1
|
Vora M, Dietz J, Wing Z, George K, Kelly Liu J, Rongo C, Savage-Dunn C. Genome-wide analysis of Smad and Schnurri transcription factors in C. elegans demonstrates widespread interaction and a function in collagen secretion. eLife 2025; 13:RP99394. [PMID: 39887187 PMCID: PMC11785376 DOI: 10.7554/elife.99394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
Smads and their transcription factor partners mediate the transcriptional responses of target cells to secreted ligands of the transforming growth factor-β (TGF-β) family, including those of the conserved bone morphogenetic protein (BMP) family, yet only a small number of direct target genes have been well characterized. In C. elegans, the BMP2/4 ortholog DBL-1 regulates multiple biological functions, including body size, via a canonical receptor-Smad signaling cascade. Here, we identify functional binding sites for SMA-3/Smad and its transcriptional partner SMA-9/Schnurri based on ChIP-seq peaks (identified by modEncode) and expression differences of nearby genes identified from RNA-seq analysis of corresponding mutants. We found that SMA-3 and SMA-9 have both overlapping and unique target genes. At a genome-wide scale, SMA-3/Smad acts as a transcriptional activator, whereas SMA-9/Schnurri direct targets include both activated and repressed genes. Mutations in sma-9 partially suppress the small body size phenotype of sma-3, suggesting some level of antagonism between these factors and challenging the prevailing model for Schnurri function. Functional analysis of target genes revealed a novel role in body size for genes involved in one-carbon metabolism and in the endoplasmic reticulum (ER) secretory pathway, including the disulfide reductase dpy-11. Our findings indicate that Smads and SMA-9/Schnurri have previously unappreciated complex genetic and genomic regulatory interactions that in turn regulate the secretion of extracellular components like collagen into the cuticle to mediate body size regulation.
Collapse
Affiliation(s)
- Mehul Vora
- Waksman Institute, Department of Genetics, Rutgers UniversityNew BrunswickUnited States
- ModOmics LtdSouthamptonUnited Kingdom
| | - Jonathan Dietz
- Waksman Institute, Department of Genetics, Rutgers UniversityNew BrunswickUnited States
| | - Zachary Wing
- Department of Biology, Queens College, CUNYNew YorkUnited States
| | - Karen George
- Waksman Institute, Department of Genetics, Rutgers UniversityNew BrunswickUnited States
| | - Jun Kelly Liu
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Christopher Rongo
- Waksman Institute, Department of Genetics, Rutgers UniversityNew BrunswickUnited States
| | - Cathy Savage-Dunn
- Department of Biology, Queens College, CUNYNew YorkUnited States
- PhD Program in Biology, The Graduate Center, CUNYNew YorkUnited States
| |
Collapse
|
2
|
Vora M, Dietz J, Wing Z, George K, Liu J, Rongo C, Savage-Dunn C. Genome-wide analysis of Smad and Schnurri transcription factors in C. elegans demonstrates widespread interaction and a function in collagen secretion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.05.597576. [PMID: 38895257 PMCID: PMC11185707 DOI: 10.1101/2024.06.05.597576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Smads and their transcription factor partners mediate the transcriptional responses of target cells to secreted ligands of the Transforming Growth Factor-β (TGF-β) family, including those of the conserved bone morphogenetic protein (BMP) family, yet only a small number of direct target genes have been well characterized. In C. elegans, the BMP2/4 ortholog DBL-1 regulates multiple biological functions, including body size, via a canonical receptor-Smad signaling cascade. Here, we identify functional binding sites for SMA-3/Smad and its transcriptional partner SMA-9/Schnurri based on ChIP-seq peaks (identified by modEncode) and expression differences of nearby genes identified from RNA-seq analysis of corresponding mutants. We found that SMA-3 and SMA-9 have both overlapping and unique target genes. At a genome-wide scale, SMA-3/Smad acts as a transcriptional activator, whereas SMA-9/Schnurri direct targets include both activated and repressed genes. Mutations in sma-9 partially suppress the small body size phenotype of sma-3, suggesting some level of antagonism between these factors and challenging the prevailing model for Schnurri function. Functional analysis of target genes revealed a novel role in body size for genes involved in one-carbon metabolism and in the endoplasmic reticulum (ER) secretory pathway, including the disulfide reductase dpy-11. Our findings indicate that Smads and SMA-9/Schnurri have previously unappreciated complex genetic and genomic regulatory interactions that in turn regulate the secretion of extracellular components like collagen into the cuticle to mediate body size regulation.
Collapse
Affiliation(s)
- Mehul Vora
- Waksman Institute, Dept. of Genetics, Rutgers University, NJ, USA
- ModOmics Ltd, Southampton, UK
| | - Jonathan Dietz
- Waksman Institute, Dept. of Genetics, Rutgers University, NJ, USA
| | - Zachary Wing
- Department of Biology, Queens College, CUNY, NY, USA
| | - Karen George
- Waksman Institute, Dept. of Genetics, Rutgers University, NJ, USA
| | - Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, NY, USA
| | | | - Cathy Savage-Dunn
- Department of Biology, Queens College, CUNY, NY, USA
- PhD Program in Biology, the Graduate Center, CUNY, NY, USA
| |
Collapse
|
3
|
Zhang Y, Zhao R, Jing T, Lin S, Ding X. Identification and Transcriptome Analysis of Bursaphelenchus xylophilus with Excellent Low Temperature Resistance. Int J Mol Sci 2024; 25:13732. [PMID: 39769493 PMCID: PMC11679782 DOI: 10.3390/ijms252413732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
Bursaphelenchus xylophilus is one of the most destructive quarantine pests, causing irreversible damage to pine trees. However, the unexpected identification of pine wilt disease in Northern China indicates that Bursaphelenchus xylophilus can survive under low temperatures. In this study, we analyzed the reproductivity variations among 18 different isolates, and SC13 was identified to have excellent low temperature resistance. Subsequent molecular analysis of SC13 indicated its distinct gene expression under low temperatures. The epidermal growth factor, nematode cuticle collagen and G-protein-coupled receptor genes with environmental adaptation functions were demonstrated to be differentially expressed under low temperatures. Meanwhile, morphological observations also indicated that SC13 contained significantly more lipid drops in low-temperature treatments. Generally, the identification of representative Bursaphelenchus xylophilus isolates will facilitate relevant studies in the future, and the discovery of the gene expression and morphological changes of Bursaphelenchus xylophilus under low temperatures could expand the current understanding of the environmental adaption abilities of such invasive nematodes.
