1
|
Sariyar S, Sountoulidis A, Hansen JN, Marco Salas S, Mardamshina M, Martinez Casals A, Ballllosera Navarro F, Andrusivova Z, Li X, Czarnewski P, Lundeberg J, Linnarsson S, Nilsson M, Sundström E, Samakovlis C, Lundberg E, Ayoglu B. High-parametric protein maps reveal the spatial organization in early-developing human lung. Nat Commun 2024; 15:9381. [PMID: 39477961 PMCID: PMC11525936 DOI: 10.1038/s41467-024-53752-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
The respiratory system, including the lungs, is essential for terrestrial life. While recent research has advanced our understanding of lung development, much still relies on animal models and transcriptome analyses. In this study conducted within the Human Developmental Cell Atlas (HDCA) initiative, we describe the protein-level spatiotemporal organization of the lung during the first trimester of human gestation. Using high-parametric tissue imaging with a 30-plex antibody panel, we analyzed human lung samples from 6 to 13 post-conception weeks, generating data from over 2 million cells across five developmental timepoints. We present a resource detailing spatially resolved cell type composition of the developing human lung, including proliferative states, immune cell patterns, spatial arrangement traits, and their temporal evolution. This represents an extensive single-cell resolved protein-level examination of the developing human lung and provides a valuable resource for further research into the developmental roots of human respiratory health and disease.
Collapse
Affiliation(s)
- Sanem Sariyar
- Science for Life Laboratory, Solna, Sweden
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Alexandros Sountoulidis
- Science for Life Laboratory, Solna, Sweden
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jan Niklas Hansen
- Science for Life Laboratory, Solna, Sweden
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Sergio Marco Salas
- Science for Life Laboratory, Solna, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Mariya Mardamshina
- Science for Life Laboratory, Solna, Sweden
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Anna Martinez Casals
- Science for Life Laboratory, Solna, Sweden
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Frederic Ballllosera Navarro
- Science for Life Laboratory, Solna, Sweden
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Zaneta Andrusivova
- Science for Life Laboratory, Solna, Sweden
- Department of Gene Technology, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Xiaofei Li
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Paulo Czarnewski
- Science for Life Laboratory, Solna, Sweden
- Department of Gene Technology, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Joakim Lundeberg
- Science for Life Laboratory, Solna, Sweden
- Department of Gene Technology, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Sten Linnarsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Mats Nilsson
- Science for Life Laboratory, Solna, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Erik Sundström
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Christos Samakovlis
- Science for Life Laboratory, Solna, Sweden
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Molecular Pneumology, Cardiopulmonary Institute, Justus Liebig University, Giessen, Germany
| | - Emma Lundberg
- Science for Life Laboratory, Solna, Sweden.
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
| | - Burcu Ayoglu
- Science for Life Laboratory, Solna, Sweden.
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
2
|
Yang L, Zhou F, Zheng D, Wang D, Li X, Zhao C, Huang X. FGF/FGFR signaling: From lung development to respiratory diseases. Cytokine Growth Factor Rev 2021; 62:94-104. [PMID: 34593304 DOI: 10.1016/j.cytogfr.2021.09.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/31/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023]
Abstract
The fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) signaling system regulates a variety of biological processes, including embryogenesis, angiogenesis, wound repair, tissue homeostasis, and cancer. It exerts these regulatory functions by controlling proliferation, differentiation, migration, survival, and metabolism of target cells. The morphological structure of the lung is a complex tree-like network for effective oxygen exchange, and the airway terminates in the middle and distal ends of many alveoli. FGF/FGFR signaling plays an important role in the pathophysiology of lung development and pathogenesis of various human respiratory diseases. Here, we mainly review recent advances in FGF/FGFR signaling during human lung development and respiratory diseases, including lung cancer, acute lung injury (ALI), pulmonary arterial hypertension (PAH), chronic obstructive pulmonary disease (COPD), asthma, and pulmonary fibrosis.
Collapse
Affiliation(s)
- Lehe Yang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Feng Zhou
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Dandan Zheng
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Dandan Wang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China.
| | - Chengguang Zhao
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China.
