1
|
Laranjeira AC, Berger S, Kohlbrenner T, Greter NR, Hajnal A. Nutritional vitamin B12 regulates RAS/MAPK-mediated cell fate decisions through one-carbon metabolism. Nat Commun 2024; 15:8178. [PMID: 39289374 PMCID: PMC11408588 DOI: 10.1038/s41467-024-52556-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/12/2024] [Indexed: 09/19/2024] Open
Abstract
Vitamin B12 is an essential nutritional co-factor for the folate and methionine cycles, which together constitute one-carbon metabolism. Here, we show that dietary uptake of vitamin B12 modulates cell fate decisions controlled by the conserved RAS/MAPK signaling pathway in C. elegans. A bacterial diet rich in vitamin B12 increases vulval induction, germ cell apoptosis and oocyte differentiation. These effects are mediated by different one-carbon metabolites in a tissue-specific manner. Vitamin B12 enhances via the choline/phosphatidylcholine metabolism vulval induction by down-regulating fat biosynthesis genes and increasing H3K4 tri-methylation, which results in increased expression of RAS/MAPK target genes. Furthermore, the nucleoside metabolism and H3K4 tri-methylation positively regulate germ cell apoptosis and oocyte production. Using mammalian cells carrying different activated KRAS and BRAF alleles, we show that the effects of methionine on RAS/MAPK-regulated phenotype are conserved in mammals. Our findings suggest that the vitamin B12-dependent one-carbon metabolism is a limiting factor for diverse RAS/MAPK-induced cellular responses.
Collapse
Affiliation(s)
| | - Simon Berger
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Tea Kohlbrenner
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Nadja R Greter
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Alex Hajnal
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Caron M, Gely L, Garvis S, Adrait A, Couté Y, Palladino F, Fabrizio P. Loss of SET1/COMPASS methyltransferase activity reduces lifespan and fertility in Caenorhabditis elegans. Life Sci Alliance 2021; 5:5/3/e202101140. [PMID: 34893559 PMCID: PMC8675910 DOI: 10.26508/lsa.202101140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 01/06/2023] Open
Abstract
Changes in histone post-translational modifications are associated with aging through poorly defined mechanisms. Histone 3 lysine 4 (H3K4) methylation at promoters is deposited by SET1 family methyltransferases acting within conserved multiprotein complexes known as COMPASS. Previous work yielded conflicting results about the requirement for H3K4 methylation during aging. Here, we reassessed the role of SET1/COMPASS-dependent H3K4 methylation in Caenorhabditis elegans lifespan and fertility by generating set-2(syb2085) mutant animals that express a catalytically inactive form of SET-2, the C. elegans SET1 homolog. We show that set-2(syb2085) animals retain the ability to form COMPASS, but have a marked global loss of H3K4 di- and trimethylation (H3K4me2/3). Reduced H3K4 methylation was accompanied by loss of fertility, as expected; however, in contrast to earlier studies, set-2(syb2085) mutants displayed a significantly shortened, not extended, lifespan and had normal intestinal fat stores. Other commonly used set-2 mutants were also short-lived, as was a cfp-1 mutant that lacks the SET1/COMPASS chromatin-targeting component. These results challenge previously held views and establish that WT H3K4me2/3 levels are essential for normal lifespan in C. elegans.
Collapse
Affiliation(s)
- Matthieu Caron
- Laboratory of Biology and Modelling of the Cell, Ecole Normale Supérieure de Lyon, CNRS UMR5239, INSERM U1210, Université de Lyon, Lyon, France
| | - Loïc Gely
- Laboratory of Biology and Modelling of the Cell, Ecole Normale Supérieure de Lyon, CNRS UMR5239, INSERM U1210, Université de Lyon, Lyon, France
| | - Steven Garvis
- Laboratory of Biology and Modelling of the Cell, Ecole Normale Supérieure de Lyon, CNRS UMR5239, INSERM U1210, Université de Lyon, Lyon, France
| | - Annie Adrait
- University of Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, Grenoble, France
| | - Yohann Couté
- University of Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, Grenoble, France
| | - Francesca Palladino
- Laboratory of Biology and Modelling of the Cell, Ecole Normale Supérieure de Lyon, CNRS UMR5239, INSERM U1210, Université de Lyon, Lyon, France
| | - Paola Fabrizio
- Laboratory of Biology and Modelling of the Cell, Ecole Normale Supérieure de Lyon, CNRS UMR5239, INSERM U1210, Université de Lyon, Lyon, France
| |
Collapse
|
3
|
Oleson BJ, Bazopoulou D, Jakob U. Shaping longevity early in life: developmental ROS and H3K4me3 set the clock. Cell Cycle 2021; 20:2337-2347. [PMID: 34657571 PMCID: PMC8794500 DOI: 10.1080/15384101.2021.1986317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Studies in Caenorhabditis elegans have revealed that even a genetically identical population of animals exposed to the same environment displays a remarkable level of variability in individual lifespan. Stochasticity factors, occurring seemingly by chance or at random, are thought to account for a large part of this variability. Recent studies in our lab using C. elegans now revealed that naturally occurring variations in the levels of reactive oxygen species experienced early in life contribute to the observed lifespan variability, and likely serve as stochasticity factors in aging. Here, we will highlight how developmental events can positively shape lifespan and stress responses via a redox-sensitive epigenetic regulator, and discuss the outstanding questions and future directions on the complex relationship between reactive oxygen species and aging.
Collapse
Affiliation(s)
- Bryndon J. Oleson
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Daphne Bazopoulou
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, USA,CONTACT Ursula Jakob Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, USA
| |
Collapse
|
4
|
Padalino G, Chalmers IW, Brancale A, Hoffmann KF. Identification of 6-(piperazin-1-yl)-1,3,5-triazine as a chemical scaffold with broad anti-schistosomal activities. Wellcome Open Res 2020; 5:169. [PMID: 32904763 PMCID: PMC7459852 DOI: 10.12688/wellcomeopenres.16069.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Schistosomiasis, caused by infection with blood fluke schistosomes, is a neglected tropical disease of considerable importance in resource-poor communities throughout the developing world. In the absence of an immunoprophylactic vaccine and due to over-reliance on a single chemotherapy (praziquantel), schistosomiasis control is at risk should drug insensitive schistosomes develop. In this context, application of in silico virtual screening on validated schistosome targets has proven successful in the identification of novel small molecules with anti-schistosomal activity. Methods: Focusing on the Schistosoma mansoni histone methylation machinery, we herein have used RNA interference (RNAi), ELISA-mediated detection of H3K4 methylation, homology modelling and in silico virtual screening to identify a small collection of small molecules for anti-schistosomal testing. A combination of low to high-throughput whole organism assays were subsequently used to assess these compounds' activities on miracidia to sporocyst transformation, schistosomula phenotype/motility metrics and adult worm motility/oviposition readouts. Results: RNAi-mediated knockdown of smp_138030/smmll-1 (encoding a histone methyltransferase, HMT) in adult worms (~60%) reduced parasite motility and egg production. Moreover, in silico docking of compounds into Smp_138030/SmMLL-1's homology model highlighted competitive substrate pocket inhibitors, some of which demonstrated significant activity on miracidia, schistosomula and adult worm lifecycle stages together with variable effects on HepG2 cells. Particularly, the effect of compounds containing a 6-(piperazin-1-yl)-1,3,5-triazine core on adult schistosomes recapitulated the results of the smp_138030/smmll-1 RNAi screens. Conclusions: The biological data and the structure-activity relationship presented in this study define the 6-(piperazin-1-yl)-1,3,5-triazine core as a promising starting point in ongoing efforts to develop new urgently needed schistosomicides.
Collapse
Affiliation(s)
- Gilda Padalino
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK
| | - Iain W. Chalmers
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, CF10 3NB, UK
| | - Karl F. Hoffmann
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK
| |
Collapse
|
5
|
Wang S, Meyer DH, Schumacher B. H3K4me2 regulates the recovery of protein biosynthesis and homeostasis following DNA damage. Nat Struct Mol Biol 2020; 27:1165-1177. [DOI: 10.1038/s41594-020-00513-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 09/02/2020] [Indexed: 01/08/2023]
|
6
|
Herbette M, Robert V, Bailly A, Gely L, Feil R, Llères D, Palladino F. A Role for Caenorhabditis elegans COMPASS in Germline Chromatin Organization. Cells 2020; 9:cells9092049. [PMID: 32911802 PMCID: PMC7565041 DOI: 10.3390/cells9092049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023] Open
Abstract
Deposition of histone H3 lysine 4 (H3K4) methylation at promoters is catalyzed by the SET1/COMPASS complex and is associated with context-dependent effects on gene expression and local changes in chromatin organization. The role of SET1/COMPASS in shaping chromosome architecture has not been investigated. Here we used Caenorhabditis elegans to address this question through a live imaging approach and genetic analysis. Using quantitative FRET (Förster resonance energy transfer)-based fluorescence lifetime imaging microscopy (FLIM) on germ cells expressing histones eGFP-H2B and mCherry-H2B, we find that SET1/COMPASS influences meiotic chromosome organization, with marked effects on the close proximity between nucleosomes. We further show that inactivation of set-2, encoding the C. elegans SET1 homologue, or CFP-1, encoding the chromatin targeting subunit of COMPASS, enhances germline chromosome organization defects and sterility of condensin-II depleted animals. set-2 loss also aggravates germline defects resulting from conditional inactivation of topoisomerase II, another structural component of chromosomes. Expression profiling of set-2 mutant germlines revealed only minor transcriptional changes, suggesting that the observed effects are at least partly independent of transcription. Altogether, our results are consistent with a role for SET1/COMPASS in shaping meiotic chromosomes in C. elegans, together with the non-histone proteins condensin-II and topoisomerase. Given the high degree of conservation, our findings expand the range of functions attributed to COMPASS and suggest a broader role in genome organization in different species.