Collapse
Affiliation(s)
- Yue Zhang
- Co-Innovation Centre for Sustainable Forestry in Southern China, Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.); (R.Z.); (T.J.); (S.L.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing 210037, China
| | - Ruiwen Zhao
- Co-Innovation Centre for Sustainable Forestry in Southern China, Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.); (R.Z.); (T.J.); (S.L.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing 210037, China
| | - Tingting Jing
- Co-Innovation Centre for Sustainable Forestry in Southern China, Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.); (R.Z.); (T.J.); (S.L.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing 210037, China
| | - Sixi Lin
- Co-Innovation Centre for Sustainable Forestry in Southern China, Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.); (R.Z.); (T.J.); (S.L.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing 210037, China
| | - Xiaolei Ding
- Co-Innovation Centre for Sustainable Forestry in Southern China, Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.); (R.Z.); (T.J.); (S.L.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing 210037, China
| |
Collapse
|
4
|
Xu W, Sun Y, Breen P, Ruvkun G, Mao K. Caenorhabditis elegans inositol hexaphosphate pathways couple to RNA interference and pathogen defense. Proc Natl Acad Sci U S A 2024; 121:e2416982121. [PMID: 39602251 PMCID: PMC11626161 DOI: 10.1073/pnas.2416982121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
RNA interference (RNAi) is an evolutionarily conserved pathway that defends against viral infections in diverse organisms. Caenorhabditis elegans mutations that enhance RNAi have revealed pathways that may regulate antiviral defense. A genetic screen for C. elegans mutations that fail to up-regulate a defense response reporter transgene detected mutations that enhance RNAi to silence this reporter gene in the inositol polyphosphate multikinase impk-1, the synMuv B gene lin-15B, and the pathogen defense response gene pals-22. Using other assays for enhanced RNAi, we found that the impk-1 alleles and an ippk-1 gene inactivation of a later step in inositol hexaphosphate (IP6) synthesis, and the lin-15B and pals-22 alleles enhance RNAi. IP6 has been known for decades to bind and stabilize human adenosine deaminase that acts on RNA (ADAR) as well as the paralog tRNA editing ADAT. We show that the C. elegans IP6 pathway is also required for mRNA and tRNA editing. Thus, a deficiency in two axes of RNA editing enhances the already potent C. elegans RNAi antiviral defense, suggesting adenosine to inosine RNA editing may normally moderate this siRNA antiviral defense pathway. The C. elegans IP6-deficient mutants are synthetic lethal with a set of enhanced RNAi mutants that act in the polyploid hypodermis to regulate collagen secretion and signaling from that tissue, implicating IP6 signaling especially in this tissue. This enhanced antiviral RNAi response uses the C. elegans RIG-I-like receptor DRH-1 to activate the unfolded protein response (UPR). The production of primary siRNAs, rather than secondary siRNAs, contributes to this activation of the UPR through XBP-1 signaling. The gon-14 and pal-17 mutants that also emerged from this screen act in the mitochondrial defense pathway rather than by enhancing RNAi.
Collapse
Affiliation(s)
- Wenjing Xu
- Institute of Future Agriculture, Northwest Agriculture and Forestry University, Yangling, Shaanxi712100, China
| | - Yifan Sun
- Institute of Future Agriculture, Northwest Agriculture and Forestry University, Yangling, Shaanxi712100, China
| | - Peter Breen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Kai Mao
- Institute of Future Agriculture, Northwest Agriculture and Forestry University, Yangling, Shaanxi712100, China
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, Harvard Medical School, Boston, MA02115
| |
Collapse
|
5
|
Liu X, Liu X, Chen S, Chen Y, Su X, Zhang X, Guo K, Zhou X. Calcium leakage involved in nematotoxic effects of the Conidiobolus obscurus CytCo protein on the pine wood nematode, Bursaphelenchus xylophilus. PEST MANAGEMENT SCIENCE 2024; 80:6366-6374. [PMID: 39109536 DOI: 10.1002/ps.8365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 11/09/2024]
Abstract
BACKGROUND The pine wood nematode Bursaphelenchus xylophilus, a severe invasive species, is responsible for causing widespread pine wilt disease. The CytCo protein, a pore-forming toxin derived from Conidiobolus obscurus, exhibits nematotoxicity towards B. xylophilus. RESULTS Our present study reveals the expression variation of a range of gene products in B. xylophilus that respond to the effects of CytCo using the isobaric tags for relative and absolute quantification proteomics technology. Functional enrichment analysis indicates that many differentially expressed proteins are linked to calcium signaling system, proteasome, energy production and conversion, and the determination of adult lifespan. It suggests that the dysregulation of calcium homeostasis, energy metabolism, and apoptosis contribute to the CytCo nematotoxicity. Using the calcium ion (Ca2+)-indicator calcein, we detected changes in Ca2+ levels in B. xylophilus, with a significantly increase in fluorescence in the nematode's intestine and pseudocoelom following CytCo treatments. Meanwhile, the apoptosis and reactive oxygen species (ROS) assays showed an enhancement of fluorescence in B. xylophilus cells, with increased CytCo concentrations. CONCLUSION The protein toxin CytCo triggers Ca2+ leakage, disrupts Ca2+ balance in B. xylophilus, and induces apoptosis and ROS outburst, thereby intensifying its nematotoxic effects. This finding facilitates our understanding of the modes of action of nematotoxic proteins, and contributes to the development of innovative nematode control strategies. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuemeng Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, P. R. China
| | - Xiaotian Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, P. R. China
| | - Shani Chen
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, P. R. China
| | - Ye Chen
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, P. R. China
| | - Xiu Su
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, P. R. China
| | - Xinqi Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, P. R. China
| | - Kai Guo
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, P. R. China
| | - Xiang Zhou
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, P. R. China
| |
Collapse
|
6
|
Reich H, Savage-Dunn C. Signaling circuits and the apical extracellular matrix in aging: connections identified in the nematode Caenorhabditis elegans. Am J Physiol Cell Physiol 2023; 325:C1201-C1211. [PMID: 37721005 PMCID: PMC10861026 DOI: 10.1152/ajpcell.00195.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Numerous conserved signaling pathways play critical roles in aging, including insulin/IGF-1, TGF-β, and Wnt pathways. Some of these pathways also play prominent roles in the formation and maintenance of the extracellular matrix. The nematode Caenorhabditis elegans has been an enduringly productive system for the identification of conserved mechanisms of biological aging. Recent studies in C. elegans highlight the regulatory circuits between conserved signaling pathways and the extracellular matrix, revealing a bidirectional relationship between these factors and providing a platform to address how regulation of and by the extracellular matrix can impact lifespan and organismal health during aging. These discoveries provide new opportunities for clinical advances and novel therapeutic strategies.
