression levels peaking at day 6 (BDNF) or 9 (NR1). Intrathecal BDNF siRNA prevented CIBP at an early stage of tumor growth (days 4-6). However, at later stages (days 10-12), intrathecal BDNF siRNA only attenuated, but did not completely block, the established CIBP. BDNF-induced NMDA receptor activation in the spinal cord or DRG leads to central sensitization and behavioral hypersensitivity. Thus, BDNF might provide a targeting opportunity for alleviating CIBP.
Collapse
Affiliation(s)
- Li-Na Wang
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Salerno KM, Jing X, Diges CM, Cornuet PK, Glorioso JC, Albers KM. Sox11 modulates brain-derived neurotrophic factor expression in an exon promoter-specific manner. J Neurosci Res 2012; 90:1011-9. [PMID: 22331573 DOI: 10.1002/jnr.23010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/23/2011] [Accepted: 11/18/2011] [Indexed: 12/23/2022]
Abstract
Sox11 is a high-mobility group (HMG)-containing transcription factor that is significantly elevated in peripheral neurons in response to nerve injury. In vitro and in vivo studies support a central role for Sox11 in adult neuron growth and survival following injury. Brain-derived neurotrophic factor (BDNF) is a pleiotropic growth factor that has effects on neuronal survival, differentiation, synaptic plasticity, and regeneration. BDNF transcription is elevated in the dorsal root ganglia (DRG) following nerve injury in parallel with Sox11, allowing for the possible regulation by Sox11. To begin to assess the possible influence of Sox11, we used reverse transcriptase PCR assays to determine the relative expression of the nine (I-IXa) noncoding exons and one coding exon (exon IX) of the BDNF gene after sciatic nerve axotomy in the mouse. Exons with upstream promoter regions containing the Sox binding motif 5'-AACAAAG-3' (I, IV, VII, and VIII) were increased at 1 or 3 days following axotomy. Exons 1 and IV showed the greatest increase, and only exon 1 remained elevated at 3 days. Luciferase assays showed that Sox11 could activate the most highly regulated exons, I and IV, and that this activation was reduced by mutation of putative Sox binding sites. Exon expression in injured DRG neurons had some overlap with Neuro2a cells that overexpress Sox11, showing elevation in exon IV and VII transcripts. These findings indicate cell type and contextual specificity of Sox11 in modulation of BDNF transcription.
Collapse
Affiliation(s)
- Kathleen M Salerno
- Department of Medicine, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
19
|
Wang T, Molliver DC, Jing X, Schwartz ES, Yang FC, Samad OA, Ma Q, Davis BM. Phenotypic switching of nonpeptidergic cutaneous sensory neurons following peripheral nerve injury. PLoS One 2011; 6:e28908. [PMID: 22216140 PMCID: PMC3244441 DOI: 10.1371/journal.pone.0028908] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 11/17/2011] [Indexed: 12/31/2022] Open
Abstract
In adult mammals, the phenotype of half of all pain-sensing (nociceptive) sensory neurons is tonically modulated by growth factors in the glial cell line-derived neurotrophic factor (GDNF) family that includes GDNF, artemin (ARTN) and neurturin (NRTN). Each family member binds a distinct GFRα family co-receptor, such that GDNF, NRTN and ARTN bind GFRα1, -α2, and -α3, respectively. Previous studies revealed transcriptional regulation of all three receptors in following axotomy, possibly in response to changes in growth factor availability. Here, we examined changes in the expression of GFRα1-3 in response to injury in vivo and in vitro. We found that after dissociation of adult sensory ganglia, up to 27% of neurons die within 4 days (d) in culture and this can be prevented by nerve growth factor (NGF), GDNF and ARTN, but not NRTN. Moreover, up-regulation of ATF3 (a marker of neuronal injury) in vitro could be prevented by NGF and ARTN, but not by GDNF or NRTN. The lack of NRTN efficacy was correlated with rapid and near-complete loss of GFRα2 immunoreactivity. By retrogradely-labeling cutaneous afferents in vivo prior to nerve cut, we demonstrated that GFRα2-positive neurons switch phenotype following injury and begin to express GFRα3 as well as the capsaicin receptor, transient receptor potential vanilloid 1(TRPV1), an important transducer of noxious stimuli. This switch was correlated with down-regulation of Runt-related transcription factor 1 (Runx1), a transcription factor that controls expression of GFRα2 and TRPV1 during development. These studies show that NRTN-responsive neurons are unique with respect to their plasticity and response to injury, and suggest that Runx1 plays an ongoing modulatory role in the adult.
Collapse
Affiliation(s)
- Ting Wang
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Derek C. Molliver
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Xiaotang Jing
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Erica S. Schwartz
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Fu-Chia Yang
- Dana-Farber Cancer Institute and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Omar Abdel Samad
- Center for Neuroscience and Regeneration Research, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Qiufu Ma
- Dana-Farber Cancer Institute and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brian M. Davis
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
20
|
Li XZ, Yan J, Huang SH, Zhao L, Wang J, Chen ZY. Identification of a key motif that determines the differential surface levels of RET and TrkB tyrosine kinase receptors and controls depolarization enhanced RET surface insertion. J Biol Chem 2011; 287:1932-45. [PMID: 22128160 DOI: 10.1074/jbc.m111.283457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RET tyrosine kinase receptor plays an important role in the development and maintenance of the nervous system. Although the ligand-induced RET signaling pathway has been well described, little is known about the regulation of RET surface expression, which is integral to the cell ability to control the response to ligand stimuli. We found that in dorsal root ganglion (DRG) neurons, which co-express RET and TrkB, the receptor surface levels of RET are significantly higher than that of TrkB. Using a sequence substitution strategy, we identified a key motif (Box1), which is necessary and sufficient for the differential RET and TrkB surface levels. Furthermore, pharmacological and mutagenesis assays revealed that protein kinase C (PKC) and high K(+) depolarization increase RET surface levels through phosphorylation of the Thr(675) residue in the Box1 motif. Finally, we found that the phosphorylation status of the Thr(675) residue influences RET mediated response to GDNF stimulation. In all, these findings provide a novel mechanism for the modulation of RET surface expression.
