1
|
Markitantova YV, Grigoryan EN. Cellular and Molecular Triggers of Retinal Regeneration in Amphibians. Life (Basel) 2023; 13:1981. [PMID: 37895363 PMCID: PMC10608152 DOI: 10.3390/life13101981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Understanding the mechanisms triggering the initiation of retinal regeneration in amphibians may advance the quest for prevention and treatment options for degenerating human retina diseases. Natural retinal regeneration in amphibians requires two cell sources, namely retinal pigment epithelium (RPE) and ciliary marginal zone. The disruption of RPE interaction with photoreceptors through surgery or injury triggers local and systemic responses for retinal protection. In mammals, disease-induced damage to the retina results in the shutdown of the function, cellular or oxidative stress, pronounced immune response, cell death and retinal degeneration. In contrast to retinal pathology in mammals, regenerative responses in amphibians have taxon-specific features ensuring efficient regeneration. These include rapid hemostasis, the recruitment of cells and factors of endogenous defense systems, activities of the immature immune system, high cell viability, and the efficiency of the extracellular matrix, cytoskeleton, and cell surface remodeling. These reactions are controlled by specific signaling pathways, transcription factors, and the epigenome, which are insufficiently studied. This review provides a summary of the mechanisms initiating retinal regeneration in amphibians and reveals its features collectively directed at recruiting universal responses to trauma to activate the cell sources of retinal regeneration. This study of the integrated molecular network of these processes is a prospect for future research in demand biomedicine.
Collapse
Affiliation(s)
| | - Eleonora N. Grigoryan
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| |
Collapse
|
2
|
Grigoryan EN. Cell Sources for Retinal Regeneration: Implication for Data Translation in Biomedicine of the Eye. Cells 2022; 11:cells11233755. [PMID: 36497013 PMCID: PMC9738527 DOI: 10.3390/cells11233755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
The main degenerative diseases of the retina include macular degeneration, proliferative vitreoretinopathy, retinitis pigmentosa, and glaucoma. Novel approaches for treating retinal diseases are based on cell replacement therapy using a variety of exogenous stem cells. An alternative and complementary approach is the potential use of retinal regeneration cell sources (RRCSs) containing retinal pigment epithelium, ciliary body, Müller glia, and retinal ciliary region. RRCSs in lower vertebrates in vivo and in mammals mostly in vitro are able to proliferate and exhibit gene expression and epigenetic characteristics typical for neural/retinal cell progenitors. Here, we review research on the factors controlling the RRCSs' properties, such as the cell microenvironment, growth factors, cytokines, hormones, etc., that determine the regenerative responses and alterations underlying the RRCS-associated pathologies. We also discuss how the current data on molecular features and regulatory mechanisms of RRCSs could be translated in retinal biomedicine with a special focus on (1) attempts to obtain retinal neurons de novo both in vivo and in vitro to replace damaged retinal cells; and (2) investigations of the key molecular networks stimulating regenerative responses and preventing RRCS-related pathologies.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
3
|
Yamamoto M, Ong Lee Chen A, Shinozuka T, Sasai N. The Rx transcription factor is required for determination of the retinal lineage and regulates the timing of neuronal differentiation. Dev Growth Differ 2022; 64:318-324. [PMID: 35700309 DOI: 10.1111/dgd.12796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/25/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022]
Abstract
Understanding the molecular mechanisms leading to retinal development is of great interest for both basic scientific and clinical applications. Several signaling molecules and transcription factors involved in retinal development have been isolated and analyzed; however, determining the direct impact of the loss of a specific molecule is problematic, due to difficulties in identifying the corresponding cellular lineages in different individuals. Here, we conducted genome-wide expression analysis with embryonic stem cells devoid of the Rx gene, which encodes one of several homeobox transcription factors essential for retinal development. We performed three-dimensional differentiation of wild-type and mutant cells and compared their gene-expression profiles. The mutant tissue failed to differentiate into the retinal lineage and exhibited precocious expression of genes characteristic of neuronal cells. Together, these results suggest that Rx expression is an important biomarker of the retinal lineage and that it helps regulates appropriate differentiation stages.