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
3
|
Lee DD, Hochstetler A, Sah E, Xu H, Lowe CW, Santiaguel S, Thornton JL, Pajakowski A, Schwarz MA. Influence of aminoacyl-tRNA synthetase complex-interacting multifunctional protein 1 on epithelial differentiation and organization during lung development. Am J Physiol Lung Cell Mol Physiol 2020; 319:L369-L379. [PMID: 32579851 DOI: 10.1152/ajplung.00518.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Proper development of the respiratory bronchiole and alveolar epithelium proceeds through coordinated cross talk between the interface of epithelium and neighboring mesenchyme. Signals that facilitate and coordinate the cross talk as the bronchial forming canalicular stage transitions to construction of air-exchanging capillary-alveoli niche in the alveolar stage are poorly understood. Expressed within this decisive region, levels of aminoacyl-tRNA synthetase complex-interacting multifunctional protein 1 (AIMP1) inversely correlate with the maturation of the lung. The present study addresses the role of AIMP1 in lung development through the generation and characterization of Aimp1-/- mutant mice. Mating of Aimp1+/- produced offspring in expected Mendelian ratios throughout embryonic development. However, newborn Aimp1-/- pups exhibited neonatal lethality with mild cyanosis. Imaging both structure and ultrastructure of Aimp1-/- lungs showed disorganized bronchial epithelium, decreased type I but not type II cell differentiation, increased distal vessels, and disruption of E-cadherin deposition in cell-cell junctions. Supporting the in vivo findings of disrupted epithelial cell-cell junctions, in vitro biochemical experiments show that a portion of AIMP1 binds to phosphoinositides, the lipid anchor of proteins that have a fundamental role in both cellular membrane and actin cytoskeleton organization; a dramatic disruption in F-actin cytoskeleton was observed in Aimp1-/- mouse embryonic fibroblasts. Such observed structural defects may lead to disrupted cell-cell boundaries. Together, these results suggest a requirement of AIMP1 in epithelial cell differentiation in proper lung development.
Collapse
Affiliation(s)
- Daniel D Lee
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, South Bend, Indiana.,Department of Pediatrics, Indiana University School of Medicine, South Bend, Indiana
| | - Alexandra Hochstetler
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, South Bend, Indiana.,Department of Pediatrics, Indiana University School of Medicine, South Bend, Indiana
| | - Eric Sah
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, South Bend, Indiana
| | - Haiming Xu
- Department of Pediatrics, University of Texas-Southwestern, Dallas, Texas
| | - Chinn-Woan Lowe
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, South Bend, Indiana.,Department of Pediatrics, Indiana University School of Medicine, South Bend, Indiana
| | - Sara Santiaguel
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, South Bend, Indiana.,Department of Pediatrics, Indiana University School of Medicine, South Bend, Indiana
| | - Janet Lea Thornton
- Department of Pediatrics, University of Texas-Southwestern, Dallas, Texas
| | - Adam Pajakowski
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, South Bend, Indiana.,Department of Pediatrics, Indiana University School of Medicine, South Bend, Indiana
| | - Margaret A Schwarz
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, South Bend, Indiana.,Department of Pediatrics, Indiana University School of Medicine, South Bend, Indiana.,Department of Biological Sciences, University of Notre Dame, South Bend, Indiana.,Department of Pediatrics, University of Texas-Southwestern, Dallas, Texas
| |
Collapse
|
4
|
Li R, Herriges JC, Chen L, Mecham RP, Sun X. FGF receptors control alveolar elastogenesis. Development 2017; 144:4563-4572. [PMID: 29122839 DOI: 10.1242/dev.149443] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 09/28/2017] [Indexed: 12/21/2022]
Abstract
Alveologenesis, the final step of lung development, is characterized by the formation of millions of alveolar septa that constitute the vast gas-exchange surface area. The genetic network driving alveologenesis is poorly understood compared with earlier steps in lung development. FGF signaling through receptors Fgfr3 and Fgfr4 is crucial for alveologenesis, but the mechanisms through which they mediate this process remain unclear. Here we show that in Fgfr3;Fgfr4 (Fgfr3;4) global mutant mice, alveolar simplification is first observed at the onset of alveologenesis at postnatal day 3. This is preceded by disorganization of elastin, indicating defects in the extracellular matrix (ECM). Although Fgfr3 and Fgfr4 are expressed in the mesenchyme and epithelium, inactivation in the mesenchyme, but not the epithelium, recapitulated the defects. Expression analysis of components of the elastogenesis machinery revealed that Mfap5 (also known as Magp2), which encodes an elastin-microfibril bridging factor, is upregulated in Fgfr3;4 mutants. Mfap5 mutation in the Fgfr3;4 mutant background partially attenuated the alveologenesis defects. These data demonstrate that, during normal lung maturation, FGF signaling restricts expression of the elastogenic machinery in the lung mesenchyme to control orderly formation of the elastin ECM, thereby driving alveolar septa formation to increase the gas-exchange surface.
