1
|
Lorenzo-Orts L, Pauli A. The molecular mechanisms underpinning maternal mRNA dormancy. Biochem Soc Trans 2024; 52:861-871. [PMID: 38477334 PMCID: PMC11088918 DOI: 10.1042/bst20231122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
A large number of mRNAs of maternal origin are produced during oogenesis and deposited in the oocyte. Since transcription stops at the onset of meiosis during oogenesis and does not resume until later in embryogenesis, maternal mRNAs are the only templates for protein synthesis during this period. To ensure that a protein is made in the right place at the right time, the translation of maternal mRNAs must be activated at a specific stage of development. Here we summarize our current understanding of the sophisticated mechanisms that contribute to the temporal repression of maternal mRNAs, termed maternal mRNA dormancy. We discuss mechanisms at the level of the RNA itself, such as the regulation of polyadenine tail length and RNA modifications, as well as at the level of RNA-binding proteins, which often block the assembly of translation initiation complexes at the 5' end of an mRNA or recruit mRNAs to specific subcellular compartments. We also review microRNAs and other mechanisms that contribute to repressing translation, such as ribosome dormancy. Importantly, the mechanisms responsible for mRNA dormancy during the oocyte-to-embryo transition are also relevant to cellular quiescence in other biological contexts.
Collapse
Affiliation(s)
- Laura Lorenzo-Orts
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| |
Collapse
|
2
|
Proteomic analysis reveals the important roles of alpha-5-collagen and ATP5β during skin ulceration syndrome progression of sea cucumber Apostichopus japonicus. J Proteomics 2018; 175:136-143. [DOI: 10.1016/j.jprot.2018.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/23/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022]
|
3
|
Moundoyi H, Demouy J, Le Panse S, Morales J, Sarels B, Cormier P. Toward Multiscale Modeling of Molecular and Biochemical Events Occurring at Fertilization Time in Sea Urchins. Results Probl Cell Differ 2018; 65:69-89. [DOI: 10.1007/978-3-319-92486-1_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
4
|
Mulner-Lorillon O, Chassé H, Morales J, Bellé R, Cormier P. MAPK/ERK activity is required for the successful progression of mitosis in sea urchin embryos. Dev Biol 2016; 421:194-203. [PMID: 27913220 DOI: 10.1016/j.ydbio.2016.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/25/2016] [Indexed: 10/20/2022]
Abstract
Using sea urchin embryos, we demonstrate that the MEK/MAPK/ERK cascade is essential for the proper progression of the cell cycle. Activation of a limited fraction of MAPK/ERK is required between S-phase and M-phase. Neither DNA replication nor CDK1 activation are impacted by the inhibition of this small active MAPK/ERK fraction. Nonetheless, the chromatin and spindle organisations are profoundly altered. Early morphological disorders induced by the absence of MAPK/ERK activation are correlated with an important inhibition of global protein synthesis and modification in the cyclin B accumulation profile. After appearance of morphological disorders, there is an increase in the level of the inhibitor of protein synthesis, 4E-BP, and, ultimately, an activation of the spindle checkpoint. Altogether, our results suggest that MAPK/ERK activity is required for the synthesis of (a) protein(s) implicated in an early step of chromatin /microtubule attachment. If this MAPK/ERK-dependent step is not achieved, the cell activates a new checkpoint mechanism, involving the reappearance of 4E-BP that maintains a low level of protein translation, thus saving cellular energy.
Collapse
Affiliation(s)
- Odile Mulner-Lorillon
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, CS90074, F-29688 Roscoff cedex, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS90074, F-29688 Roscoff cedex, France.