Collapse
Affiliation(s)
- Maho Yamamoto
- Developmental Biomedical Science, Division of Biological Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Japan
| | - Agnes Ong Lee Chen
- Developmental Biomedical Science, Division of Biological Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Japan
| | - Takuma Shinozuka
- Developmental Biomedical Science, Division of Biological Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Japan
| | - Noriaki Sasai
- Developmental Biomedical Science, Division of Biological Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Japan
| |
Collapse
|
4
|
Grigoryan EN. Pigment Epithelia of the Eye: Cell-Type Conversion in Regeneration and Disease. Life (Basel) 2022; 12:life12030382. [PMID: 35330132 PMCID: PMC8955580 DOI: 10.3390/life12030382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/17/2022] Open
Abstract
Pigment epithelial cells (PECs) of the retina (RPE), ciliary body, and iris (IPE) are capable of altering their phenotype. The main pathway of phenotypic switching of eye PECs in vertebrates and humans in vivo and/or in vitro is neural/retinal. Besides, cells of amphibian IPE give rise to the lens and its derivatives, while mammalian and human RPE can be converted along the mesenchymal pathway. The PECs’ capability of conversion in vivo underlies the lens and retinal regeneration in lower vertebrates and retinal diseases such as proliferative vitreoretinopathy and fibrosis in mammals and humans. The present review considers these processes studied in vitro and in vivo in animal models and in humans. The molecular basis of conversion strategies in PECs is elucidated. Being predetermined onto- and phylogenetically, it includes a species-specific molecular context, differential expression of transcription factors, signaling pathways, and epigenomic changes. The accumulated knowledge regarding the mechanisms of PECs phenotypic switching allows the development of approaches to specified conversion for many purposes: obtaining cells for transplantation, creating conditions to stimulate natural regeneration of the retina and the lens, blocking undesirable conversions associated with eye pathology, and finding molecular markers of pathology to be targets of therapy.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
5
|
George SM, Lu F, Rao M, Leach LL, Gross JM. The retinal pigment epithelium: Development, injury responses, and regenerative potential in mammalian and non-mammalian systems. Prog Retin Eye Res 2021; 85:100969. [PMID: 33901682 DOI: 10.1016/j.preteyeres.2021.100969] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Diseases that result in retinal pigment epithelium (RPE) degeneration, such as age-related macular degeneration (AMD), are among the leading causes of blindness worldwide. Atrophic (dry) AMD is the most prevalent form of AMD and there are currently no effective therapies to prevent RPE cell death or restore RPE cells lost from AMD. An intriguing approach to treat AMD and other RPE degenerative diseases is to develop therapies focused on stimulating endogenous RPE regeneration. For this to become feasible, a deeper understanding of the mechanisms underlying RPE development, injury responses and regenerative potential is needed. In mammals, RPE regeneration is extremely limited; small lesions can be repaired by the expansion of adjacent RPE cells, but large lesions cannot be repaired as remaining RPE cells are unable to functionally replace lost RPE tissue. In some injury paradigms, RPE cells proliferate but do not regenerate a morphologically normal monolayer, while in others, proliferation is pathogenic and results in further disruption to the retina. This is in contrast to non-mammalian vertebrates, which possess tremendous RPE regenerative potential. Here, we discuss what is known about RPE formation during development in mammalian and non-mammalian vertebrates, we detail the processes by which RPE cells respond to injury, and we describe examples of RPE-to-retina and RPE-to-RPE regeneration in non-mammalian vertebrates. Finally, we outline barriers to RPE-dependent regeneration in mammals that could potentially be overcome to stimulate a regenerative response from the RPE.