Collapse
Affiliation(s)
- Hannah Reich
- Department of Biology, Queens College, City University of New York, Flushing, New York, United States
| | - Cathy Savage-Dunn
- Department of Biology, Queens College, City University of New York, Flushing, New York, United States
- PhD Program in Biology, The Graduate Center, City University of New York, New York, New York, United States
| |
Collapse
|
7
|
Madhu B, Lakdawala MF, Gumienny TL. The DBL-1/TGF-β signaling pathway tailors behavioral and molecular host responses to a variety of bacteria in Caenorhabditis elegans. eLife 2023; 12:e75831. [PMID: 37750680 PMCID: PMC10567113 DOI: 10.7554/elife.75831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 09/25/2023] [Indexed: 09/27/2023] Open
Abstract
Generating specific, robust protective responses to different bacteria is vital for animal survival. Here, we address the role of transforming growth factor β (TGF-β) member DBL-1 in regulating signature host defense responses in Caenorhabditis elegans to human opportunistic Gram-negative and Gram-positive pathogens. Canonical DBL-1 signaling is required to suppress avoidance behavior in response to Gram-negative, but not Gram-positive bacteria. We propose that in the absence of DBL-1, animals perceive some bacteria as more harmful. Animals activate DBL-1 pathway activity in response to Gram-negative bacteria and strongly repress it in response to select Gram-positive bacteria, demonstrating bacteria-responsive regulation of DBL-1 signaling. DBL-1 signaling differentially regulates expression of target innate immunity genes depending on the bacterial exposure. These findings highlight a central role for TGF-β in tailoring a suite of bacteria-specific host defenses.
Collapse
Affiliation(s)
- Bhoomi Madhu
- Department of Biology, Texas Woman’s UniversityDentonUnited States
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Mohammed Farhan Lakdawala
- Department of Biology, Texas Woman’s UniversityDentonUnited States
- AbbVie (United States)WorcesterUnited States
| | - Tina L Gumienny
- Department of Biology, Texas Woman’s UniversityDentonUnited States
| |
Collapse
|
8
|
Goodman MB, Savage-Dunn C. Reciprocal interactions between transforming growth factor beta signaling and collagens: Insights from Caenorhabditis elegans. Dev Dyn 2022; 251:47-60. [PMID: 34537996 PMCID: PMC8982858 DOI: 10.1002/dvdy.423] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 01/03/2023] Open
Abstract
Studies in genetically tractable organisms such as the nematode Caenorhabditis elegans have led to pioneering insights into conserved developmental regulatory mechanisms. For example, Smad signal transducers for the transforming growth factor beta (TGF-β) superfamily were first identified in C. elegans and in the fruit fly Drosophila. Recent studies of TGF-β signaling and the extracellular matrix (ECM) in C. elegans have forged unexpected links between signaling and the ECM, yielding novel insights into the reciprocal interactions that occur across tissues and spatial scales, and potentially providing new opportunities for the study of biomechanical regulation of gene expression.
Collapse
Affiliation(s)
- Miriam B. Goodman
- Department of Molecular and Cellular Physiology, Stanford University, CA 94304
| | - Cathy Savage-Dunn
- Department of Biology, Queens College at the City University of New York, 11367,Correspondence to: >
| |
Collapse
|
9
|
Chen Y, Zhou X, Guo K, Chen SN, Su X. Transcriptomic insights into the effects of CytCo, a novel nematotoxic protein, on the pine wood nematode Bursaphelenchus xylophilus. BMC Genomics 2021; 22:394. [PMID: 34044778 PMCID: PMC8157652 DOI: 10.1186/s12864-021-07714-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/04/2021] [Indexed: 11/24/2022] Open
Abstract
Background The pine wood nematode Bursaphelenchus xylophilus is a destructive pest of Pinus trees worldwide and lacks effective control measures. Screening for nematotoxic proteins has been undertaken to develop new strategies for nematode control. Results The results of the present study provided initial insights into the responses of B. xylophilus exposed to a nematotoxic cytolytic-like protein (CytCo) based on transcriptome profiling. A large set of differentially expressed genes (DEGs = 1265) was found to be related to nematode development, reproduction, metabolism, motion, and immune system. In response to the toxic protein, B. xylophilus upregulated DEGs encoding cuticle collagens, transporters, and cytochrome P450. In addition, many DEGs related to cell death, lipid metabolism, major sperm proteins, proteinases/peptidases, phosphatases, kinases, virulence factors, and transthyretin-like proteins were downregulated. Gene Ontology enrichment analysis showed that the CytCo treatment substantially affected DEGs involved in muscle contraction, lipid localization, and the mitogen-activated protein kinase cascade. The pathway richness of the Kyoto Encyclopedia of Genes and Genomes showed that the DEGs were concentrated in lysosomes and involved in fatty acid degradation. Weighted co-expression network analysis indicated that the hub genes affected by CytCo were associated with the nematode cuticular collagen. Conclusions These results showed that CytCo toxin interferes with gene expression to exert multiple nematotoxic effects, thereby providing insights into its potential use in pine wood nematode control. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07714-y.