Collapse
Affiliation(s)
- Rongbo Li
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.,Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John C Herriges
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lin Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair (CBMR), Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Robert P Mecham
- Department of Cell Biology & Physiology, Washington University School of Medicine, Saint Louis, MO 631103, USA
| | - Xin Sun
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA .,Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
5
|
McGowan S. Understanding the developmental pathways pulmonary fibroblasts may follow during alveolar regeneration. Cell Tissue Res 2017; 367:707-719. [PMID: 28062913 DOI: 10.1007/s00441-016-2542-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/19/2016] [Indexed: 10/20/2022]
Abstract
Although pulmonary alveolar interstitial fibroblasts are less specialized than their epithelial and endothelial neighbors, they play essential roles during development and in response to lung injury. At birth, they must adapt to the sudden mechanical changes imposed by the onset of respiration and to a higher ambient oxygen concentration. In diseases such as bronchopulmonary dysplasia and interstitial fibrosis, their adaptive responses are overwhelmed leading to compromised gas-exchange function. Thus, although fibroblasts do not directly participate in gas-exchange, they are essential for creating and maintaining an optimal environment at the alveolar epithelial-endothelial interface. This review summarizes new information and concepts about the ontogeny differentiation, and function of alveolar fibroblasts. Alveolar development will be emphasized, because the development of strategies to evoke alveolar repair and regeneration hinges on thoroughly understanding the way that resident fibroblasts populate specific locations in which extracellular matrix must be produced and remodeled. Other recent reviews have described the disruption that diseases cause to the fibroblast niche and so my objective is to illustrate how the unique developmental origins and differentiation pathways could be harnessed favorably to augment certain fibroblast subpopulations and to optimize the conditions for alveolar regeneration.
Collapse
Affiliation(s)
- Stephen McGowan
- Department of Veterans Affairs Research Service and Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA. .,Division of Pulmonary, Critical Care, and Occupational Medicine, C33B GH, Department of Internal Medicine, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| |
Collapse
|
6
|
Emechebe U, Kumar P P, Rozenberg JM, Moore B, Firment A, Mirshahi T, Moon AM. T-box3 is a ciliary protein and regulates stability of the Gli3 transcription factor to control digit number. eLife 2016; 5. [PMID: 27046536 PMCID: PMC4829432 DOI: 10.7554/elife.07897] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 03/05/2016] [Indexed: 12/17/2022] Open
Abstract
Crucial roles for T-box3 in development are evident by severe limb malformations and other birth defects caused by T-box3 mutations in humans. Mechanisms whereby T-box3 regulates limb development are poorly understood. We discovered requirements for T-box at multiple stages of mouse limb development and distinct molecular functions in different tissue compartments. Early loss of T-box3 disrupts limb initiation, causing limb defects that phenocopy Sonic Hedgehog (Shh) mutants. Later ablation of T-box3 in posterior limb mesenchyme causes digit loss. In contrast, loss of anterior T-box3 results in preaxial polydactyly, as seen with dysfunction of primary cilia or Gli3-repressor. Remarkably, T-box3 is present in primary cilia where it colocalizes with Gli3. T-box3 interacts with Kif7 and is required for normal stoichiometry and function of a Kif7/Sufu complex that regulates Gli3 stability and processing. Thus, T-box3 controls digit number upstream of Shh-dependent (posterior mesenchyme) and Shh-independent, cilium-based (anterior mesenchyme) Hedgehog pathway function. DOI:http://dx.doi.org/10.7554/eLife.07897.001 Mutations in the gene that encodes a protein called T-box3 cause serious birth defects, including