Collapse
Affiliation(s)
- Stephanie M George
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Fangfang Lu
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Mishal Rao
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Lyndsay L Leach
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Jeffrey M Gross
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
6
|
Grigoryan EN. Potential Endogenous Cell Sources for Retinal Regeneration in Vertebrates and Humans: Progenitor Traits and Specialization. Biomedicines 2020; 8:E208. [PMID: 32664635 PMCID: PMC7400588 DOI: 10.3390/biomedicines8070208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/04/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022] Open
Abstract
Retinal diseases often cause the loss of photoreceptor cells and, consequently, impairment of vision. To date, several cell populations are known as potential endogenous retinal regeneration cell sources (RRCSs): the eye ciliary zone, the retinal pigment epithelium, the iris, and Müller glia. Factors that can activate the regenerative responses of RRCSs are currently under investigation. The present review considers accumulated data on the relationship between the progenitor properties of RRCSs and the features determining their differentiation. Specialized RRCSs (all except the ciliary zone in low vertebrates), despite their differences, appear to be partially "prepared" to exhibit their plasticity and be reprogrammed into retinal neurons due to the specific gene expression and epigenetic landscape. The "developmental" characteristics of RRCS gene expression are predefined by the pathway by which these cell populations form during eye morphogenesis; the epigenetic features responsible for chromatin organization in RRCSs are under intracellular regulation. Such genetic and epigenetic readiness is manifested in vivo in lower vertebrates and in vitro in higher ones under conditions permissive for cell phenotype transformation. Current studies on gene expression in RRCSs and changes in their epigenetic landscape help find experimental approaches to replacing dead cells through recruiting cells from endogenous resources in vertebrates and humans.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
7
|
Kha CX, Guerin DJ, Tseng KAS. Studying In Vivo Retinal Progenitor Cell Proliferation in Xenopus laevis. Methods Mol Biol 2020; 2092:19-33. [PMID: 31786778 PMCID: PMC11233400 DOI: 10.1007/978-1-0716-0175-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The efficient generation and maintenance of retinal progenitor cells (RPCs) are key goals needed for developing strategies for productive eye repair. Although vertebrate eye development and retinogenesis are well characterized, the mechanisms that can initiate RPC proliferation following injury-induced regrowth and repair remain unknown. This is partly because endogenous RPC proliferation typically occurs during embryogenesis while studies of retinal regeneration have largely utilized adult (or mature) models. We found that embryos of the African clawed frog, Xenopus laevis, successfully regrew functional eyes after ablation. The initiation of regrowth induced a robust RPC proliferative response with a concomitant delay of the endogenous RPC differentiation program. During eye regrowth, overall embryonic development proceeded normally. Here, we provide a protocol to study regrowth-dependent RPC proliferation in vivo. This system represents a robust and low-cost strategy to rapidly define fundamental mechanisms that regulate regrowth-initiated RPC proliferation, which will facilitate progress in identifying promising strategies for productive eye repair.
Collapse
Affiliation(s)
- Cindy X Kha
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Dylan J Guerin
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Kelly Ai-Sun Tseng
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
8
|
Kha CX, Guerin DJ, Tseng KAS. Using the Xenopus Developmental Eye Regrowth System to Distinguish the Role of Developmental Versus Regenerative Mechanisms. Front Physiol 2019; 10:502. [PMID: 31139088 PMCID: PMC6518849 DOI: 10.3389/fphys.2019.00502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
A longstanding challenge in regeneration biology is to understand the role of developmental mechanisms in restoring lost or damaged tissues and organs. As these body structures were built during embryogenesis, it is not surprising that a number of developmental mechanisms are also active during regeneration. However, it remains unclear whether developmental mechanisms act similarly or differently during regeneration as compared to development. Since regeneration is studied in the context of mature, differentiated tissues, it is difficult to evaluate comparative studies with developmental processes due to the latter's highly proliferative environment. We have taken a more direct approach to study regeneration in a developmental context (regrowth). Xenopus laevis, the African clawed frog, is a well-established model for both embryology and regeneration studies, especially for the eye. Xenopus eye development is well-defined. Xenopus is also an established model for retinal and lens regeneration studies. Previously, we demonstrated that Xenopus tailbud embryo can successfully regrow a functional eye that is morphologically indistinguishable from an age-matched control eye. In this study, we assessed the temporal regulation of retinal differentiation and patterning restoration during eye regrowth. Our findings showed that during regrowth, cellular patterning and retinal layer formation was delayed by approximately 1 day but was restored by 3 days when compared to eye development. An assessment of the differentiation of ganglion cells, photoreceptor cells, and Müller glia indicated that the retinal birth order generated during regrowth was consistent with that observed for eye development. Thus, retina differentiation and patterning during regrowth is similar to endogenous eye development. We used this eye regrowth model to assess the role of known mechanisms in development versus regrowth. Loss-of-function studies showed that Pax6 was required for both eye development and regrowth whereas apoptosis was only required for regrowth. Together, these results revealed that the mechanisms required for both development and regrowth can be distinguished from regrowth-specific ones. Our study highlights this developmental model of eye regrowth as a robust platform to systematically and efficiently define the molecular mechanisms that are required for regeneration versus development.