Collapse
Affiliation(s)
- Ye Chen
- Collaborative Innovation Center of Zhejiang Green Pesticide, National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, School of Forestry and Biotechnology, Zhejiang A&F University, 311300, Hangzhou, People's Republic of China
| | - Xiang Zhou
- Collaborative Innovation Center of Zhejiang Green Pesticide, National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, School of Forestry and Biotechnology, Zhejiang A&F University, 311300, Hangzhou, People's Republic of China
| | - Kai Guo
- Collaborative Innovation Center of Zhejiang Green Pesticide, National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, School of Forestry and Biotechnology, Zhejiang A&F University, 311300, Hangzhou, People's Republic of China.
| | - Sha-Ni Chen
- Collaborative Innovation Center of Zhejiang Green Pesticide, National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, School of Forestry and Biotechnology, Zhejiang A&F University, 311300, Hangzhou, People's Republic of China
| | - Xiu Su
- Collaborative Innovation Center of Zhejiang Green Pesticide, National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, School of Forestry and Biotechnology, Zhejiang A&F University, 311300, Hangzhou, People's Republic of China
| |
Collapse
|
10
|
Sandhu A, Badal D, Sheokand R, Tyagi S, Singh V. Specific collagens maintain the cuticle permeability barrier in Caenorhabditis elegans. Genetics 2021; 217:iyaa047. [PMID: 33789349 PMCID: PMC8045729 DOI: 10.1093/genetics/iyaa047] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 12/05/2020] [Indexed: 01/01/2023] Open
Abstract
Collagen-enriched cuticle forms the outermost layer of skin in nematode Caenorhabditis elegans. The nematode's genome encodes 177 collagens, but little is known about their role in maintaining the structure or barrier function of the cuticle. In this study, we found six permeability determining (PD) collagens. Loss of any of these PD collagens-DPY-2, DPY-3, DPY-7, DPY-8, DPY-9, and DPY-10-led to enhanced susceptibility of nematodes to paraquat (PQ) and antihelminthic drugs- levamisole and ivermectin. Upon exposure to PQ, PD collagen mutants accumulated more PQ and incurred more damage and death despite the robust activation of antioxidant machinery. We find that BLMP-1, a zinc finger transcription factor, maintains the barrier function of the cuticle by regulating the expression of PD collagens. We show that the permeability barrier maintained by PD collagens acts in parallel to FOXO transcription factor DAF-16 to enhance survival of insulin-like receptor mutant, daf-2. In all, this study shows that PD collagens regulate cuticle permeability by maintaining the structure of C. elegans cuticle and thus provide protection against exogenous toxins.
Collapse
Affiliation(s)
- Anjali Sandhu
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Divakar Badal
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Riya Sheokand
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Shalini Tyagi
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Varsha Singh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
- Lead contact
| |
Collapse
|
11
|
Liu H, Zhang R, Wang D. Response of DBL-1/TGF-β signaling-mediated neuron-intestine communication to nanopolystyrene in nematode Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:141047. [PMID: 32758726 DOI: 10.1016/j.scitotenv.2020.141047] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 05/21/2023]
Abstract
TGF-β signaling pathway is important for the regulation of stress response in organisms. We here used Caenorhabditis elegans to determine the function of DBL-1/TGF-β signaling pathway in the control of response to nanopolystyrene (100 nm). In DBL-1/TGF-β signaling pathway, exposure to 1-1000 μg/L nanopolystyrene significantly increased the expressions of dbl-1 encoding a TGF-β ligand, sma-6 encoding a TGF-β receptor, sma-4 encoding a Co-Smad, and two genes (mab-31 and sma-9) encoding transcriptional factors. DBL-1 acted in the neurons to control the response to nanopolystyrene. In the neurons, the expression and the function of DBL-1 were under the control of two signaling cascades (SMOC-1-ZAG-1 and SMOC-1-ADT-2). TGF-β receptor SMA-6 acted in the intestine to control the response to nanopolystyrene. The downstream Co-Smad/SMA-4 and two transcriptional factors (MAB-31 and SMA-9) of SMA-6 in the intestine were further identified to be required for the control of response to nanopolystyrene. In nanopolystyrene exposed nematodes, intestinal MAB-31 activated the mitochondrial Mn-SOD/SOD-3 by modulating DAF-16 activity, and intestinal SMA-9 activated the mitochondrial unfolded protein response by affecting ELT-2 activity. Therefore, the DBL-1/TGF-β signaling pathway mediated an important neuron-intestine communication in nanopolystyrene exposed nematodes.
Collapse
Affiliation(s)
- Huanliang Liu
- Medical School, Southeast University, Nanjing 210009, China
| | - Ruijie Zhang
- Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen 518122, China.
| |
Collapse
|
12
|
Cohen JD, Sundaram MV. C. elegans Apical Extracellular Matrices Shape Epithelia. J Dev Biol 2020; 8:E23. [PMID: 33036165 PMCID: PMC7712855 DOI: 10.3390/jdb8040023] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Apical extracellular matrices (aECMs) coat exposed surfaces of epithelia to shape developing tissues and protect them from environmental insults. Despite their widespread importance for human health, aECMs are poorly understood compared to basal and stromal ECMs. The nematode Caenorhabditis elegans contains a variety of distinct aECMs, some of which share many of the same types of components (lipids, lipoproteins, collagens, zona pellucida domain proteins, chondroitin glycosaminoglycans and proteoglycans) with mammalian aECMs. These aECMs include the eggshell, a glycocalyx-like pre-cuticle, both collagenous and chitin-based cuticles, and other understudied aECMs of internal epithelia. C. elegans allows rapid genetic manipulations and live imaging of fluorescently-tagged aECM components, and is therefore providing new insights into aECM structure, trafficking, assembly, and functions in tissue shaping.
Collapse
Affiliation(s)
| | - Meera V. Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine 415 Curie Blvd, Philadelphia, PA 19104-6145, USA;
| |
Collapse
|
13
|
Noble LM, Miah A, Kaur T, Rockman MV. The Ancestral Caenorhabditis elegans Cuticle Suppresses rol-1. G3 (BETHESDA, MD.) 2020; 10:2385-2395. [PMID: 32423919 PMCID: PMC7341120 DOI: 10.1534/g3.120.401336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/09/2020] [Indexed: 12/30/2022]
Abstract
Genetic background commonly modifies the effects of mutations. We discovered that worms mutant for the canonical rol-1 gene, identified by Brenner in 1974, do not roll in the genetic background of the wild strain CB4856. Using linkage mapping, association analysis and gene editing, we determined that N2 carries an insertion in the collagen gene col-182 that acts as a recessive enhancer of rol-1 rolling. From population and comparative genomics, we infer the insertion is derived in N2 and related laboratory lines, likely arising during the domestication of Caenorhabditis elegans, and breaking a conserved protein. The ancestral version of col-182 also modifies the phenotypes of four other classical cuticle mutant alleles, and the effects of natural genetic variation on worm shape and locomotion. These results underscore the importance of genetic background and the serendipity of Brenner's choice of strain.