deformities of the hands and feet, via poorly understood mechanisms. Several other proteins are also important for ensuring that limbs develop correctly. These include the Sonic Hedgehog protein, which controls a signaling pathway that determines whether a protein called Gli3 is converted into its “repressor” form. The hair-like structures called primary cilia that sit on the surface of animal cells also contain Gli3, and processes within these structures control the production of the Gli3-repressor. Emechebe, Kumar et al. have now studied genetically engineered mice in which the production of the T-box3 protein was stopped at different stages of mouse development. This revealed that turning off T-box3 production early in development causes many parts of the limb not to form. This type of defect appears to be the same as that seen in mice that lack the Sonic Hedgehog protein. If the production of T-box3 is turned off later in mouse development in the rear portion of the developing limb, the limb starts to develop but doesn’t develop enough rear toes. When T-box3 production is turned off in the front portion of the developing limbs, mice are born with too many front toes. This latter problem mimics the effects seen in mice that are unable to produce Gli3-repressor or that have defective primary cilia. Further investigation unexpectedly revealed that T-box3 is found in primary cilia and localizes to the same regions of the cilia as the Gli3-repressor. Furthermore, T-box3 also interacts with a protein complex that controls the stability of Gli3 and processes it into the Gli3-repressor form. In the future, it will be important to determine how T-box3 controls the stability of Gli3 and whether that process occurs in the primary cilia or in other parts of the cell where T-box3 and Gli3 coexist, such as the nucleus. This could help us understand how T-box3 and Sonic Hedgehog signaling contribute to other aspects of development and to certain types of cancer. DOI:http://dx.doi.org/10.7554/eLife.07897.002
Collapse
Affiliation(s)
- Uchenna Emechebe
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, United States
| | - Pavan Kumar P
- Weis Center for Research, Geisinger Clinic, Danville, United States
| | | | - Bryn Moore
- Weis Center for Research, Geisinger Clinic, Danville, United States
| | - Ashley Firment
- Weis Center for Research, Geisinger Clinic, Danville, United States
| | - Tooraj Mirshahi
- Weis Center for Research, Geisinger Clinic, Danville, United States
| | - Anne M Moon
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, United States.,Weis Center for Research, Geisinger Clinic, Danville, United States.,Department of Human Genetics, University of Utah, Salt Lake City, United States.,Department of Pediatrics, University of Utah, Salt Lake City, United States
| |
Collapse
|
7
|
Herriges JC, Verheyden JM, Zhang Z, Sui P, Zhang Y, Anderson MJ, Swing DA, Zhang Y, Lewandoski M, Sun X. FGF-Regulated ETV Transcription Factors Control FGF-SHH Feedback Loop in Lung Branching. Dev Cell 2016; 35:322-32. [PMID: 26555052 DOI: 10.1016/j.devcel.2015.10.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/17/2015] [Accepted: 10/09/2015] [Indexed: 01/13/2023]
Abstract
The mammalian lung forms its elaborate tree-like structure following a largely stereotypical branching sequence. While a number of genes have been identified to play essential roles in lung branching, what coordinates the choice between branch growth and new branch formation has not been elucidated. Here we show that loss of FGF-activated transcription factor genes, Etv4 and Etv5 (collectively Etv), led to prolonged branch tip growth and delayed new branch formation. Unexpectedly, this phenotype is more similar to mutants with increased rather than decreased FGF activity. Indeed, an increased Fgf10 expression is observed, and reducing Fgf10 dosage can attenuate the Etv mutant phenotype. Further evidence indicates that ETV inhibits Fgf10 via directly promoting Shh expression. SHH in turn inhibits local Fgf10 expression and redirects growth, thereby initiating new branches. Together, our findings establish ETV as a key node in the FGF-ETV-SHH inhibitory feedback loop that dictates branching periodicity.