Collapse
Affiliation(s)
- Cindy X Kha
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Dylan J Guerin
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Kelly Ai-Sun Tseng
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
9
|
Abstract
Purpose Retinal degenerative diseases lead to the death of retinal neurons causing visual impairment and blindness. In lower order vertebrates, the retina and its surrounding tissue contain stem cell niches capable of regenerating damaged tissue. Here we examine these niches and review their capacity to be used as retinal stem/progenitor cells (RSC/RPCs) for retinal repair. Recent Findings Exogenous factors can control the in vitro activation of RSCs/PCs found in several niches within the adult eye including cells in the ciliary margin, the retinal pigment epithelium, iris pigment epithelium as well as the inducement of Müller and amacrine cells within the neural retina itself. Recently, factors have been identified for the activation of adult mammalian Müller cells to a RPC state in vivo. Summary Whereas cell transplantation still holds potential for retinal repair, activation of the dormant native regeneration process may lead to a more successful process including greater integration efficiency and proper synaptic targeting.
Collapse
|
10
|
Pan Y, Kelly LE, El-Hodiri HM. Identification of retinal homeobox (rax) gene-dependent genes by a microarray approach: The DNA endoglycosylase neil3 is a major downstream component of the rax genetic pathway. Dev Dyn 2018; 247:1199-1210. [PMID: 30311321 DOI: 10.1002/dvdy.24679] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The retinal homeobox (rx/rax) gene is a transcription factor expressed in the developing eye field that is necessary for normal eye development. rax is necessary for retinal specification and stem cell development. The genetic program of early retinal development, including rax expression, can be induced in naïve ectoderm by activation of insulin-like growth factor (IGF) signaling. We have undertaken a microarray-based approach to identify rax-dependent IGF-induced genes. RESULTS We identified 21 IGF-induced genes that exhibit at least a two-fold decrease in expression when rax expression is knocked down. Ten of these genes were expressed in the developing eye, eight were expressed in the ciliary marginal zone of the mature tadpole retina, and four could significantly rescue the rax knockdown phenotype. One of these, the nei endonuclease VIII-like 3 (neil3) gene, rescued the rax knockdown phenotype to a remarkable degree. We found that neil3 is necessary for normal retinal lamination and retinal neuron differentiation. CONCLUSIONS We have identified neil3 as a component of the rax genetic pathway necessary for normal retinal progenitor cell development. neil3 is involved in the base excision DNA repair pathway, suggesting that this pathway is essential for normal rax-dependent progenitor cell development in the mature retina. Developmental Dynamics 247:1199-1210, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yi Pan
- Center for Molecular and Human Genetics, Nationwide Children's Research Institute, The Ohio State University, Columbus, Ohio
| | - Lisa E Kelly
- Center for Molecular and Human Genetics, Nationwide Children's Research Institute, The Ohio State University, Columbus, Ohio
| | - Heithem M El-Hodiri
- Center for Molecular and Human Genetics, Nationwide Children's Research Institute, The Ohio State University, Columbus, Ohio.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
11
|
Kha CX, Son PH, Lauper J, Tseng KAS. A model for investigating developmental eye repair in Xenopus laevis. Exp Eye Res 2018; 169:38-47. [PMID: 29357285 DOI: 10.1016/j.exer.2018.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/05/2018] [Accepted: 01/09/2018] [Indexed: 12/13/2022]
Abstract
Vertebrate eye development is complex and requires early interactions between neuroectoderm and surface ectoderm during embryogenesis. In the African clawed frog, Xenopus laevis, individual eye tissues such as the retina and lens can undergo regeneration. However, it has been reported that removal of either the specified eye field at the neurula stage or the eye during tadpole stage does not induce replacement. Here we describe a model for investigating Xenopus developmental eye repair. We found that tailbud embryos can readily regrow eyes after surgical removal of over 83% of the specified eye and lens tissues. The regrown eye reached a comparable size to the contralateral control by 5 days and overall animal development was normal. It contained the expected complement of eye cell types (including the pigmented epithelium, retina and lens), and is connected to the brain. Our data also demonstrate that apoptosis, an early mechanism that regulates appendage regeneration, is also required for eye regrowth. Treatment with apoptosis inhibitors (M50054 or NS3694) blocked eye regrowth by inhibiting caspase activation. Together, our findings indicate that frog embryos can undergo successful eye repair after considerable tissue loss and reveals a required role for apoptosis in this process. Furthermore, this Xenopus model allows for rapid comparisons of productive eye repair and developmental pathways. It can also facilitate the molecular dissection of signaling mechanisms necessary for initiating repair.