Collapse
Affiliation(s)
- Luke M Noble
- Institut de Biologie, École Normale Supérieure, CNRS 8197, Inserm U1024, PSL Research University, F-75005 Paris, France
| | - Asif Miah
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, 10003
| | - Taniya Kaur
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, 10003
| | - Matthew V Rockman
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, 10003
| |
Collapse
|
14
|
Madaan U, Faure L, Chowdhury A, Ahmed S, Ciccarelli EJ, Gumienny TL, Savage-Dunn C. Feedback regulation of BMP signaling by Caenorhabditis elegans cuticle collagens. Mol Biol Cell 2020; 31:825-832. [PMID: 32049594 PMCID: PMC7185965 DOI: 10.1091/mbc.e19-07-0390] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cellular responsiveness to environment, including changes in extracellular matrix (ECM), is critical for normal processes such as development and wound healing, but can go awry, as in oncogenesis and fibrosis. One type of molecular pathway contributing to this responsiveness is the BMP signaling pathway. Owing to their broad and potent functions, BMPs and their pathways are regulated at multiple levels. In Caenorhabditis elegans, the BMP ligand DBL-1 is a regulator of body size. We previously showed that DBL-1/BMP signaling determines body size through transcriptional regulation of cuticle collagen genes. We now identify feedback regulation of DBL-1/BMP through analysis of four DBL-1–regulated collagen genes. Inactivation of any of these genes reduces DBL-1/BMP signaling, measured by a pathway activity reporter. Furthermore, depletion of these collagens reduces GFP::DBL-1 fluorescence and acts unexpectedly at the level of dbl-1 transcription. We conclude that cuticle, a specialized ECM, impinges on DBL-1/BMP expression and signaling. Interestingly, the feedback regulation of DBL-1/BMP signaling by collagens is likely to be contact independent due to physical separation of the cuticle from DBL-1–expressing cells in the ventral nerve cord. Our results provide an entry point into a novel regulatory mechanism for BMP signaling, with broader implications for mechanical regulation of gene expression.
Collapse
Affiliation(s)
- Uday Madaan
- Department of Biology, Queens College, City University of New York, Flushing, NY 11367.,PhD Program in Biology, The Graduate Center, City University of New York, NY 10016
| | - Lionel Faure
- Department of Biology, Texas Woman's University, Denton, TX 76204
| | - Albar Chowdhury
- Department of Biology, Queens College, City University of New York, Flushing, NY 11367
| | - Shahrear Ahmed
- Department of Biology, Queens College, City University of New York, Flushing, NY 11367
| | - Emma J Ciccarelli
- Department of Biology, Queens College, City University of New York, Flushing, NY 11367.,PhD Program in Biology, The Graduate Center, City University of New York, NY 10016
| | - Tina L Gumienny
- Department of Biology, Texas Woman's University, Denton, TX 76204
| | - Cathy Savage-Dunn
- Department of Biology, Queens College, City University of New York, Flushing, NY 11367.,PhD Program in Biology, The Graduate Center, City University of New York, NY 10016
| |
Collapse
|
15
|
Lakdawala MF, Madhu B, Faure L, Vora M, Padgett RW, Gumienny TL. Genetic interactions between the DBL-1/BMP-like pathway and dpy body size-associated genes in Caenorhabditis elegans. Mol Biol Cell 2019; 30:3151-3160. [PMID: 31693440 PMCID: PMC6938244 DOI: 10.1091/mbc.e19-09-0500] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/22/2019] [Accepted: 11/01/2019] [Indexed: 12/14/2022] Open
Abstract
Bone morphogenetic protein (BMP) signaling pathways control many developmental and homeostatic processes, including cell size and extracellular matrix remodeling. An understanding of how this pathway itself is controlled remains incomplete. To identify novel regulators of BMP signaling, we performed a forward genetic screen in Caenorhabditis elegans for genes involved in body size regulation, a trait under the control of BMP member DBL-1. We isolated mutations that suppress the long phenotype of lon-2, a gene that encodes a negative regulator that sequesters DBL-1. This screen was effective because we isolated alleles of several core components of the DBL-1 pathway, demonstrating the efficacy of the screen. We found additional alleles of previously identified but uncloned body size genes. Our screen also identified widespread involvement of extracellular matrix proteins in DBL-1 regulation of body size. We characterized interactions between the DBL-1 pathway and extracellular matrix and other genes that affect body morphology. We discovered that loss of some of these genes affects the DBL-1 pathway, and we provide evidence that DBL-1 signaling affects many molecular and cellular processes associated with body size. We propose a model in which multiple body size factors are controlled by signaling through the DBL-1 pathway and by DBL-1-independent processes.
Collapse
Affiliation(s)
| | - Bhoomi Madhu
- Department of Biology, Texas Woman’s University, Denton, TX 76204-5799
| | - Lionel Faure
- Department of Biology, Texas Woman’s University, Denton, TX 76204-5799
| | - Mehul Vora
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020
| | - Richard W. Padgett
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020
- Waksman Institute of Microbiology Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854-8020
- Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ 08854-8020
| | - Tina L. Gumienny
- Department of Biology, Texas Woman’s University, Denton, TX 76204-5799
| |
Collapse
|
16
|
Savage-Dunn C, Gleason RJ, Liu J, Padgett RW. Mutagenesis and Imaging Studies of BMP Signaling Mechanisms in C. elegans. Methods Mol Biol 2019; 1891:51-73. [PMID: 30414126 DOI: 10.1007/978-1-4939-8904-1_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
C. elegans has played a central role in the elucidation of the TGFβ pathway over the last two decades. This is due to the high conservation of the pathway components and the power of genetic and cell biological approaches applied toward understanding how the pathway signals. In Subheading 3, we detail approaches to study the BMP branch of the TGFβ pathway in C. elegans.
Collapse
Affiliation(s)
- Cathy Savage-Dunn
- Department of Biology, Queens College, CUNY, Flushing, NY, USA
- PhD Programs in Biology and Biochemistry, The Graduate Center, CUNY, New York, NY, USA
| | - Ryan J Gleason
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Richard W Padgett
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ, USA.
- Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
17
|
Abstract
Transforming growth factor β (TGF-β) and related ligands have potent effects on an enormous diversity of biological functions in all animals examined. Because of the strong conservation of TGF-β family ligand functions and signaling mechanisms, studies from multiple animal systems have yielded complementary and synergistic insights. In the nematode Caenorhabditis elegans, early studies were instrumental in the elucidation of TGF-β family signaling mechanisms. Current studies in C. elegans continue to identify new functions for the TGF-β family in this organism as well as new conserved mechanisms of regulation.
Collapse
Affiliation(s)
- Cathy Savage-Dunn
- Department of Biology, Queens College, and the Graduate Center, New York, New York 11367
| | - Richard W Padgett
- Waksman Institute, Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, Piscataway, New Jersey 08854-8020
| |
Collapse
|
18
|
The ADAMTS hyalectanase family: biological insights from diverse species. Biochem J 2017; 473:2011-22. [PMID: 27407170 DOI: 10.1042/bcj20160148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/29/2016] [Indexed: 12/13/2022]
Abstract
The a disintegrin-like and metalloproteinase with thrombospondin type-1 motifs (ADAMTS) family of metzincins are complex secreted proteins that have diverse functions during development. The hyalectanases (ADAMTS1, 4, 5, 8, 9, 15 and 20) are a subset of this family that have enzymatic activity against hyalectan proteoglycans, the processing of which has important implications during development. This review explores the evolution, expression and developmental functions of the ADAMTS family, focusing on the ADAMTS hyalectanases and their substrates in diverse species. This review gives an overview of how the family and their substrates evolved from non-vertebrates to mammals, the expression of the hyalectanases and substrates in different species and their functions during development, and how these functions are conserved across species.
Collapse
|
19
|
Neubauer EF, Poole AZ, Neubauer P, Detournay O, Tan K, Davy SK, Weis VM. A diverse host thrombospondin-type-1 repeat protein repertoire promotes symbiont colonization during establishment of cnidarian-dinoflagellate symbiosis. eLife 2017; 6. [PMID: 28481198 PMCID: PMC5446238 DOI: 10.7554/elife.24494] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/29/2017] [Indexed: 12/24/2022] Open
Abstract
The mutualistic endosymbiosis between cnidarians and dinoflagellates is mediated by complex inter-partner signaling events, where the host cnidarian innate immune system plays a crucial role in recognition and regulation of symbionts. To date, little is known about the diversity of thrombospondin-type-1 repeat (TSR) domain proteins in basal metazoans or their potential role in regulation of cnidarian-dinoflagellate mutualisms. We reveal a large and diverse repertoire of TSR proteins in seven anthozoan species, and show that in the model sea anemone Aiptasia pallida the TSR domain promotes colonization of the host by the symbiotic dinoflagellate Symbiodinium minutum. Blocking TSR domains led to decreased colonization success, while adding exogenous TSRs resulted in a ‘super colonization’. Furthermore, gene expression of TSR proteins was highest at early time-points during symbiosis establishment. Our work characterizes the diversity of cnidarian TSR proteins and provides evidence that these proteins play an important role in the establishment of cnidarian-dinoflagellate symbiosis. DOI:http://dx.doi.org/10.7554/eLife.24494.001 Cnidarians, such as corals and sea anemones, often form a close relationship with microscopic algae that live inside their cells – a partnership, on which the entire coral reef ecosystem depends. These microalgae produce sugars and other compounds that the cnidarians need to survive, while the cnidarians protect the microalgae from the environment and provide the raw materials they need to harness energy from sunlight. However, very little is known about how the two partners are able to communicate with each other to form this close relationship, which is referred to as a symbiosis. Symbiotic relationships between a host and a microbe require a number of adaptations on both sides, and involve numerous signalling molecules. A host species is under constant pressure to develop mechanisms to recognize and tolerate the beneficial microbes without leaving itself vulnerable to attack by microbes that might cause disease. Similarly, the beneficial microbes need to be able to invade and survive inside their host. Previous research has shown that TSR proteins in hosts play a role in recognizing and controlling disease-causing microbes. Until now, however, it was unknown whether TSR proteins are involved in establishing a symbiosis between cnidarians and their algal partners. Neubauer et al. analysed six species of symbiotic cnidarians and discovered a diverse repertoire of TSR proteins. These proteins were found in the host genomes, rather than in the symbiotic algae, strongly suggesting that they originated from the host. Neubauer et al. next incubated a sea anemone species in a solution of TSR proteins and saw that it became ‘super-colonized’ with algae, meaning that over time, millions of the microalgae entered and stayed in the anemone’s tentacles. In contrast, when the TSR proteins were blocked, colonization was almost entirely stopped. This suggests that host TSR proteins play an important role for the microalgae when they colonialize corals and other cnidarians. The signals that enable microalgae to successfully colonialize cnidarians are unquestionably complex and there is still much to learn. These findings add another piece to the puzzle of how symbiotic algae bypass the cnidarian’s immune system to persist and flourish in their host. An important next step will be to test how blocking the genes that encode the TSR proteins will affect the symbiotic relationship between these species. DOI:http://dx.doi.org/10.7554/eLife.24494.002
Collapse
Affiliation(s)
- Emilie-Fleur Neubauer
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Angela Z Poole
- Department of Biology, Western Oregon University, Monmouth, United States.,Department of Integrative Biology, Oregon State University, Corvallis, United States
| | | | | | - Kenneth Tan
- Department of Integrative Biology, Oregon State University, Corvallis, United States
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, Corvallis, United States
| |
Collapse
|
20
|
Xiang Y, Wang DW, Li JY, Xie H, Xu CL, Li Y. Transcriptome Analysis of the Chrysanthemum Foliar Nematode, Aphelenchoides ritzemabosi (Aphelenchida: Aphelenchoididae). PLoS One 2016; 11:e0166877. [PMID: 27875578 PMCID: PMC5119785 DOI: 10.1371/journal.pone.0166877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 11/04/2016] [Indexed: 01/21/2023] Open
Abstract
The chrysanthemum foliar nematode (CFN), Aphelenchoides ritzemabosi, is a plant parasitic nematode that attacks many plants. In this study, a transcriptomes of mixed-stage population of CFN was sequenced on the Illumina HiSeq 2000 platform. 68.10 million Illumina high quality paired end reads were obtained which generated 26,817 transcripts with a mean length of 1,032 bp and an N50 of 1,672 bp, of which 16,467 transcripts were annotated against six databases. In total, 20,311 coding region sequences (CDS), 495 simple sequence repeats (SSRs) and 8,353 single-nucleotide polymorphisms (SNPs) were predicted, respectively. The CFN with the most shared sequences was B. xylophilus with 16,846 (62.82%) common transcripts and 10,543 (39.31%) CFN transcripts matched sequences of all of four plant parasitic nematodes compared. A total of 111 CFN transcripts were predicted as homologues of 7 types of carbohydrate-active enzymes (CAZymes) with plant/fungal cell wall-degrading activities, fewer transcripts were predicted as homologues of plant cell wall-degrading enzymes than fungal cell wall-degrading enzymes. The phylogenetic analysis of GH5, GH16, GH43 and GH45 proteins between CFN and other organisms showed CFN and other nematodes have a closer phylogenetic relationship. In the CFN transcriptome, sixteen types of genes orthologues with seven classes of protein families involved in the RNAi pathway in C. elegans were predicted. This research provides comprehensive gene expression information at the transcriptional level, which will facilitate the elucidation of the molecular mechanisms of CFN and the distribution of gene functions at the macro level, potentially revealing improved methods for controlling CFN.