Collapse
Affiliation(s)
- Marion Herbette
- Laboratory of Biology and Modeling of the Cell (LBMC), CNRS, Ecole Normale Supérieure de Lyon, Université de Lyon, 69007 Lyon, France; (M.H.); (V.R.); (L.G.)
| | - Valérie Robert
- Laboratory of Biology and Modeling of the Cell (LBMC), CNRS, Ecole Normale Supérieure de Lyon, Université de Lyon, 69007 Lyon, France; (M.H.); (V.R.); (L.G.)
| | - Aymeric Bailly
- Centre de Recherche en Biologie cellulaire de Montpellier, CRBM, CNRS, University of Montpellier, 34090 Montpellier, France;
| | - Loïc Gely
- Laboratory of Biology and Modeling of the Cell (LBMC), CNRS, Ecole Normale Supérieure de Lyon, Université de Lyon, 69007 Lyon, France; (M.H.); (V.R.); (L.G.)
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, University of Montpellier, 34090 Montpellier, France; (R.F.); (D.L.)
| | - David Llères
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, University of Montpellier, 34090 Montpellier, France; (R.F.); (D.L.)
| | - Francesca Palladino
- Laboratory of Biology and Modeling of the Cell (LBMC), CNRS, Ecole Normale Supérieure de Lyon, Université de Lyon, 69007 Lyon, France; (M.H.); (V.R.); (L.G.)
- Correspondence: ; Tel.: +33-047-2728-126
| |
Collapse
|
7
|
Abay-Nørgaard S, Attianese B, Boreggio L, Salcini AE. Regulators of H3K4 methylation mutated in neurodevelopmental disorders control axon guidance in Caenorhabditis elegans. Development 2020; 147:dev.190637. [PMID: 32675280 PMCID: PMC7420840 DOI: 10.1242/dev.190637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
Abstract
Post-translational histone modifications regulate chromatin compaction and gene expression to control many aspects of development. Mutations in genes encoding regulators of H3K4 methylation are causally associated with neurodevelopmental disorders characterized by intellectual disability and deficits in motor functions. However, it remains unclear how H3K4 methylation influences nervous system development and contributes to the aetiology of disease. Here, we show that the catalytic activity of set-2, the Caenorhabditis elegans homologue of the H3K4 methyltransferase KMT2F/G (SETD1A/B) genes, controls embryonic transcription of neuronal genes and is required for establishing proper axon guidance, and for neuronal functions related to locomotion and learning. Moreover, we uncover a striking correlation between components of the H3K4 regulatory machinery mutated in neurodevelopmental disorders and the process of axon guidance in C. elegans. Thus, our study supports an epigenetic-based model for the aetiology of neurodevelopmental disorders, based on an aberrant axon guidance process originating from deregulated H3K4 methylation. Summary: Analysis of mutants lacking many known H3K4 regulators reveals the role of H3K4 methylation in C. elegans neuronal functions and suggests that aberrant axon guidance is a shared trait in neurodevelopmental diseases.
Collapse
Affiliation(s)
- Steffen Abay-Nørgaard
- BRIC, University of Copenhagen, Biotech Research and Innovation Centre, Ole Maaloes vej 5, 2200, Copenhagen, Denmark
| | - Benedetta Attianese
- BRIC, University of Copenhagen, Biotech Research and Innovation Centre, Ole Maaloes vej 5, 2200, Copenhagen, Denmark
| | - Laura Boreggio
- BRIC, University of Copenhagen, Biotech Research and Innovation Centre, Ole Maaloes vej 5, 2200, Copenhagen, Denmark
| | - Anna Elisabetta Salcini
- BRIC, University of Copenhagen, Biotech Research and Innovation Centre, Ole Maaloes vej 5, 2200, Copenhagen, Denmark
| |
Collapse
|
8
|
Padalino G, Chalmers IW, Brancale A, Hoffmann KF. Identification of 6-(piperazin-1-yl)-1,3,5-triazine as a chemical scaffold with broad anti-schistosomal activities. Wellcome Open Res 2020; 5:169. [PMID: 32904763 PMCID: PMC7459852 DOI: 10.12688/wellcomeopenres.16069.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Schistosomiasis, caused by infection with blood fluke schistosomes, is a neglected tropical disease of considerable importance in resource-poor communities throughout the developing world. In the absence of an immunoprophylactic vaccine and due to over-reliance on a single chemotherapy (praziquantel), schistosomiasis control is at risk should drug insensitive schistosomes develop. In this context, application of in silico virtual screening on validated schistosome targets has proven successful in the identification of novel small molecules with anti-schistosomal activity. Methods: Focusing on the Schistosoma mansoni histone methylation machinery, we herein have used RNA interference (RNAi), ELISA-mediated detection of H3K4 methylation, homology modelling and in silico virtual screening to identify a small collection of small molecules for anti-schistosomal testing. A combination of low to high-throughput whole organism assays were subsequently used to assess these compounds' activities on miracidia to sporocyst transformation, schistosomula phenotype/motility metrics and adult worm motility/oviposition readouts. Results: RNAi-mediated knockdown of smp_138030/smmll-1 (encoding a histone methyltransferase, HMT) in adult worms (~60%) reduced parasite motility and egg production. Moreover, in silico docking of compounds into Smp_138030/SmMLL-1's homology model highlighted competitive substrate pocket inhibitors, some of which demonstrated significant activity on miracidia, schistosomula and adult worm lifecycle stages together with variable effects on HepG2 cells. Particularly, the effect of compounds containing a 6-(piperazin-1-yl)-1,3,5-triazine core on adult schistosomes recapitulated the results of the smp_138030/smmll-1 RNAi screens. Conclusions: The biological data and the structure-activity relationship presented in this study define the 6-(piperazin-1-yl)-1,3,5-triazine core as a promising starting point in ongoing efforts to develop new urgently needed schistosomicides.
Collapse
Affiliation(s)
- Gilda Padalino
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK
| | - Iain W. Chalmers
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, CF10 3NB, UK
| | - Karl F. Hoffmann
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK
| |
Collapse
|
9
|
Beurton F, Stempor P, Caron M, Appert A, Dong Y, Chen RAJ, Cluet D, Couté Y, Herbette M, Huang N, Polveche H, Spichty M, Bedet C, Ahringer J, Palladino F. Physical and functional interaction between SET1/COMPASS complex component CFP-1 and a Sin3S HDAC complex in C. elegans. Nucleic Acids Res 2019; 47:11164-11180. [PMID: 31602465 PMCID: PMC6868398 DOI: 10.1093/nar/gkz880] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 09/13/2019] [Accepted: 10/07/2019] [Indexed: 12/23/2022] Open
Abstract
The CFP1 CXXC zinc finger protein targets the SET1/COMPASS complex to non-methylated CpG rich promoters to implement tri-methylation of histone H3 Lys4 (H3K4me3). Although H3K4me3 is widely associated with gene expression, the effects of CFP1 loss vary, suggesting additional chromatin factors contribute to context dependent effects. Using a proteomics approach, we identified CFP1 associated proteins and an unexpected direct link between Caenorhabditis elegans CFP-1 and an Rpd3/Sin3 small (SIN3S) histone deacetylase complex. Supporting a functional connection, we find that mutants of COMPASS and SIN3 complex components genetically interact and have similar phenotypic defects including misregulation of common genes. CFP-1 directly binds SIN-3 through a region including the conserved PAH1 domain and recruits SIN-3 and the HDA-1/HDAC subunit to H3K4me3 enriched promoters. Our results reveal a novel role for CFP-1 in mediating interaction between SET1/COMPASS and a Sin3S HDAC complex at promoters.
Collapse
Affiliation(s)
- Flore Beurton
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Przemyslaw Stempor
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Matthieu Caron
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Alex Appert
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Yan Dong
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Ron A-j Chen
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - David Cluet
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Yohann Couté
- Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France
| | - Marion Herbette
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Ni Huang
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Hélène Polveche
- INSERM UMR 861, I-STEM, 28, Rue Henri Desbruères, 91100 Corbeil-Essonnes, France
| | - Martin Spichty
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Cécile Bedet
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Julie Ahringer
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Francesca Palladino
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| |
Collapse
|
10
|
Transcriptomic analysis of contrasting inbred lines and F 2 segregant of Chinese cabbage provides valuable information on leaf morphology. Genes Genomics 2019; 41:811-829. [PMID: 30900192 DOI: 10.1007/s13258-019-00809-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/07/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Leaf morphology influences plant growth and productivity and is controlled by genetic and environmental cues. The various morphotypes of Brassica rapa provide an excellent resource for genetic and molecular studies of morphological traits. OBJECTIVE This study aimed to identify genes regulating leaf morphology using segregating B. rapa p F2 population. METHODS Phenotyping and transcriptomic analyses were performed on an F2 population derived from a cross between Rapid cycling B. rapa (RCBr) and B. rapa ssp. penkinensis, inbred line Kenshin. Analyses focused on four target traits: lamina (leaf) length (LL), lamina width (LW), petiole length (PL), and leaf margin (LM). RESULTS All four traits were controlled by multiple QTLs, and expression of 466 and 602 genes showed positive and negative correlation with leaf phenotypes, respectively. From this microarray analysis, large numbers of genes were putatively identified as leaf morphology-related genes. The Gene Ontology (GO) category containing the highest number of differentially expressed genes (DEGs) was "phytohormones". The sets of genes enriched in the four leaf phenotypes did not overlap, indicating that each phenotype was regulated by a different set of genes. The expression of BrAS2, BrAN3, BrCYCB1;2, BrCYCB2;1,4, BrCYCB3;1, CrCYCBD3;2, BrULT1, and BrANT seemed to be related to leaf size traits (LL and LW), whereas BrCUC1, BrCUC2, and BrCUC3 expression for LM trait. CONCLUSION An analysis integrating the results of the current study with previously published data revealed that Kenshin alleles largely determined LL and LW but LM resulted from RCBr alleles. Genes identified in this study could be used to develop molecular markers for use in Brassica breeding projects and for the dissection of gene function.