Collapse
Affiliation(s)
- John C Herriges
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jamie M Verheyden
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zhen Zhang
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Physiological Chemistry, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Pengfei Sui
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ying Zhang
- Cancer and Developmental Biology Lab, National Cancer Institute, Frederick, MD 21702, USA
| | - Matthew J Anderson
- Cancer and Developmental Biology Lab, National Cancer Institute, Frederick, MD 21702, USA
| | - Deborah A Swing
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Yan Zhang
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mark Lewandoski
- Cancer and Developmental Biology Lab, National Cancer Institute, Frederick, MD 21702, USA
| | - Xin Sun
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
8
|
McGowan SE, McCoy DM. Fibroblast growth factor signaling in myofibroblasts differs from lipofibroblasts during alveolar septation in mice. Am J Physiol Lung Cell Mol Physiol 2015; 309:L463-74. [PMID: 26138642 DOI: 10.1152/ajplung.00013.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/26/2015] [Indexed: 02/06/2023] Open
Abstract
Pulmonary alveolar fibroblasts produce extracellular matrix in a temporally and spatially regulated pattern to yield a durable yet pliable gas-exchange surface. Proliferation ensures a sufficient complement of cells, but they must differentiate into functionally distinct subtypes: contractile myofibroblasts (MF), which generate elastin and regulate air-flow at the alveolar ducts, and, in mice and rats, lipofibroblasts (LF), which store neutral lipids. PDGF-A is required but acts in conjunction with other differentiation factors arising from adjacent epithelia or within fibroblasts. We hypothesized that FGF receptor (FGFR) expression and function vary for MF and LF and contributes to their divergent differentiation. Whereas approximately half of the FGFR3 was extracellular in MF, FGFR2 and FGFR4 were primarily intracellular. Intracellular FGFR3 localized to the multivesicular body, and its abundance may be modified by Sprouty and interaction with heat shock protein-90. FGF18 mRNA is more abundant in MF, whereas FGF10 mRNA predominated in LF, which also express FGFR1 IIIb, a receptor for FGF10. FGF18 diminished fibroblast proliferation and was chemotactic for cultured fibroblasts. Although PDGF receptor-α (PDGFR-α) primarily signals through phosphoinositide 3-kinase and Akt, p42/p44 MAP kinase (Erk1/2), a major signaling pathway for FGFRs, influenced the abundance of cell-surface PDGFR-α. Observing different FGFR and ligand profiles in MF and LF is consistent with their divergent differentiation although both subpopulations express PDGFR-α. These studies also emphasize the importance of particular cellular locations of FGFR3 and PDGFR-α, which may modify their effects during alveolar development or repair.
Collapse
Affiliation(s)
- Stephen E McGowan
- Department of Veterans Affairs Research Service and Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Diann M McCoy
- Department of Veterans Affairs Research Service and Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
9
|
Volckaert T, De Langhe SP. Wnt and FGF mediated epithelial-mesenchymal crosstalk during lung development. Dev Dyn 2014; 244:342-66. [PMID: 25470458 DOI: 10.1002/dvdy.24234] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/20/2014] [Accepted: 11/26/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The adaptation to terrestrial life required the development of an organ capable of efficient air-blood gas exchange. To meet the metabolic load of cellular respiration, the mammalian respiratory system has evolved from a relatively simple structure, similar to the two-tube amphibian lung, to a highly complex tree-like system of branched epithelial airways connected to a vast network of gas exchanging units called alveoli. The development of such an elaborate organ in a relatively short time window is therefore an extraordinary feat and involves an intimate crosstalk between mesodermal and endodermal cell lineages. RESULTS This review describes the molecular processes governing lung development with an emphasis on the current knowledge on the role of Wnt and FGF signaling in lung epithelial differentiation. CONCLUSIONS The Wnt and FGF signaling pathways are crucial for the dynamic and reciprocal communication between epithelium and mesenchyme during lung development. In addition, some of this developmental crosstalk is reemployed in the adult lung after injury to drive regeneration, and may, when aberrantly or chronically activated, result in chronic lung diseases. Novel insights into how the Wnt and FGF pathways interact and are integrated into a complex gene regulatory network will not only provide us with essential information about how the lung regenerates itself, but also enhance our understanding of the pathogenesis of chronic lung diseases, as well as improve the controlled differentiation of lung epithelium from pluripotent stem cells.
Collapse
Affiliation(s)
- Thomas Volckaert
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, Colorado; The Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Technologiepark 927, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | | |
Collapse
|
10
|
Li W, Lin CY, Shang C, Han P, Xiong Y, Lin CJ, Yang J, Selleri L, Chang CP. Pbx1 activates Fgf10 in the mesenchyme of developing lungs. Genesis 2014; 52:399-407. [PMID: 24591256 DOI: 10.1002/dvg.22764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 01/19/2023]
Abstract
Insufficiency of surfactants is a core factor in respiratory distress syndrome, which causes apnea and neonatal death, particularly in preterm infants. Surfactant proteins are secreted by alveolar type II cells in the lung epithelium, the differentiation of which is regulated by Fgf10 elaborated by the adjacent mesenchyme. However, the molecular regulation of mesenchymal Fgf10 during lung development has not been fully understood. Here, we show that Pbx1, a homeodomain transcription factor, is required in the lung mesenchyme for the expression of Fgf10. Mouse embryos lacking Pbx1 in the lung mesenchyme show compact terminal saccules and perinatal lethality with failure of postnatal alveolar expansion. Mutant embryos had severely reduced expression of Fgf10 and surfactant genes (Spa, Spb, Spc, and Spd) that are essential for alveolar expansion for gas exchange at birth. Molecularly, Pbx1 directly binds to the Fgf10 promoter and cooperates with Meis and Hox proteins to transcriptionally activate Fgf10. Our results thus show how Pbx1 controls Fgf10 in the developing lung.