Collapse
Affiliation(s)
- Yu Xiang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Dong-Wei Wang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Jun-Yi Li
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Hui Xie
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
- * E-mail:
| | - Chun-Ling Xu
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Yu Li
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| |
Collapse
|
21
|
Organ Length Control by an ADAMTS Extracellular Protease in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2016; 6:1449-57. [PMID: 26994289 PMCID: PMC4856095 DOI: 10.1534/g3.116.028019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
MIG-17, a secreted protease of the ADAMTS family, acts in the directed migration of gonadal distal tip cells (DTCs) through regulation of the gonadal basement membrane in Caenorhabditis elegans Here, we show that MIG-17 is also required for the control of pharynx elongation during animal growth. We found that the pharynx was elongated in mig-17 mutants compared with wild type. MIG-17 localized to the pharyngeal basement membrane as well as to the gonadal basement membrane. The number of nuclei in the pharynx, and the pumping rate of the pharynx, were not affected in mig-17 mutants, suggesting that cells constituting the pharynx are elongated, although the pharynx functions normally in these mutants. In contrast to the control of DTC migration, MIG-18, a secreted cofactor of MIG-17, was not essential for pharynx length regulation. In addition, the downstream pathways of MIG-17 involving LET-2/type IV collagen, FBL-1/fibulin-1, and NID-1/nidogen, partly diverged from those in gonad development. These results indicate that basement membrane remodeling is important for organ length regulation, and suggest that MIG-17/ADAMTS functions in similar but distinct molecular machineries in pharyngeal and gonadal basement membranes.
Collapse
|
22
|
ADAMTS proteases in fertility. Matrix Biol 2015; 44-46:54-63. [PMID: 25818315 DOI: 10.1016/j.matbio.2015.03.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/18/2015] [Accepted: 03/18/2015] [Indexed: 01/11/2023]
Abstract
The reproductive organs are unique among adult organs in that they must undergo continual tissue remodelling as a key aspect of their normal function. The processes for persistent maturation and release of new gametes, as well as fertilisation, implantation, placentation, gestation and parturition involve cyclic development and regression of tissues that must continually regenerate to support fertility. The ADAMTS family of proteases has been shown to contribute to many aspects of the tissue morphogenesis required for development and function of each of the reproductive organs. Dysregulation or functional changes in ADAMTS family proteases have been associated with reproductive disorders such as polycystic ovarian syndrome (PCOS) and premature ovarian failure (POF). Likewise, proteolytic substrates of ADAMTS enzymes have also been linked to reproductive function. New insight into the roles of ADAMTS proteases has yielded a deeper understanding of the molecular mechanisms behind fertility with clinical potential to generate therapeutic targets to resolve infertility, develop biomarkers that predict dysfunction of the reproductive organs and potentially offer targets for development of non-hormonal male and female contraceptives.
Collapse
|
23
|
Wilecki M, Lightfoot JW, Susoy V, Sommer RJ. Predatory feeding behaviour in Pristionchus nematodes is dependent on a phenotypic plasticity and induced by serotonin. J Exp Biol 2015; 218:1306-13. [DOI: 10.1242/jeb.118620] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/23/2015] [Indexed: 12/29/2022]
Abstract
Behavioural innovation and morphological adaptation are intrinsically linked but their relationship is often poorly understood. In nematodes, a huge diversity of feeding morphologies and behaviours can be observed to meet their distinctive dietary and environmental demands. Pristionchus and their relatives show varied feeding activities consuming both bacteria and also predating other nematodes. In addition, Pristionchus nematodes display dimorphic mouth structures triggered by an irreversible developmental switch, which generates a narrower mouthed form with a single tooth and a wider mouthed form with an additional tooth. However, little is known about the specific predatory adaptations of these mouth forms nor the associated mechanisms and behaviours. Through a mechanistic analysis of predation behaviours, in particular in the model organism Pristionchus pacificus, we reveal multifaceted feeding modes characterised by dynamic rhythmic switching and tooth stimulation. This complex feeding mode switch is regulated by a previously uncharacterised role for the neurotransmitter serotonin, a process which appears conserved across several predatory nematode species. Furthermore, we investigated the effects of starvation, prey size and prey preference on P. pacificus predatory feeding kinetics revealing predation to be a fundamental component of the P. pacificus feeding repertoire thus providing an additional rich source of nutrition in addition to bacteria. Finally, we found that mouth form morphology also has a striking impact on predation suppressing predatory behaviour in the narrow mouthed form. Our results therefore hint at the regulatory networks involved in controlling predatory feeding and underscore P. pacificus as a model for understanding the evolution of complex behaviours.