Collapse
|
11
|
Pratx L, Rancurel C, Da Rocha M, Danchin EGJ, Castagnone-Sereno P, Abad P, Perfus-Barbeoch L. Genome-wide expert annotation of the epigenetic machinery of the plant-parasitic nematodes Meloidogyne spp., with a focus on the asexually reproducing species. BMC Genomics 2018; 19:321. [PMID: 29724186 PMCID: PMC5934874 DOI: 10.1186/s12864-018-4686-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 04/16/2018] [Indexed: 01/10/2023] Open
Abstract
Background The renewed interest in epigenetics has led to the understanding that both the environment and individual lifestyle can directly interact with the epigenome to influence its dynamics. Epigenetic phenomena are mediated by DNA methylation, stable chromatin modifications and non-coding RNA-associated gene silencing involving specific proteins called epigenetic factors. Multiple organisms, ranging from plants to yeast and mammals, have been used as model systems to study epigenetics. The interactions between parasites and their hosts are models of choice to study these mechanisms because the selective pressures are strong and the evolution is fast. The asexually reproducing root-knot nematodes (RKN) offer different advantages to study the processes and mechanisms involved in epigenetic regulation. RKN genomes sequencing and annotation have identified numerous genes, however, which of those are involved in the adaption to an environment and potentially relevant to the evolution of plant-parasitism is yet to be discovered. Results Here, we used a functional comparative annotation strategy combining orthology data, mining of curated genomics as well as protein domain databases and phylogenetic reconstructions. Overall, we show that (i) neither RKN, nor the model nematode Caenorhabditis elegans possess any DNA methyltransferases (DNMT) (ii) RKN do not possess the complete machinery for DNA methylation on the 6th position of adenine (6mA) (iii) histone (de)acetylation and (de)methylation pathways are conserved between C. elegans and RKN, and the corresponding genes are amplified in asexually reproducing RKN (iv) some specific non-coding RNA families found in plant-parasitic nematodes are dissimilar from those in C. elegans. In the asexually reproducing RKN Meloidogyne incognita, expression data from various developmental stages supported the putative role of these proteins in epigenetic regulations. Conclusions Our results refine previous predictions on the epigenetic machinery of model species and constitute the most comprehensive description of epigenetic factors relevant to the plant-parasitic lifestyle and/or asexual mode of reproduction of RKN. Providing an atlas of epigenetic factors in RKN is an informative resource that will enable researchers to explore their potential role in adaptation of these parasites to their environment. Electronic supplementary material The online version of this article (10.1186/s12864-018-4686-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Loris Pratx
- Université Côte d'Azur, INRA, ISA, Sophia Antipolis, France.,Institut Sophia Agrobiotech, 400, route des chappes, BP 167 - 06903, Sophia Antipolis Cedex, France
| | - Corinne Rancurel
- Université Côte d'Azur, INRA, ISA, Sophia Antipolis, France.,Institut Sophia Agrobiotech, 400, route des chappes, BP 167 - 06903, Sophia Antipolis Cedex, France
| | - Martine Da Rocha
- Université Côte d'Azur, INRA, ISA, Sophia Antipolis, France.,Institut Sophia Agrobiotech, 400, route des chappes, BP 167 - 06903, Sophia Antipolis Cedex, France
| | - Etienne G J Danchin
- Université Côte d'Azur, INRA, ISA, Sophia Antipolis, France.,Institut Sophia Agrobiotech, 400, route des chappes, BP 167 - 06903, Sophia Antipolis Cedex, France
| | - Philippe Castagnone-Sereno
- Université Côte d'Azur, INRA, ISA, Sophia Antipolis, France.,Institut Sophia Agrobiotech, 400, route des chappes, BP 167 - 06903, Sophia Antipolis Cedex, France
| | - Pierre Abad
- Université Côte d'Azur, INRA, ISA, Sophia Antipolis, France.,Institut Sophia Agrobiotech, 400, route des chappes, BP 167 - 06903, Sophia Antipolis Cedex, France
| | - Laetitia Perfus-Barbeoch
- Université Côte d'Azur, INRA, ISA, Sophia Antipolis, France. .,Institut Sophia Agrobiotech, 400, route des chappes, BP 167 - 06903, Sophia Antipolis Cedex, France.
| |
Collapse
|
12
|
Nkembo AT, Ntantie E, Salako OO, Amissah F, Poku RA, Latinwo LM, Lamango NS. The antiangiogenic effects of polyisoprenylated cysteinyl amide inhibitors in HUVEC, chick embryo and zebrafish is dependent on the polyisoprenyl moiety. Oncotarget 2018; 7:68194-68205. [PMID: 27626690 PMCID: PMC5356549 DOI: 10.18632/oncotarget.11908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/31/2016] [Indexed: 11/25/2022] Open
Abstract
Angiogenesis is essential for solid tumor growth, therapeutic resistance and metastasis, the latest accounting for 90% of cancer deaths. Although angiogenesis is essential for the malignant transformations in solid tumors and therefore is an attractive target, few drugs are available that block tumor angiogenesis. The focus has been to block signaling by receptor tyrosine kinases (RTKs), such as for vascular endothelial growth factor (VEGF), whose activation abrogate apoptosis and promote angiogenesis. The polyisoprenylated cysteinyl amide inhibitors (PCAIs) were designed to modulate aberrant polyisoprenylated small G-proteins such as mutant Ras whose constitutive activation promotes RTKs signaling. Since polyisoprenylation is essential for protein-protein interactions and functions of G-proteins, we hypothesized that the PCAIs would disrupt the monomeric G-protein signaling thereby effectively inhibiting angiogenesis. In this study we determined the effects of PCAIs on human umbilical vein endothelial cells (HUVEC) tube formation, cell viability, cell migration and invasion as well as in vivo using the chick chorioallantoic membrane (CAM) and zebrafish models. At sub- to low micromolar concentrations, the PCAIs inhibit the native and VEGF-stimulated cell migration and invasion as well as tube formation and angiogenesis in CAM and zebrafish embryos. The concentrations that block the angiogenic processes were lower than those that induce cell death. Since angiogenesis is essential for tumor growth but otherwise limited to wound healing, feeding fat cells and uterine wall repair in adults, it is conceivable that these compounds can be developed into safer therapeutics for cancers and retinal neovascularization that leads to loss of vision.
Collapse
Affiliation(s)
- Augustine T Nkembo
- Division of Basic Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University Tallahassee, Tallahassee, Florida 32307, USA.,Department of Biological Sciences, College of Science and Technology, Florida A&M University Tallahassee, Tallahassee, Florida 32307, USA
| | - Elizabeth Ntantie
- Division of Basic Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University Tallahassee, Tallahassee, Florida 32307, USA
| | - Olufisayo O Salako
- Division of Basic Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University Tallahassee, Tallahassee, Florida 32307, USA
| | - Felix Amissah
- Division of Basic Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University Tallahassee, Tallahassee, Florida 32307, USA
| | - Rosemary A Poku
- Division of Basic Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University Tallahassee, Tallahassee, Florida 32307, USA
| | - Lekan M Latinwo
- Department of Biological Sciences, College of Science and Technology, Florida A&M University Tallahassee, Tallahassee, Florida 32307, USA
| | - Nazarius S Lamango
- Division of Basic Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University Tallahassee, Tallahassee, Florida 32307, USA
| |
Collapse
|
13
|
Gauthier K, Rocheleau CE. C. elegans Vulva Induction: An In Vivo Model to Study Epidermal Growth Factor Receptor Signaling and Trafficking. Methods Mol Biol 2017; 1652:43-61. [PMID: 28791633 DOI: 10.1007/978-1-4939-7219-7_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epidermal growth factor receptor (EGFR)-mediated activation of the canonical Ras/MAPK signaling cascade is responsible for cell proliferation and cell growth. This signaling pathway is frequently overactivated in epithelial cancers; therefore, studying regulation of this pathway is crucial not only for our fundamental understanding of cell biology but also for our ability to treat EGFR-related disease. Genetic model organisms such as Caenorhabditis elegans, a hermaphroditic nematode, played a vital role in identifying components of the EGFR/Ras/MAPK pathway and delineating their order of function, and continues to play a role in identifying novel regulators of the pathway. Polarized activation of LET-23, the C. elegans homolog of EGFR, is responsible for induction of the vulval cell fate; perturbations in this signaling pathway produce either a vulvaless or multivulva phenotype. The translucent cuticle of the nematode facilitates in vivo visualization of the receptor, revealing that localization of LET-23 EGFR is tightly regulated and linked to its function. In this chapter, we review the methods used to harness vulva development as a tool for studying EGFR signaling and trafficking in C. elegans.
Collapse
Affiliation(s)
- Kimberley Gauthier
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
- Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Christian E Rocheleau
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada.
- Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada.