Collapse
Affiliation(s)
- Wei Li
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Liu SB, Ma Z, Sun WL, Sun XW, Hong Y, Ma L, Qin C, Stratton HJ, Liu Q, Jiang JT. The role of androgen-induced growth factor (FGF8) on genital tubercle development in a hypospadiac male rat model of prenatal exposure to di-n-butyl phthalate. Toxicology 2012; 293:53-58. [DOI: 10.1016/j.tox.2011.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/23/2011] [Accepted: 12/24/2011] [Indexed: 02/02/2023]
|
12
|
Rawlins EL, Perl AK. The a"MAZE"ing world of lung-specific transgenic mice. Am J Respir Cell Mol Biol 2011; 46:269-82. [PMID: 22180870 DOI: 10.1165/rcmb.2011-0372ps] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The purpose of this review is to give a comprehensive overview of transgenic mouse lines suitable for studying gene function and cellular lineage relationships in lung development, homeostasis, injury, and repair. Many of the mouse strains reviewed in this Perspective have been widely shared within the lung research community, and new strains are continuously being developed. There are many transgenic lines that target subsets of lung cells, but it remains a challenge for investigators to select the correct transgenic modules for their experiment. This review covers the tetracycline- and tamoxifen-inducible systems and focuses on conditional lines that target the epithelial cells. We point out the limitations of each strain so investigators can choose the system that will work best for their scientific question. Current mesenchymal and endothelial lines are limited by the fact that they are not lung specific. These lines are summarized in a brief overview. In addition, useful transgenic reporter mice for studying lineage relationships, promoter activity, and signaling pathways will complete our lung-specific conditional transgenic mouse shopping list.
Collapse
Affiliation(s)
- Emma L Rawlins
- Children's Hospital Medical Center, Divisions of Neonatology and Pulmonary Biology, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | | |
Collapse
|
13
|
Chen Y, Moon AM, Gaufo GO. Influence of mesodermal Fgf8 on the differentiation of neural crest-derived postganglionic neurons. Dev Biol 2011; 361:125-36. [PMID: 22040872 DOI: 10.1016/j.ydbio.2011.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/21/2011] [Accepted: 10/16/2011] [Indexed: 01/06/2023]
Abstract
The interaction between the cranial neural crest (NC) and the epibranchial placode is critical for the formation of parasympathetic and visceral sensory ganglia, respectively. However, the molecular mechanism that controls this intercellular interaction is unknown. Here we show that the spatiotemporal expression of Fibroblast growth factor 8 (Fgf8) is strategically poised to control this cellular relationship. A global reduction of Fgf8 in hypomorph embryos leads to an early loss of placode-derived sensory ganglia and reduced number of NC-derived postganglionic (PG) neurons. The latter finding is associated with the early loss of NC cells by apoptosis. This loss occurs concurrent with the interaction between the NC and placode-derived ganglia. Conditional knockout of Fgf8 in the anterior mesoderm shows that this tissue source of Fgf8 has a specific influence on the formation of PG neurons. Unlike the global reduction of Fgf8, mesodermal loss of Fgf8 leads to a deficiency in PG neurons that is independent of NC apoptosis or defects in placode-derived ganglia. We further examined the differentiation of PG precursors by using a quantitative approach to measure the intensity of Phox2b, a PG neuronal determinant. We found reduced numbers and immature state of PG precursors emerging from the placode-derived ganglia en route to their terminal target areas. Our findings support the view that global expression of Fgf8 is required for early NC survival and differentiation of placode-derived sensory neurons, and reveal a novel role for mesodermal Fgf8 on the early differentiation of the NC along the parasympathetic PG lineage.
Collapse
Affiliation(s)
- Yiju Chen
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, USA
| | | | | |
Collapse
|