Collapse
Affiliation(s)
- Xue-Zhi Li
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | | | | | | | | | | |
Collapse
|
21
|
Wang LN, Yang JP, Zhan Y, Ji FH, Wang XY, Zuo JL, Xu QN. Minocycline-induced reduction of brain-derived neurotrophic factor expression in relation to cancer-induced bone pain in rats. J Neurosci Res 2011; 90:672-81. [DOI: 10.1002/jnr.22788] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/06/2011] [Accepted: 08/16/2011] [Indexed: 12/16/2022]
|
22
|
Reed-Geaghan EG, Maricich SM. Peripheral somatosensation: a touch of genetics. Curr Opin Genet Dev 2011; 21:240-8. [PMID: 21277195 DOI: 10.1016/j.gde.2010.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 12/21/2010] [Indexed: 11/26/2022]
Abstract
The somatosensory system processes information that organisms 'feel': joint position, muscle stretch, pain, pressure, temperature, and touch. The system is composed of a diverse array of peripheral nerve endings specialized to detect these sensory modalities. Several recent discoveries have shed light on the genetic pathways that control specification and differentiation of these neurons, how they accurately innervate their central and peripheral targets, and the molecules that enable them to detect mechanical stimuli. Here, we review the cadre of genes that control these processes, focusing on mechanosensitive neurons and support cells of the skin that mediate different aspects of the sense of touch.
Collapse
Affiliation(s)
- Erin G Reed-Geaghan
- Department of Pediatrics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | | |
Collapse
|
23
|
Brain-derived neurotrophic factor mediates non-cell-autonomous regulation of sensory neuron position and identity. J Neurosci 2010; 30:14513-21. [PMID: 20980609 DOI: 10.1523/jneurosci.4025-10.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
During development, neurons migrate considerable distances to reside in locations that enable their individual functional roles. Whereas migration mechanisms have been extensively studied, much less is known about how neurons remain in their ideal locations. We sought to identify factors that maintain the position of postmigratory dorsal root ganglion neurons, neural crest derivatives for which migration and final position play an important developmental role. We found that an early developing population of sensory neurons maintains the position of later born dorsal root ganglia neurons in an activity-dependent manner. Further, inhibiting or increasing the function of brain-derived neurotrophic factor induces or prevents, respectively, migration of dorsal root ganglia neurons out of the ganglion to locations where they acquire a new identity. Overall, the results demonstrate that neurotrophins mediate non-cell-autonomous maintenance of position and thereby the identity of differentiated neurons.
Collapse
|
24
|
Henriques A, Pitzer C, Schneider A. Neurotrophic growth factors for the treatment of amyotrophic lateral sclerosis: where do we stand? Front Neurosci 2010; 4:32. [PMID: 20592948 PMCID: PMC2902233 DOI: 10.3389/fnins.2010.00032] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Accepted: 05/07/2010] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that results in progressive loss of motoneurons, motor weakness and death within 3–5 years after disease onset. Therapeutic options remain limited despite substantial number of approaches that have been tested clinically. Many neurotrophic growth factors are known to promote the survival of neurons and foster regeneration in the central nervous system. Various neurotrophic factors have been investigated pre-clinically and clinically for the treatment of ALS. Although pre-clinical data appeared promising, no neurotrophic factors succeeded yet in a clinical phase III trial. In this review we discuss the rationale behind those factors, possible reasons for clinical failures, and argue for a renewal of hope in this powerful class of drugs for the treatment of ALS.
Collapse
|
25
|
García-Cosamalón J, del Valle ME, Calavia MG, García-Suárez O, López-Muñiz A, Otero J, Vega JA. Intervertebral disc, sensory nerves and neurotrophins: who is who in discogenic pain? J Anat 2010; 217:1-15. [PMID: 20456524 DOI: 10.1111/j.1469-7580.2010.01227.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The normal intervertebral disc (IVD) is a poorly innervated organ supplied only by sensory (mainly nociceptive) and postganglionic sympathetic (vasomotor efferents) nerve fibers. Interestingly, upon degeneration, the IVD becomes densely innervated even in regions that in normal conditions lack innervation. This increased innervation has been associated with pain of IVD origin. The mechanisms responsible for nerve growth and hyperinnervation of pathological IVDs have not been fully elucidated. Among the molecules that are presumably involved in this process are some members of the family of neurotrophins (NTs), which are known to have both neurotrophic and neurotropic properties and regulate the density and distribution of nerve fibers in peripheral tissues. NTs and their receptors are expressed in healthy IVDs but much higher levels have been observed in pathological IVDs, thus suggesting a correlation between levels of expression of NTs and density of innervation in IVDs. In addition, NTs also play a role in inflammatory responses and pain transmission by increasing the expression of pain-related peptides and modulating synapses of nociceptive neurons at the spinal cord. This article reviews current knowledge about the innervation of IVDs, NTs and NT receptors, expression of NTs and their receptors in IVDs as well as in the sensory neurons innervating the IVDs, the proinflammatory role of NTs, NTs as nociception regulators, and the potential network of discogenic pain involving NTs.
Collapse
|