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, Canada.
| |
Collapse
|
14
|
BLIMP-1/BLMP-1 and Metastasis-Associated Protein Regulate Stress Resistant Development in Caenorhabditis elegans. Genetics 2016; 203:1721-32. [PMID: 27334271 DOI: 10.1534/genetics.116.190793] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/14/2016] [Indexed: 01/17/2023] Open
Abstract
Environmental stress triggers multilevel adaptations in animal development that depend in part on epigenetic mechanisms. In response to harsh environmental conditions and pheromone signals, Caenorhabditis elegans larvae become the highly stress-resistant and long-lived dauer. Despite extensive studies of dauer formation pathways that integrate specific environmental cues and appear to depend on transcriptional reprogramming, the role of epigenetic regulation in dauer development has remained unclear. Here we report that BLMP-1, the BLIMP-1 ortholog, regulates dauer formation via epigenetic pathways; in the absence of TGF-β signaling (in daf-7 mutants), lack of blmp-1 caused lethality. Using this phenotype, we screened 283 epigenetic factors, and identified lin-40, a homolog of metastasis-associate protein 1 (MTA1) as an interactor of BLMP-1 The interaction between LIN-40 and BLMP-1 is conserved because mammalian homologs for both MTA1 and BLIMP-1 could also interact. From microarray studies, we identified several downstream target genes of blmp-1: npr-3, nhr-23, ptr-4, and sams-1 Among them S-adenosyl methionine synthase (SAMS-1), is the key enzyme for production of SAM used in histone methylation. Indeed, blmp-1 is necessary for controlling histone methylation level in daf-7 mutants, suggesting BLMP-1 regulates the expression of SAMS-1, which in turn may regulate histone methylation and dauer formation. Our results reveal a new interaction between BLMP-1/BLIMP-1 and LIN-40/MTA1, as well as potential epigenetic downstream pathways, whereby these proteins cooperate to regulate stress-specific developmental adaptations.
Collapse
|
15
|
Liu H, Ding L, Shen Y, Zhong F, Wang Q, Xu X. RBQ3 participates in multiple myeloma cell proliferation, adhesion and chemoresistance. Int J Biol Macromol 2016; 91:115-22. [PMID: 27189701 DOI: 10.1016/j.ijbiomac.2016.05.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/13/2016] [Accepted: 05/13/2016] [Indexed: 12/21/2022]
Abstract
Cell adhesion mediated drug resistance (CAM-DR) is a major factor that impedes the effect of chemotherapy in multiple myeloma (MM). RBQ3, which is a RB-binding protein, played a crucial role in cell cycle process. Here, we reported that RBQ3 expression was increased gradually during the proliferation process of myeloma cells. Knocking down of RBQ3 resulted in cell cycle arrest in G1 phase and increased myeloma cells adherent to fibronectin or bone marrow stromal cells (BMSCs). Furthermore, silencing of RBQ3 reduced sensitivity to chemotherapeutic drugs in myeloma cell lines adherent to BMSCs and reduced two apoptotic marker proteins cleaved caspase-3 and cleaved PARP expression. Besides, we also found that RBQ3 participated in MAPK/ERK signal transduction pathway. In summary, these results may shed new insights into the role of RBQ3 in the development of multiple myeloma.
Collapse
Affiliation(s)
- Hong Liu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Linlin Ding
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Yaodong Shen
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Fei Zhong
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Qiru Wang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Xiaohong Xu
- Department of Oncology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu Province, People's Republic of China.
| |
Collapse
|
16
|
Hoe M, Nicholas HR. Evidence of a MOF histone acetyltransferase-containing NSL complex in C. elegans. WORM 2014; 3:e982967. [PMID: 26430553 PMCID: PMC4588387 DOI: 10.4161/21624054.2014.982967] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/28/2014] [Indexed: 11/19/2022]
Abstract
Regulation of chromatin is a key process in the developmental control of gene expression. Many multi-subunit protein complexes have been found to regulate chromatin through the modification of histone residues. One such complex is the MOF histone acetyltransferase-containing NSL complex. While the composition of the human and Drosophila NSL complexes has been determined and the functions of these complexes investigated, the existence of an equivalent complex in nematodes such as Caenorhabditis elegans has not yet been explored. Here we summarise evidence, from our own work and that of others, that homologues of NSL complex components are found in C. elegans. We review data suggesting that nematode proteins SUMV-1 and SUMV-2 are homologous to NSL2 and NSL3, respectively, and that SUMV-1 and SUMV-2 may form a complex with MYS-2, the worm homolog of MOF. We propose that these interactions suggest the existence of a nematode NSL-like complex and discuss the roles of this putative NSL complex in worms as well as exploring the possibility of crosstalk between NSL and COMPASS complexes via components that are common to both. We present the groundwork from which a full characterization of a nematode NSL complex may begin.
Collapse
Affiliation(s)
- Matthew Hoe
- School of Molecular Bioscience; University of Sydney ; Sydney, Australia
| | - Hannah R Nicholas
- School of Molecular Bioscience; University of Sydney ; Sydney, Australia
| |
Collapse
|
17
|
Krüger AV, Jelier R, Dzyubachyk O, Zimmerman T, Meijering E, Lehner B. Comprehensive single cell-resolution analysis of the role of chromatin regulators in early C. elegans embryogenesis. Dev Biol 2014; 398:153-62. [PMID: 25446273 DOI: 10.1016/j.ydbio.2014.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/12/2014] [Accepted: 10/17/2014] [Indexed: 11/19/2022]
Abstract
Chromatin regulators are widely expressed proteins with diverse roles in gene expression, nuclear organization, cell cycle regulation, pluripotency, physiology and development, and are frequently mutated in human diseases such as cancer. Their inhibition often results in pleiotropic effects that are difficult to study using conventional approaches. We have developed a semi-automated nuclear tracking algorithm to quantify the divisions, movements and positions of all nuclei during the early development of Caenorhabditis elegans and have used it to systematically study the effects of inhibiting chromatin regulators. The resulting high dimensional datasets revealed that inhibition of multiple regulators, including F55A3.3 (encoding FACT subunit SUPT16H), lin-53 (RBBP4/7), rba-1 (RBBP4/7), set-16 (MLL2/3), hda-1 (HDAC1/2), swsn-7 (ARID2), and let-526 (ARID1A/1B) affected cell cycle progression and caused chromosome segregation defects. In contrast, inhibition of cir-1 (CIR1) accelerated cell division timing in specific cells of the AB lineage. The inhibition of RNA polymerase II also accelerated these division timings, suggesting that normal gene expression is required to delay cell cycle progression in multiple lineages in the early embryo. Quantitative analyses of the dataset suggested the existence of at least two functionally distinct SWI/SNF chromatin remodeling complex activities in the early embryo, and identified a redundant requirement for the egl-27 and lin-40 MTA orthologs in the development of endoderm and mesoderm lineages. Moreover, our dataset also revealed a characteristic rearrangement of chromatin to the nuclear periphery upon the inhibition of multiple general regulators of gene expression. Our systematic, comprehensive and quantitative datasets illustrate the power of single cell-resolution quantitative tracking and high dimensional phenotyping to investigate gene function. Furthermore, the results provide an overview of the functions of essential chromatin regulators during the early development of an animal.
Collapse
Affiliation(s)
- Angela V Krüger
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; University Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Rob Jelier
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; University Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Oleh Dzyubachyk
- Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Timo Zimmerman
- Advanced Light Microscopy Facility, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Erik Meijering
- Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ben Lehner
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; University Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
18
|
Zuryn S, Ahier A, Portoso M, White ER, Morin MC, Margueron R, Jarriault S. Transdifferentiation. Sequential histone-modifying activities determine the robustness of transdifferentiation. Science 2014; 345:826-9. [PMID: 25124442 DOI: 10.1126/science.1255885] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natural interconversions between distinct somatic cell types have been reported in species as diverse as jellyfish and mice. The efficiency and reproducibility of some reprogramming events represent unexploited avenues in which to probe mechanisms that ensure robust cell conversion. We report that a conserved H3K27me3/me2 demethylase, JMJD-3.1, and the H3K4 methyltransferase Set1 complex cooperate to ensure invariant transdifferentiation (Td) of postmitotic Caenorhabditis elegans hindgut cells into motor neurons. At single-cell resolution, robust conversion requires stepwise histone-modifying activities, functionally partitioned into discrete phases of Td through nuclear degradation of JMJD-3.1 and phase-specific interactions with transcription factors that have conserved roles in cell plasticity and terminal fate selection. Our results draw parallels between epigenetic mechanisms underlying robust Td in nature and efficient cell reprogramming in vitro.