Collapse
Affiliation(s)
- Martin Wilecki
- Max-Planck Institute for Developmental Biology, Dept. for Evolutionary Biology, Spemannstrasse 37, 72076 Tuebingen, Germany
| | - James W. Lightfoot
- Max-Planck Institute for Developmental Biology, Dept. for Evolutionary Biology, Spemannstrasse 37, 72076 Tuebingen, Germany
| | - Vladislav Susoy
- Max-Planck Institute for Developmental Biology, Dept. for Evolutionary Biology, Spemannstrasse 37, 72076 Tuebingen, Germany
| | - Ralf J. Sommer
- Max-Planck Institute for Developmental Biology, Dept. for Evolutionary Biology, Spemannstrasse 37, 72076 Tuebingen, Germany
| |
Collapse
|
24
|
Schultz RD, Bennett EE, Ellis EA, Gumienny TL. Regulation of extracellular matrix organization by BMP signaling in Caenorhabditis elegans. PLoS One 2014; 9:e101929. [PMID: 25013968 PMCID: PMC4094471 DOI: 10.1371/journal.pone.0101929] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 06/13/2014] [Indexed: 12/22/2022] Open
Abstract
In mammals, Bone Morphogenetic Protein (BMP) pathway signaling is important for the growth and homeostasis of extracellular matrix, including basement membrane remodeling, scarring, and bone growth. A conserved BMP member in Caenorhabditis elegans, DBL-1, regulates body length in a dose-sensitive manner. Loss of DBL-1 pathway signaling also results in increased anesthetic sensitivity. However, the physiological basis of these pleiotropic phenotypes is largely unknown. We created a DBL-1 over-expressing strain and show that sensitivity to anesthetics is inversely related to the dose of DBL-1. Using pharmacological, genetic analyses, and a novel dye permeability assay for live, microwave-treated animals, we confirm that DBL-1 is required for the barrier function of the cuticle, a specialized extracellular matrix. We show that DBL-1 signaling is required to prevent animals from forming tail-entangled aggregates in liquid. Stripping lipids off the surface of wild-type animals recapitulates this phenotype. Finally, we find that DBL-1 signaling affects ultrastructure of the nematode cuticle in a dose-dependent manner, as surface lipid content and cuticular organization are disrupted in animals with genetically altered DBL-1 levels. We propose that the lipid layer coating the nematode cuticle normally prevents tail entanglement, and that reduction of this layer by loss of DBL-1 signaling promotes aggregation. This work provides a physiological mechanism that unites the DBL-1 signaling pathway roles of not only body size regulation and drug responsiveness, but also the novel Hoechst 33342 staining and aggregation phenotypes, through barrier function, content, and organization of the cuticle.
Collapse
Affiliation(s)
- Robbie D. Schultz
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, United States of America
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America
| | - Emily E. Bennett
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, United States of America
| | - E. Ann Ellis
- Microscopy & Imaging Center, Texas A&M University, College Station, Texas, United States of America
| | - Tina L. Gumienny
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, United States of America
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
25
|
Tuck S. The control of cell growth and body size in Caenorhabditis elegans. Exp Cell Res 2013; 321:71-6. [PMID: 24262077 DOI: 10.1016/j.yexcr.2013.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 01/02/2023]
Abstract
One of the most important ways in which animal species vary is in their size. Individuals of the largest animal ever thought to have lived, the blue whale (Balaenoptera musculus), can reach a weight of 190 t and a length of over 30 m. At the other extreme, among the smallest multicellular animals are males of the parasitic wasp, Dicopomorpha echmepterygis, which even as adults are just 140 μm in length. In terms of volume, these species differ by more than 14 orders of magnitude. Since size has such profound effects on an organism's ecology, anatomy and physiology, an important task for evolutionary biology and ecology is to account for why organisms grow to their characteristic sizes. Equally, a full description of an organism's development must include an explanation of how its growth and body size are regulated. Here I review research on how these processes are controlled in the nematode, Caenorhabditis elegans. Analyses of small and long mutants have revealed that in the worm, DBL-1, a ligand in the TGFβ superfamily family, promotes growth in a dose-dependent manner. DBL-1 signaling affects body size by stimulating the growth of syncytial hypodermal cells rather than controlling cell division. Signals from chemosensory neurons and from the gonad also modulate body size, in part, independently of DBL-1-mediated signaling. Organismal size and morphology is heavily influenced by the cuticle, which acts as the exoskeleton. Finally, I summarize research on several genes that appear to regulate body size by cell autonomously regulating cell growth throughout the worm.
Collapse
Affiliation(s)
- Simon Tuck
- Umeå Center for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden.
| |
Collapse
|
26
|
Abstract
Transforming Growth Factor-β (TGF-β) superfamily ligands regulate many aspects of cell identity, function, and survival in multicellular animals. Genes encoding five TGF-β family members are present in the genome of C. elegans. Two of the ligands, DBL-1 and DAF-7, signal through a canonical receptor-Smad signaling pathway; while a third ligand, UNC-129, interacts with a noncanonical signaling pathway. No function has yet been associated with the remaining two ligands. Here we summarize these signaling pathways and their biological functions.
Collapse
Affiliation(s)
- Tina L Gumienny
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX 77843, USA
| | | |
Collapse
|
27
|
Crook M, Grant WN. Dominant negative mutations of Caenorhabditis elegans daf-7 confer a novel developmental phenotype. Dev Dyn 2013; 242:654-64. [PMID: 23526825 DOI: 10.1002/dvdy.23963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/27/2013] [Accepted: 03/05/2013] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND TGF-β signaling pathways are involved in the control of development in every member of the animal kingdom. As such, TGF-β ligands are widely divergent yet retain a set of core conserved features, specifically, a pre-protein cleavage site and several conserved ligand domain residues, the disruption of which produces a dominant negative phenotype. RESULTS We have extended these observations into an invertebrate system by creating a series of loss-of-function Caenorhabditis elegans daf-7 transgenes. When we tested these mutant transgenes in a daf-7/+ background, we saw a molting and excretory canal phenotype. Members of both pathways downstream of daf-4 were required for this phenotype. CONCLUSIONS Our results show that the basic mechanisms of TGF-β function are conserved across the animal kingdom. A subset of our daf-7 mutations also produced an unexpected and novel phenotype. Epistasis experiments demonstrated that both daf-3/-5 and sma-4/-9 were downstream of our mutant daf-7 transgenes, which suggests not only a role for DAF-7 in the control of molting and the development of the excretory system but also that daf-7 and dbl-1 signaling may converge downstream of their shared Type II receptor, daf-4. Our approach may unveil new roles in development for other invertebrate TGF-β ligands.
Collapse
Affiliation(s)
- Matt Crook
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | | |
Collapse
|