| | - Héloïse Chassé
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, CS90074, F-29688 Roscoff cedex, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS90074, F-29688 Roscoff cedex, France
| | - Julia Morales
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, CS90074, F-29688 Roscoff cedex, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS90074, F-29688 Roscoff cedex, France
| | - Robert Bellé
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, CS90074, F-29688 Roscoff cedex, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS90074, F-29688 Roscoff cedex, France
| | - Patrick Cormier
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, CS90074, F-29688 Roscoff cedex, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS90074, F-29688 Roscoff cedex, France
| |
Collapse
|
5
|
Kim W, Conery AL, Rajamuthiah R, Fuchs BB, Ausubel FM, Mylonakis E. Identification of an Antimicrobial Agent Effective against Methicillin-Resistant Staphylococcus aureus Persisters Using a Fluorescence-Based Screening Strategy. PLoS One 2015; 10:e0127640. [PMID: 26039584 PMCID: PMC4454602 DOI: 10.1371/journal.pone.0127640] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/17/2015] [Indexed: 12/21/2022] Open
Abstract
Persisters are a subpopulation of normal bacterial cells that show tolerance to conventional antibiotics. Persister cells are responsible for recalcitrant chronic infections and new antibiotics effective against persisters would be a major development in the treatment of these infections. Using the reporter dye SYTOX Green that only stains cells with permeabilized membranes, we developed a fluorescence-based screening assay in a 384-well format for identifying compounds that can kill methicillin-resistant Staphylococcus aureus (MRSA) persisters. The assay proved robust and suitable for high throughput screening (Z`-factor: >0.7). In screening a library of hits from a previous screen, which identified compounds that had the ability to block killing of the nematode Caenorhabditis by MRSA, we discovered that the low molecular weight compound NH125, a bacterial histidine kinase inhibitor, kills MRSA persisters by causing cell membrane permeabilization, and that 5 μg/mL of the compound can kill all cells to the limit of detection in a 108 CFU/mL culture of MRSA persisters within 3h. Furthermore, NH125 disrupts 50% of established MRSA biofilms at 20 μg/mL and completely eradicates biofilms at 160 μg/mL. Our results suggest that the SYTOX Green screening assay is suitable for large-scale projects to identify small molecules effective against MRSA persisters and should be easily adaptable to a broad range of pathogens that form persisters. Since NH125 has strong bactericidal properties against MRSA persisters and high selectivity to bacteria, we believe NH125 is a good anti-MRSA candidate drug that should be further evaluated.
Collapse
Affiliation(s)
- Wooseong Kim
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Annie L. Conery
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rajmohan Rajamuthiah
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Frederick M. Ausubel
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
6
|
Laurent S, Richard A, Mulner-Lorillon O, Morales J, Flament D, Glippa V, Bourdon J, Gosselin P, Siegel A, Cormier P, Bellé R. Modelization of the regulation of protein synthesis following fertilization in sea urchin shows requirement of two processes: a destabilization of eIF4E:4E-BP complex and a great stimulation of the 4E-BP-degradation mechanism, both rapamycin-sensitive. Front Genet 2014; 5:117. [PMID: 24834072 PMCID: PMC4018528 DOI: 10.3389/fgene.2014.00117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 04/16/2014] [Indexed: 11/13/2022] Open
Abstract
Fertilization of sea urchin eggs involves an increase in protein synthesis associated with a decrease in the amount of the translation initiation inhibitor 4E-BP. A highly simple reaction model for the regulation of protein synthesis was built and was used to simulate the physiological changes in the total 4E-BP amount observed during time after fertilization. Our study evidenced that two changes occurring at fertilization are necessary to fit with experimental data. The first change was an 8-fold increase in the dissociation parameter (koff1) of the eIF4E:4E-BP complex. The second was an important 32.5-fold activation of the degradation mechanism of the protein 4E-BP. Additionally, the changes in both processes should occur in 5 min time interval post-fertilization. To validate the model, we checked that the kinetic of the predicted 4.2-fold increase of eIF4E:eIF4G complex concentration at fertilization matched the increase of protein synthesis experimentally observed after fertilization (6.6-fold, SD = 2.3, n = 8). The minimal model was also used to simulate changes observed after fertilization in the presence of rapamycin, a FRAP/mTOR inhibitor. The model showed that the eIF4E:4E-BP complex destabilization was impacted and surprisingly, that the mechanism of 4E-BP degradation was also strongly affected, therefore suggesting that both processes are controlled by the protein kinase FRAP/mTOR.