Collapse
Affiliation(s)
- Steven Zuryn
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104/INSERM U964, Université de Strasbourg, 67404 Illkirch CU Strasbourg, France
| | - Arnaud Ahier
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104/INSERM U964, Université de Strasbourg, 67404 Illkirch CU Strasbourg, France
| | - Manuela Portoso
- Institut Curie, INSERM U934, CNRS UMR3215, 26, Rue d'Ulm, 75005 Paris, France
| | - Esther Redhouse White
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104/INSERM U964, Université de Strasbourg, 67404 Illkirch CU Strasbourg, France
| | - Marie-Charlotte Morin
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104/INSERM U964, Université de Strasbourg, 67404 Illkirch CU Strasbourg, France
| | - Raphaël Margueron
- Institut Curie, INSERM U934, CNRS UMR3215, 26, Rue d'Ulm, 75005 Paris, France
| | - Sophie Jarriault
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104/INSERM U964, Université de Strasbourg, 67404 Illkirch CU Strasbourg, France.
| |
Collapse
|
19
|
SPR-5 and MET-2 function cooperatively to reestablish an epigenetic ground state during passage through the germ line. Proc Natl Acad Sci U S A 2014; 111:9509-14. [PMID: 24979765 DOI: 10.1073/pnas.1321843111] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The Caenorhabditis elegans LSD1 H3K4me2 demethylase SPR-5 reprograms epigenetic transcriptional memory during passage through the germ line. Here we show that mutants in the H3K9me2 methyltransferase, met-2, result in transgenerational epigenetic effects that parallel spr-5 mutants. In addition, we find that spr-5;met-2 double mutants have a synergistic effect on sterility, H3K4me2, and spermatogenesis expression. These results implicate MET-2 as a second histone-modifying enzyme in germ-line reprogramming and suggest a model in which SPR-5 and MET-2 function cooperatively to reestablish an epigenetic ground state required for the continued immortality of the C. elegans germ line. Without SPR-5 and MET-2, we find that the ability to express spermatogenesis genes is transgenerationally passed on to the somatic cells of the subsequent generation. This indicates that H3K4me2 may act in the maintenance of cell fate. Finally, we demonstrate that reducing H3K4me2 causes a large increase in H3K9me2 added by the SPR-5;MET-2 reprogramming mechanism. This finding suggests a novel histone code interaction in which the input chromatin environment dictates the output chromatin state. Taken together, our results provide evidence for a broader reprogramming mechanism in which multiple enzymes coordinately regulate histone information during passage through the germ line.
Collapse
|
20
|
SUMV-1 antagonizes the activity of synthetic multivulva genes in Caenorhabditis elegans. Dev Biol 2014; 392:266-82. [PMID: 24882710 DOI: 10.1016/j.ydbio.2014.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 11/22/2022]
Abstract
Chromatin regulators contribute to the developmental control of gene expression. In the nematode Caenorhabditis elegans, the roles of chromatin regulation in development have been explored in several contexts, including vulval differentiation. The synthetic multivulva (synMuv) genes are regulators of vulval development in C. elegans and the proteins encoded by these genes include components of several histone modification and chromatin remodelling complexes. By inhibiting ectopic expression of the epidermal growth factor (LIN-3) in the nematode hypodermis, the synMuv genes prevent inappropriate vulval induction. In a forward genetic screen for modifiers of the expression of a hypodermal reporter gene, we identified a mutation that results in increased expression of the reporter. This mutation also suppresses ectopic vulval induction in synMuv mutants and we have consequently named the affected gene suppressor of synthetic multivulva-1 (sumv-1). We show that SUMV-1 is required in the hypodermis for the synMuv phenotype and that loss of sumv-1 function suppresses ectopic expression of lin-3 in synMuv mutant animals. In yeast two-hybrid assays SUMV-1 physically interacts with SUMV-2, and reduction of sumv-2 function also suppresses the synMuv phenotype. We identified similarities between SUMV-1 and SUMV-2 and mammalian proteins KAT8 NSL2 and KAT8 NSL3, respectively, which are components of the KAT8/MOF histone acetyltransferase complex. Reduction of function of mys-2, which encodes the enzymatic component of the KAT8/MOF complex, also suppresses the synMuv phenotype, and MYS-2 physically interacts with SUMV-2 in yeast two-hybrid assays. Together these observations suggest that SUMV-1 and SUMV-2 may function together with MYS-2 in a nematode KAT8/MOF-like complex to antagonise the activity of the synMuv genes.
Collapse
|
21
|
Shibata Y, Nishiwaki K. Maintenance of cell fates through acetylated histone and the histone variant H2A.z in C. elegans. WORM 2014; 3:e29048. [PMID: 25254151 DOI: 10.4161/worm.29048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/17/2014] [Accepted: 04/28/2014] [Indexed: 01/04/2023]
Abstract
Maintenance of cell fates is essential for the development and homeostasis of multicellular organisms and involves the preservation of the expression status of selector genes that control many target genes. Epigenetic marks have pivotal roles in the maintenance of gene expression status, as occurs with methylation on lysine 27 of histone H3 (H3K27me) for Hox gene regulation. In contrast, because the levels of histone acetylation decrease during the mitotic phase, acetylated histone has not been believed to contribute to the maintenance of cell fates. Because members of the bromodomain and extra terminal (BET) family bind to acetylated histones localized on mitotic chromosomes, it is possible that they may regulate the transcriptional status of genes throughout the cell cycle. In this commentary, we discuss the recent analyses of C. elegans BET family protein BET-1, which contributes to the maintenance of cell fates through the histone H2A variant HTZ-1/H2A.z. This mechanism represses transcription of selector genes in the genomic region where lysine 27 of histone H3 (H3K27) is demethylated by histone demethylase UTX-1. We discuss the possibility that BET-1 and HTZ-1 maintain the poised state of RNA polymerase II in the cell such that it is ready to respond to differentiation signals.
Collapse
Affiliation(s)
- Yukimasa Shibata
- Department of Bioscience; Kwansei Gakuin University; Sanda, Hyogo, Japan
| | - Kiyoji Nishiwaki
- Department of Bioscience; Kwansei Gakuin University; Sanda, Hyogo, Japan
| |
Collapse
|
22
|
WDR5, ASH2L, and RBBP5 control the efficiency of FOS transcript processing. Cell Mol Biol Lett 2014; 19:215-32. [PMID: 24715476 PMCID: PMC6275726 DOI: 10.2478/s11658-014-0190-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 03/31/2014] [Indexed: 01/03/2023] Open
Abstract
H3K4 trimethylation is strongly associated with active transcription. The deposition of this mark is catalyzed by SET-domain methyltransferases, which consist of a subcomplex containing WDR5, ASH2L, and RBBP5 (the WAR subcomplex); a catalytic SET-domain protein; and additional complexspecific subunits. The ERK MAPK pathway also plays an important role in gene regulation via phosphorylation of transcription factors, co-regulators, or histone modifier complexes. However, the potential interactions between these two pathways remain largely unexplored. We investigated their potential interplay in terms of the regulation of the immediate early gene (IEG) regulatory network. We found that depletion of components of the WAR subcomplex led to increased levels of unspliced transcripts of IEGs that did not necessarily reflect changes in their mature transcripts. This occurs in a manner independent from changes in the H3K4me3 levels at the promoter region. We focused on FOS and found that the depletion of WAR subcomplex components affected the efficiency of FOS transcript processing. Our findings show a new aspect of WAR subcomplex function in coordinating active transcription with efficient pre-mRNA processing.
Collapse
|
23
|
Kelly WG. Transgenerational epigenetics in the germline cycle of Caenorhabditis elegans. Epigenetics Chromatin 2014; 7:6. [PMID: 24678826 PMCID: PMC3973826 DOI: 10.1186/1756-8935-7-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 03/18/2014] [Indexed: 12/11/2022] Open
Abstract
Epigenetic mechanisms create variably stable changes in gene expression through the establishment of heritable states of chromatin architecture. While many epigenetic phenomena are, by definition, heritably passed through cell division during animal and plant development, evidence suggests that 'epigenetic states' may also be inherited across multiple generations. Work in the nematode Caenorhabditis elegans has uncovered a number of mechanisms that participate in regulating the transgenerational passage of epigenetic states. These mechanisms include some that establish and maintain heritable epigenetic information in the form of histone modifications, as well as those that filter the epigenetic information that is stably transmitted. The information appears to influence and help guide or regulate gene activity and repression in subsequent generations. Genome surveillance mechanisms guided by small RNAs appear to be involved in identifying and directing heritable repression of genomic elements, and thus may participate in filtering information that is inappropriate for stable transmission. This review will attempt to summarize recent findings that illustrate this simple nematode to be a truly elegant resource for defining emerging biological paradigms.As the cell lineage that links generations, the germline is the carrier of both genetic and epigenetic information. Like genetic information, information in the epigenome can heritably affect gene regulation and phenotype; yet unlike genetic information, the epigenome of the germ lineage is highly modified within each generation. Despite such alterations, some epigenetic information is highly stable across generations, leading to transgenerationally stable phenotypes that are unlinked to genetic changes. Studies in the nematode C. elegans have uncovered mechanisms that contribute to transgenerational repression as well as to the expression of genes that rely on histone modifying machinery and/or non-coding RNA-based mechanisms. These studies indicate that epigenetic mechanisms operating within the germ cell cycle of this organism filter and maintain an epigenetic memory that is required for germ cell function and can also influence gene expression in somatic lineages.
Collapse
Affiliation(s)
- William G Kelly
- Biology Department, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
24
|
Shibata Y, Sawa H, Nishiwaki K. HTZ-1/H2A.z and MYS-1/MYST HAT act redundantly to maintain cell fates in somatic gonadal cells through repression of ceh-22 in C. elegans. Development 2014; 141:209-18. [PMID: 24346701 DOI: 10.1242/dev.090746] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The stable maintenance of acquired cell fates is important during development and for maintaining tissue homeostasis. Although histone modification is one of the major strategies used by cells to maintain their fates, the mechanisms by which histone variants maintain cell fates are not well understood. In C. elegans, the acetylated-histone-H4 (AcH4)-binding protein BET-1 acts downstream of the MYST family histone acetyltransferases MYS-1 and MYS-2 to establish and maintain cell fates in multiple cell lineages. Here we show that, in the bet-1 pathway, the histone H2A variant HTZ-1/H2A.z and MYS-1 are required for the maintenance of cell fates in a redundant manner. BET-1 controlled the subnuclear localization of HTZ-1. HTZ-1 and MYS-1 maintained the fates of the somatic gonadal cells (SGCs) through the repression of a target, ceh-22/Nkx2.5, which induced the formation of the leader cells of the gonad. H3K27 demethylase, UTX-1, had an antagonistic effect relative to HTZ-1 in the regulation of ceh-22. Nuclear spot assay revealed that HTZ-1 localized to the ceh-22 locus in SGCs in an utx-1-dependent manner. We propose that HTZ-1 and MYS-1 repress ceh-22 when UTX-1 removes its silencing mark, H3K27 methylation on the ceh-22 locus, thereby maintaining the fates of SGCs.
Collapse
Affiliation(s)
- Yukimasa Shibata
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | | | | |
Collapse
|
25
|
An RNAi-based dimorphic genetic screen identified the double bromodomain protein BET-1 as a sumo-dependent attenuator of RAS-mediated signalling. PLoS One 2013; 8:e83659. [PMID: 24349540 PMCID: PMC3862036 DOI: 10.1371/journal.pone.0083659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/13/2013] [Indexed: 12/30/2022] Open
Abstract
Attenuation of RAS/RAF/MAPK signalling is essential to prevent hyperactivation of this oncogenic pathway. In C. elegans, the sumoylation pathway and a combination of histone tail modifications regulate gene expression to attenuate the LET-60 (RAS) signalling pathway. We hypothesised that a number of chromatin regulators are likely to depend on sumoylation to attenuate the pathway. To reveal these, we designed an RNAi-based dimorphic genetic screen that selects candidates based on their ability to act as enhancers of a sumo mutant phenotype, such interactions would suggest that the candidates may be physically associated with sumoylation. We found 16 enhancers, one of which BET-1, is a conserved double bromodomain containing protein. We further characterised BET-1 and showed that it can physically associate with SMO-1 and UBC-9, and that it can be sumoylated in vitro within the second bromodomain at lysine 252. Previous work has shown that BET-1 can bind acetyl-lysines on histone tails to influence gene expression. In conclusion, our screening approach has identified BET-1 as a Sumo-dependent attenuator of LET-60-mediated signalling and our characterisation suggests that BET-1 can be sumoylated.
Collapse
|
26
|
Fisher K, Gee F, Wang S, Xue F, Knapp S, Philpott M, Wells C, Rodriguez M, Snoek LB, Kammenga J, Poulin GB. Maintenance of muscle myosin levels in adult C. elegans requires both the double bromodomain protein BET-1 and sumoylation. Biol Open 2013; 2:1354-63. [PMID: 24285704 PMCID: PMC3863420 DOI: 10.1242/bio.20136007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Attenuation of RAS-mediated signalling is a conserved process essential to control cell proliferation, differentiation, and apoptosis. Cooperative interactions between histone modifications such as acetylation, methylation and sumoylation are crucial for proper attenuation in C. elegans, implying that the proteins recognising these histone modifications could also play an important role in attenuation of RAS-mediated signalling. We sought to systematically identify these proteins and found BET-1. BET-1 is a conserved double bromodomain protein that recognises acetyl-lysines on histone tails and maintains the stable fate of various lineages. Unexpectedly, adults lacking both BET-1 and SUMO-1 are depleted of muscle myosin, an essential component of myofibrils. We also show that this muscle myosin depletion does not occur in all animals at a specific time, but rather that the penetrance of the phenotype increases with age. To gain mechanistic insights into this process, we sought to delay the occurrence of the muscle myosin depletion phenotype and found that it requires caspase activity and MEK-dependent signalling. We also performed transcription profiling on these mutants and found an up-regulation of the FGF receptor, egl-15, a tyrosine kinase receptor acting upstream of MEK. Consistent with a MEK requirement, we could delay the muscle phenotype by systemic or hypodermal knock down of egl-15. Thus, this work uncovered a caspase- and MEK-dependent mechanism that acts specifically on ageing adults to maintain the appropriate net level of muscle myosin.
Collapse
Affiliation(s)
- Kate Fisher
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
The Drosophila COMPASS-like Cmi-Trr coactivator complex regulates dpp/BMP signaling in pattern formation. Dev Biol 2013; 380:185-98. [DOI: 10.1016/j.ydbio.2013.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/01/2013] [Accepted: 05/13/2013] [Indexed: 01/01/2023]
|
28
|
Reinke V, Krause M, Okkema P. Transcriptional regulation of gene expression in C. elegans. ACTA ACUST UNITED AC 2013:1-34. [PMID: 23801596 DOI: 10.1895/wormbook.1.45.2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Protein coding gene sequences are converted to mRNA by the highly regulated process of transcription. The precise temporal and spatial control of transcription for many genes is an essential part of development in metazoans. Thus, understanding the molecular mechanisms underlying transcriptional control is essential to understanding cell fate determination during embryogenesis, post-embryonic development, many environmental interactions, and disease-related processes. Studies of transcriptional regulation in C. elegans exploit its genomic simplicity and physical characteristics to define regulatory events with single-cell and minute-time-scale resolution. When combined with the genetics of the system, C. elegans offers a unique and powerful vantage point from which to study how chromatin-associated proteins and their modifications interact with transcription factors and their binding sites to yield precise control of gene expression through transcriptional regulation.
Collapse
Affiliation(s)
- Valerie Reinke
- Department of Genetics, Yale University, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
29
|
Vandamme J, Salcini AE. Catalytic-independent roles of UTX-1 in C. elegans development. WORM 2013; 2:e22188. [PMID: 24058866 PMCID: PMC3704440 DOI: 10.4161/worm.22188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 09/11/2012] [Indexed: 01/01/2023]
Abstract
We recently analyzed the functional roles of UTX-1 during development. utx-1 is an essential gene required for the correct embryonic and post-embryonic development of C. elegans, and it displays an H3K27me3 demethylase activity. Rescue experiments demonstrated that the enzymatic activity of UTX-1 is not relevant for its role in development. The phenotypes associated with loss of UTX-1 might, instead, be a result of compromised functions of an UTX-1-containing complex. Here we discuss the possible mechanisms by which UTX-1 contributes to normal development.
Collapse
Affiliation(s)
- Julien Vandamme
- Biotech Research and Innovation Centre (BRIC); University of Copenhagen; Copenhagen, Denmark
| | | |
Collapse
|
30
|
Yang SH, Sharrocks AD, Whitmarsh AJ. MAP kinase signalling cascades and transcriptional regulation. Gene 2012; 513:1-13. [PMID: 23123731 DOI: 10.1016/j.gene.2012.10.033] [Citation(s) in RCA: 313] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/08/2012] [Accepted: 10/18/2012] [Indexed: 02/06/2023]
Abstract
The MAP kinase (MAPK) signalling pathways play fundamental roles in a wide range of cellular processes and are often deregulated in disease states. One major mode of action for these pathways is in controlling gene expression, in particular through regulating transcription. In this review, we discuss recent significant advances in this area. In particular we focus on the mechanisms by which MAPKs are targeted to the nucleus and chromatin, and once there, how they impact on chromatin structure and subsequent gene regulation. We also discuss how systems biology approaches have contributed to our understanding of MAPK signaling networks, and also how the MAPK pathways intersect with other regulatory pathways in the nucleus. Finally, we summarise progress in studying the physiological functions of key MAPK transcriptional targets.
Collapse
Affiliation(s)
- Shen-Hsi Yang
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | |
Collapse
|
31
|
Chauhan C, Zraly CB, Parilla M, Diaz MO, Dingwall AK. Histone recognition and nuclear receptor co-activator functions of Drosophila cara mitad, a homolog of the N-terminal portion of mammalian MLL2 and MLL3. Development 2012; 139:1997-2008. [PMID: 22569554 DOI: 10.1242/dev.076687] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
MLL2 and MLL3 histone lysine methyltransferases are conserved components of COMPASS-like co-activator complexes. In vertebrates, the paralogous MLL2 and MLL3 contain multiple domains required for epigenetic reading and writing of the histone code involved in hormone-stimulated gene programming, including receptor-binding motifs, SET methyltransferase, HMG and PHD domains. The genes encoding MLL2 and MLL3 arose from a common ancestor. Phylogenetic analyses reveal that the ancestral gene underwent a fission event in some Brachycera dipterans, including Drosophila species, creating two independent genes corresponding to the N- and C-terminal portions. In Drosophila, the C-terminal SET domain is encoded by trithorax-related (trr), which is required for hormone-dependent gene activation. We identified the cara mitad (cmi) gene, which encodes the previously undiscovered N-terminal region consisting of PHD and HMG domains and receptor-binding motifs. The cmi gene is essential and its functions are dosage sensitive. CMI associates with TRR, as well as the EcR-USP receptor, and is required for hormone-dependent transcription. Unexpectedly, although the CMI and MLL2 PHDf3 domains could bind histone H3, neither showed preference for trimethylated lysine 4. Genetic tests reveal that cmi is required for proper global trimethylation of H3K4 and that hormone-stimulated transcription requires chromatin binding by CMI, methylation of H3K4 by TRR and demethylation of H3K27 by the demethylase UTX. The evolutionary split of MLL2 into two distinct genes in Drosophila provides important insight into distinct epigenetic functions of conserved readers and writers of the histone code.