Collapse
Affiliation(s)
- Sébastien Laurent
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes Plouzané, France
| | - Adrien Richard
- Université de Nice-Sophia Antipolis, UMR 7271, Laboratoire I3S Sophia, Antipolis, France
| | - Odile Mulner-Lorillon
- Sorbonne Universités, UPMC University Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development Station Biologique de Roscoff, Roscoff cedex, France ; CNRS, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development Station Biologique de Roscoff, Roscoff cedex, France
| | - Julia Morales
- Sorbonne Universités, UPMC University Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development Station Biologique de Roscoff, Roscoff cedex, France ; CNRS, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development Station Biologique de Roscoff, Roscoff cedex, France
| | - Didier Flament
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes Plouzané, France
| | - Virginie Glippa
- Sorbonne Universités, UPMC University Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development Station Biologique de Roscoff, Roscoff cedex, France ; CNRS, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development Station Biologique de Roscoff, Roscoff cedex, France
| | - Jérémie Bourdon
- CNRS UMR 6241, Laboratoire LINA, Université de Nantes Nantes, France
| | - Pauline Gosselin
- Sorbonne Universités, UPMC University Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development Station Biologique de Roscoff, Roscoff cedex, France ; CNRS, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development Station Biologique de Roscoff, Roscoff cedex, France
| | - Anne Siegel
- CNRS, IRISA-UMR 6074, Campus de Beaulieu Rennes, France ; INRIA, Centre Rennes - Bretagne Atlantique, Symbiose, Campus de Beaulieu Rennes, France
| | - Patrick Cormier
- Sorbonne Universités, UPMC University Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development Station Biologique de Roscoff, Roscoff cedex, France ; CNRS, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development Station Biologique de Roscoff, Roscoff cedex, France
| | - Robert Bellé
- Sorbonne Universités, UPMC University Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development Station Biologique de Roscoff, Roscoff cedex, France ; CNRS, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development Station Biologique de Roscoff, Roscoff cedex, France
| |
Collapse
|
7
|
Devkota AK, Tavares CDJ, Warthaka M, Abramczyk O, Marshall KD, Kaoud TS, Gorgulu K, Ozpolat B, Dalby KN. Investigating the kinetic mechanism of inhibition of elongation factor 2 kinase by NH125: evidence of a common in vitro artifact. Biochemistry 2012; 51:2100-12. [PMID: 22352903 DOI: 10.1021/bi201787p] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Evidence that elongation factor 2 kinase (eEF-2K) has potential as a target for anticancer therapy and possibly for the treatment of depression is emerging. Here the steady-state kinetic mechanism of eEF-2K is presented using a peptide substrate and is shown to conform to an ordered sequential mechanism with ATP binding first. Substrate inhibition by the peptide was observed and revealed to be competitive with ATP, explaining the observed ordered mechanism. Several small molecules are reported to inhibit eEF-2K activity with the most notable being the histidine kinase inhibitor NH125, which has been used in a number of studies to characterize eEF-2K activity in cells. While NH125 was previously reported to inhibit eEF-2K in vitro with an IC(50) of 60 nM, its mechanism of action was not established. Using the same kinetic assay, the ability of an authentic sample of NH125 to inhibit eEF-2K was assessed over a range of substrate and inhibitor concentrations. A typical dose-response curve for the inhibition of eEF-2K by NH125 is best fit to an IC(50) of 18 ± 0.25 μM and a Hill coefficient of 3.7 ± 0.14, suggesting that NH125 is a weak inhibitor of eEF-2K under the experimental conditions of a standard in vitro kinase assay. To test the possibility that NH125 is a potent inhibitor of eEF2 phosphorylation, we assessed its ability to inhibit the phosphorylation of eEF2. Under standard kinase assay conditions, NH125 exhibits a similar weak ability to inhibit the phosphorylation of eEF2 by eEF-2K. Notably, the activity of NH125 is severely abrogated by the addition of 0.1% Triton to the kinase assay through a process that can be reversed upon dilution. These studies suggest that NH125 is a nonspecific colloidal aggregator in vitro, a notion further supported by the observation that NH125 inhibits other protein kinases, such as ERK2 and TRPM7 in a manner similar to that of eEF-2K. As NH125 is reported to inhibit eEF-2K in a cellular environment, its ability to inhibit eEF2 phosphorylation was assessed in MDA-MB-231 breast cancer, A549 lung cancer, and HEK-293T cell lines using a Western blot approach. No sign of a decrease in the level of eEF2 phosphorylation was observed up to 12 h following addition of NH125 to the media. Furthermore, contrary to the previously reported literatures, NH125 induced the phosphorylation of eEF-2.
Collapse
Affiliation(s)
- Ashwini K Devkota
- Graduate Program in Cell and Molecular Biology, The University of Texas, Austin, Texas 78712, United States
| | | | | | | | | | | | | | | | | |
Collapse
|