Collapse
Affiliation(s)
- Chhavi Chauhan
- Oncology Institute, Stritch School of Medicine, Loyola University of Chicago, Maywood, IL 60153, USA
| | | | | | | | | |
Collapse
|
32
|
Vandamme J, Lettier G, Sidoli S, Di Schiavi E, Nørregaard Jensen O, Salcini AE. The C. elegans H3K27 demethylase UTX-1 is essential for normal development, independent of its enzymatic activity. PLoS Genet 2012; 8:e1002647. [PMID: 22570628 PMCID: PMC3342935 DOI: 10.1371/journal.pgen.1002647] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 02/22/2012] [Indexed: 01/21/2023] Open
Abstract
Epigenetic modifications influence gene expression and provide a unique mechanism for fine-tuning cellular differentiation and development in multicellular organisms. Here we report on the biological functions of UTX-1, the Caenorhabditis elegans homologue of mammalian UTX, a histone demethylase specific for H3K27me2/3. We demonstrate that utx-1 is an essential gene that is required for correct embryonic and postembryonic development. Consistent with its homology to UTX, UTX-1 regulates global levels of H3K27me2/3 in C. elegans. Surprisingly, we found that the catalytic activity is not required for the developmental function of this protein. Biochemical analysis identified UTX-1 as a component of a complex that includes SET-16(MLL), and genetic analysis indicates that the defects associated with loss of UTX-1 are likely mediated by compromised SET-16/UTX-1 complex activity. Taken together, these results demonstrate that UTX-1 is required for many aspects of nematode development; but, unexpectedly, this function is independent of its enzymatic activity. Chromatin organization influences gene expression, and its regulation is crucial to achieve correct cellular differentiation and development in multicellular organisms. Histone demethylases are among several factors responsible for regulating chromatin dynamics. Here we report on the biological functions of UTX-1, the C. elegans homologue of the mammalian histone demethylase UTX, which specifically catalyzes the demethylation of di- and tri-methylated lysine 27 of histone H3 (H3K27me2/3). Indeed, we demonstrate that UTX-1 regulates global levels of H3K27me2/3 in C. elegans, a mark generally associated with silencing of gene expression. We also show that utx-1 is an essential gene that is required for correct embryonic and postembryonic development. Specifically, the loss of utx-1 results in developmental defects, sterility, and embryonic lethality. Surprisingly, our data show that the catalytic activity of UTX-1 is not required for its developmental functions. Our biochemical and genetic analyses indicate that loss of UTX-1 compromises the activity of the SET-16(MLL) complex, which UTX-1 is an integral part of. Taken together, these results demonstrate that UTX-1 plays an essential role in development independent of its enzymatic activity.
Collapse
Affiliation(s)
- Julien Vandamme
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Gaëlle Lettier
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Simone Sidoli
- Centre for Epigenetics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Elia Di Schiavi
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso,” Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Ole Nørregaard Jensen
- Centre for Epigenetics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Anna Elisabetta Salcini
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
33
|
Abstract
The Caenorhabditis elegans pRb ortholog, LIN-35, functions in a wide range of cellular and developmental processes. This includes a role of LIN-35 in nutrient utilization by the intestine, which it carries out redundantly with SLR-2, a zinc-finger protein. This and other redundant functions of LIN-35 were identified in genetic screens for mutations that display synthetic phenotypes in conjunction with loss of lin-35. To explore the intestinal role of LIN-35, we conducted a genome-wide RNA-interference-feeding screen for suppressors of lin-35; slr-2 early larval arrest. Of the 26 suppressors identified, 17 fall into three functional classes: (1) ribosome biogenesis genes, (2) mitochondrial prohibitins, and (3) chromatin regulators. Further characterization indicates that different categories of suppressors act through distinct molecular mechanisms. We also tested lin-35; slr-2 suppressors, as well as suppressors of the synthetic multivulval phenotype, to determine the spectrum of lin-35-synthetic phenotypes that could be suppressed following inhibition of these genes. We identified 19 genes, most of which are evolutionarily conserved, that can suppress multiple unrelated lin-35-synthetic phenotypes. Our study reveals a network of genes broadly antagonistic to LIN-35 as well as genes specific to the role of LIN-35 in intestinal and vulval development. Suppressors of multiple lin-35 phenotypes may be candidate targets for anticancer therapies. Moreover, screening for suppressors of phenotypically distinct synthetic interactions, which share a common altered gene, may prove to be a novel and effective approach for identifying genes whose activities are most directly relevant to the core functions of the shared gene.
Collapse
|
34
|
Han S, Brunet A. Histone methylation makes its mark on longevity. Trends Cell Biol 2011; 22:42-9. [PMID: 22177962 DOI: 10.1016/j.tcb.2011.11.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/07/2011] [Accepted: 11/08/2011] [Indexed: 12/12/2022]
Abstract
How long organisms live is not entirely written in their genes. Recent findings reveal that epigenetic factors that regulate histone methylation, a type of chromatin modification, can affect lifespan. The reversible nature of chromatin modifications suggests that therapeutic targeting of chromatin regulators could be used to extend lifespan and healthspan. This review describes the epigenetic regulation of lifespan in diverse model organisms, focusing on the role and mode of action of chromatin regulators that affect two epigenetic marks, trimethylated lysine 4 of histone H3 (H3K4me3) and trimethylated lysine 27 of histone H3 (H3K27me3), in longevity.
Collapse
Affiliation(s)
- Shuo Han
- Department of Genetics, 300 Pasteur Drive, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
35
|
Maures TJ, Greer EL, Hauswirth AG, Brunet A. The H3K27 demethylase UTX-1 regulates C. elegans lifespan in a germline-independent, insulin-dependent manner. Aging Cell 2011; 10:980-90. [PMID: 21834846 PMCID: PMC3215905 DOI: 10.1111/j.1474-9726.2011.00738.x] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aging is accompanied by alterations in epigenetic marks that control chromatin states, including histone acetylation and methylation. Enzymes that reversibly affect histone marks associated with active chromatin have recently been found to regulate aging in Caenorhabditis elegans. However, relatively little is known about the importance for aging of histone marks associated with repressed chromatin. Here, we use a targeted RNAi screen in C. elegans to identify four histone demethylases that significantly regulate worm lifespan, UTX-1, RBR-2, LSD-1, and T26A5.5. Interestingly, UTX-1 belongs to a conserved family of histone demethylases specific for lysine 27 of histone H3 (H3K27me3), a mark associated with repressed chromatin. Both utx-1 knockdown and heterozygous mutation of utx-1 extend lifespan and increase the global levels of the H3K27me3 mark in worms. The H3K27me3 mark significantly drops in somatic cells during the normal aging process. UTX-1 regulates lifespan independently of the presence of the germline, but in a manner that depends on the insulin-FoxO signaling pathway. These findings identify the H3K27me3 histone demethylase UTX-1 as a novel regulator of worm lifespan in somatic cells.
Collapse
Affiliation(s)
- Travis J. Maures
- Department of Genetics, Stanford University, 300 Pasteur Drive, Stanford CA 94305, USA
| | - Eric L. Greer
- Department of Genetics, Stanford University, 300 Pasteur Drive, Stanford CA 94305, USA
- Cancer Biology Graduate Program, Stanford University, Stanford CA 94305, USA
| | - Anna G. Hauswirth
- Department of Genetics, Stanford University, 300 Pasteur Drive, Stanford CA 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, 300 Pasteur Drive, Stanford CA 94305, USA
- Cancer Biology Graduate Program, Stanford University, Stanford CA 94305, USA
| |
Collapse
|
36
|
Abstract
Cellular memory is provided by two counteracting groups of chromatin proteins termed Trithorax group (TrxG) and Polycomb group (PcG) proteins. TrxG proteins activate transcription and are perhaps best known because of the involvement of the TrxG protein MLL in leukaemia. However, in terms of molecular analysis, they have lived in the shadow of their more famous counterparts, the PcG proteins. Recent advances have improved our understanding of TrxG protein function and demonstrated that the heterogeneous group of TrxG proteins is of critical importance in the epigenetic regulation of the cell cycle, senescence, DNA damage and stem cell biology.
Collapse
|
37
|
Greer EL, Maures TJ, Ucar D, Hauswirth AG, Mancini E, Lim JP, Benayoun BA, Shi Y, Brunet A. Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 2011; 479:365-71. [PMID: 22012258 PMCID: PMC3368121 DOI: 10.1038/nature10572] [Citation(s) in RCA: 493] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Accepted: 09/26/2011] [Indexed: 11/21/2022]
Abstract
Chromatin modifiers regulate lifespan in several organisms, raising the question of whether changes in chromatin states in the parental generation could be incompletely reprogrammed in the next generation and thereby affect the lifespan of descendents. The histone H3 lysine 4 trimethylation (H3K4me3) complex composed of ASH-2, WDR-5, and the histone methyltransferase SET-2 regulates C. elegans lifespan. Here we show that deficiencies in the H3K4me3 chromatin modifiers ASH-2, WDR-5, or SET-2 in the parental generation extend the lifespan of descendents up until the third generation. The transgenerational inheritance of lifespan extension by members of the ASH-2 complex is dependent on the H3K4me3 demethylase RBR-2, and requires the presence of a functioning germline in the descendents. Transgenerational inheritance of lifespan is specific for the H3K4me3 methylation complex and is associated with epigenetic changes in gene expression. Thus, manipulation of specific chromatin modifiers only in parents can induce an epigenetic memory of longevity in descendents.
Collapse
Affiliation(s)
- Eric L Greer
- Department of Genetics, Stanford University, 300 Pasteur Drive, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Petty E, Laughlin E, Csankovszki G. Regulation of DCC localization by HTZ-1/H2A.Z and DPY-30 does not correlate with H3K4 methylation levels. PLoS One 2011; 6:e25973. [PMID: 21998734 PMCID: PMC3187824 DOI: 10.1371/journal.pone.0025973] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 09/14/2011] [Indexed: 12/20/2022] Open
Abstract
Dosage compensation is a specialized form of gene regulation that balances sex-chromosome linked gene expression between the sexes. In C. elegans, dosage compensation is achieved by the activity of the dosage compensation complex (DCC). The DCC binds along both X chromosomes in hermaphrodites to down-regulate gene expression by half, limiting X-linked gene products to levels produced in XO males. Sequence motifs enriched on the X chromosome play an important role in targeting the DCC to the X. However, these motifs are not strictly X-specific and therefore other factors, such as the chromatin environment of the X chromosome, are likely to aid in DCC targeting. Previously, we found that loss of HTZ-1 results in partial disruption of dosage compensation localization to the X chromosomes. We wanted to know whether other chromatin components coordinated with HTZ-1 to regulate DCC localization. One candidate is DPY-30, a protein known to play a role in DCC localization. DPY-30 homologs in yeast, flies, and mammals are highly conserved members of histone H3 lysine 4 (H3K4) methyltransferase Set1/MLL complexes. Therefore, we investigated the hypothesis that the dosage compensation function of DPY-30 involves H3K4 methylation. We found that in dpy-30 animals the DCC fails to stably bind chromatin. Interestingly, of all the C. elegans homologs of Set1/MLL complex subunits, only DPY-30 is required for stable DCC binding to chromatin. Additionally, loss of H3K4 methylation does not enhance DCC mislocalization in htz-1 animals. We conclude that DPY-30 and HTZ-1 have unique functions in DCC localization, both of which are largely independent of H3K4 methylation.
Collapse
Affiliation(s)
- Emily Petty
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Emily Laughlin
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Györgyi Csankovszki
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
39
|
Wenzel D, Palladino F, Jedrusik-Bode M. Epigenetics in C. elegans: facts and challenges. Genesis 2011; 49:647-61. [PMID: 21538806 DOI: 10.1002/dvg.20762] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 04/14/2011] [Accepted: 04/15/2011] [Indexed: 12/31/2022]
Abstract
Epigenetics is defined as the study of heritable changes in gene expression that are not accompanied by changes in the DNA sequence. Epigenetic mechanisms include histone post-translational modifications, histone variant incorporation, non-coding RNAs, and nucleosome remodeling and exchange. In addition, the functional compartmentalization of the nucleus also contributes to epigenetic regulation of gene expression. Studies on the molecular mechanisms underlying epigenetic phenomena and their biological function have relied on various model systems, including yeast, plants, flies, and cultured mammalian cells. Here we will expose the reader to the current understanding of epigenetic regulation in the roundworm C. elegans. We will review recent models of nuclear organization and its impact on gene expression, the biological role of enzymes modifying core histones, and the function of chromatin-associated factors, with special emphasis on Polycomb (PcG) and Trithorax (Trx-G) group proteins. We will discuss how the C. elegans model has provided novel insight into mechanisms of epigenetic regulation as well as suggest directions for future research.
Collapse
Affiliation(s)
- Dirk Wenzel
- Electron Microscopy Group 3 Epigenetics in C. elegans Group, Max Planck Institute for Biophysical Chemistry, Am Faβberg 11, 37077 Göttingen, Germany
| | | | | |
Collapse
|
40
|
Caenorhabditis elegans chromatin-associated proteins SET-2 and ASH-2 are differentially required for histone H3 Lys 4 methylation in embryos and adult germ cells. Proc Natl Acad Sci U S A 2011; 108:8305-10. [PMID: 21527717 DOI: 10.1073/pnas.1019290108] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Methylation of histone H3 lysine 4 (H3K4me), a mark associated with gene activation, is mediated by SET1 and the related mixed lineage leukemia (MLL) histone methyltransferases (HMTs) across species. Mammals contain seven H3K4 HMTs, Set1A, Set1B, and MLL1-MLL5. The activity of SET1 and MLL proteins relies on protein-protein interactions within large multisubunit complexes that include three core components: RbBP5, Ash2L, and WDR5. It remains unclear how the composition and specificity of these complexes varies between cell types and during development. Caenorhabditis elegans contains one SET1 protein, SET-2, one MLL-like protein, SET-16, and single homologs of RbBP5, Ash2L, and WDR5. Here we show that SET-2 is responsible for the majority of bulk H3K4 methylation at all developmental stages. However, SET-2 and absent, small, or homeotic discs 2 (ASH-2) are differentially required for tri- and dimethylation of H3K4 (H3K4me3 and -me2) in embryos and adult germ cells. In embryos, whereas efficient H3K4me3 requires both SET-2 and ASH-2, H3K4me2 relies mostly on ASH-2. In adult germ cells by contrast, SET-2 serves a major role whereas ASH-2 is dispensable for H3K4me3 and most H3K4me2. Loss of SET-2 results in progressive sterility over several generations, suggesting an important function in the maintenance of a functional germ line. This study demonstrates that individual subunits of SET1-related complexes can show tissue specificity and developmental regulation and establishes C. elegans as a model to study SET1-related complexes in a multicellular organism.
Collapse
|
41
|
Wang S, Fisher K, Poulin GB. Lineage specific trimethylation of H3 on lysine 4 during C. elegans early embryogenesis. Dev Biol 2011; 355:227-38. [PMID: 21549110 DOI: 10.1016/j.ydbio.2011.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/17/2011] [Indexed: 01/13/2023]
Abstract
In many organisms early embryogenesis is characterised by a period refractory to transcription. In Caenorhabditis elegans, the one-cell embryo is transcriptionally inactive, but at around eight-cell stage transcription is activated in the somatic lineage. This model suggests that histone tail modifications associated with activation of transcription, such as di- or trimethylation of histone 3 on lysine 4 (H3K4me2/me3) should be enriched in the somatic lineage. Here, we have investigated the deposition of H3K4me3 during embryogenesis and found that it is more dynamic than anticipated. In the eight-cell stage embryo, H3K4me3 deposition is poor in the germline blastomere, as expected, but surprisingly three somatic blastomeres also remain poor in H3K4me3. All the other somatic blastomeres show robust deposition of H3K4me3. Interestingly, the three somatic blastomeres poor in H3K4me3 are descendants of the first germline blastomere, implying an activity that impedes on H3K4me3 deposition in these cells. In contrast, the deposition of H3K4me2 and H3K27me2/3 is not lineage restricted. Taken together, our data reveal that H3K4me3 deposition is highly regulated according to the cell lineage involved.
Collapse
Affiliation(s)
- Siyao Wang
- Faculty of Life Sciences, Michael Smith Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | | | | |
Collapse
|
42
|
Li T, Kelly WG. A role for Set1/MLL-related components in epigenetic regulation of the Caenorhabditis elegans germ line. PLoS Genet 2011; 7:e1001349. [PMID: 21455483 PMCID: PMC3063756 DOI: 10.1371/journal.pgen.1001349] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 02/21/2011] [Indexed: 01/11/2023] Open
Abstract
The methylation of lysine 4 of Histone H3 (H3K4me) is an important component of epigenetic regulation. H3K4 methylation is a consequence of transcriptional activity, but also has been shown to contribute to “epigenetic memory”; i.e., it can provide a heritable landmark of previous transcriptional activity that may help promote or maintain such activity in subsequent cell descendants or lineages. A number of multi-protein complexes that control the addition of H3K4me have been described in several organisms. These Set1/MLL or COMPASS complexes often share a common subset of conserved proteins, with other components potentially contributing to tissue-specific or developmental regulation of the methyltransferase activity. Here we show that the normal maintenance of H3K4 di- and tri-methylation in the germ line of Caenorhabditis elegans is dependent on homologs of the Set1/MLL complex components WDR-5.1 and RBBP-5. Different methylation states that are each dependent on wdr-5.1 and rbbp-5 require different methyltransferases. In addition, different subsets of conserved Set1/MLL-like complex components appear to be required for H3K4 methylation in germ cells and somatic lineages at different developmental stages. In adult germ cells, mutations in wdr-5.1 or rbbp-5 dramatically affect both germ line stem cell (GSC) population size and proper germ cell development. RNAi knockdown of RNA Polymerase II does not significantly affect the wdr-5.1–dependent maintenance of H3K4 methylation in either early embryos or adult GSCs, suggesting that the mechanism is not obligately coupled to transcription in these cells. A separate, wdr-5.1–independent mode of H3K4 methylation correlates more directly with transcription in the adult germ line and in embryos. Our results indicate that H3K4 methylation in the germline is regulated by a combination of Set1/MLL component-dependent and -independent modes of epigenetic establishment and maintenance. The germ line transmits both genetic and epigenetic information between and across generations. The germ line uniquely retains developmental totipotency, and this property of germ cells is likely embedded in epigenetic information that is retained throughout the germ line cycle, within and across each generation. The methylation of Histone H3 on Lysine 4 (H3K4me) has been identified as both a mark of active transcription and a potential component of “epigenetic memory.” We show that C. elegans homologs of components of a conserved H3K4 methyltransferase complex, the Set1/MLL complex, are important for normal H3K4 methylation in C. elegans germ cells and early embryos. Interestingly, Set1/MLL component dependent H3K4 methylation can occur independently of transcription in early embryonic germline and somatic blastomeres, and also in adult germline stem cells. A separate H3K4 methylation mechanism that operates independently of Set1/MLL component activities appears more dependent on ongoing transcription. We hypothesize that H3K4 methylation is maintained throughout the germ cell cycle by alternating transcription-dependent and -independent mechanisms that maintain this component of the germline epigenome.
Collapse
Affiliation(s)
- Tengguo Li
- Biology Department, Rollins Research Center, Emory University, Atlanta, Georgia, United States of America
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, United States of America
| | - William G. Kelly
- Biology Department, Rollins Research Center, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|