Collapse
Affiliation(s)
- Cindy X Kha
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Box 454004, Las Vegas, NV 89154, United States
| | - Philip H Son
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Box 454004, Las Vegas, NV 89154, United States
| | - Julia Lauper
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Box 454004, Las Vegas, NV 89154, United States
| | - Kelly Ai-Sun Tseng
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Box 454004, Las Vegas, NV 89154, United States.
| |
Collapse
|
12
|
Langhe R, Chesneau A, Colozza G, Hidalgo M, Ail D, Locker M, Perron M. Müller glial cell reactivation in Xenopus models of retinal degeneration. Glia 2017; 65:1333-1349. [PMID: 28548249 DOI: 10.1002/glia.23165] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 04/08/2017] [Accepted: 04/24/2017] [Indexed: 11/11/2022]
Abstract
A striking aspect of tissue regeneration is its uneven distribution among different animal classes, both in terms of modalities and efficiency. The retina does not escape the rule, exhibiting extraordinary self-repair properties in anamniote species but extremely limited ones in mammals. Among cellular sources prone to contribute to retinal regeneration are Müller glial cells, which in teleosts have been known for a decade to re-acquire a stem/progenitor state and regenerate retinal neurons following injury. As their regenerative potential was hitherto unexplored in amphibians, we tackled this issue using two Xenopus retinal injury paradigms we implemented: a mechanical needle poke injury and a transgenic model allowing for conditional photoreceptor cell ablation. These models revealed that Müller cells are indeed able to proliferate and replace lost cells following damage/degeneration in the retina. Interestingly, the extent of cell cycle re-entry appears dependent on the age of the animal, with a refractory period in early tadpole stages. Our findings pave the way for future studies aimed at identifying the molecular cues that either sustain or constrain the recruitment of Müller glia, an issue of utmost importance to set up therapeutic strategies for eye regenerative medicine.
Collapse
Affiliation(s)
- Rahul Langhe
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, 91405, France
| | - Albert Chesneau
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, 91405, France
| | - Gabriele Colozza
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, 91405, France
| | - Magdalena Hidalgo
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, 91405, France
| | - Divya Ail
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, 91405, France
| | - Morgane Locker
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, 91405, France
| | - Muriel Perron
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, 91405, France.,Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, 91405, France
| |
Collapse
|
13
|
Naitoh H, Suganuma Y, Ueda Y, Sato T, Hiramuki Y, Fujisawa-Sehara A, Taketani S, Araki M. Upregulation of matrix metalloproteinase triggers transdifferentiation of retinal pigmented epithelial cells in Xenopus laevis: A Link between inflammatory response and regeneration. Dev Neurobiol 2017; 77:1086-1100. [PMID: 28371543 DOI: 10.1002/dneu.22497] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/23/2017] [Accepted: 03/23/2017] [Indexed: 11/09/2022]
Abstract
In adult Xenopus eyes, when the whole retina is removed, retinal pigmented epithelial (RPE) cells become activated to be retinal stem cells and regenerate the whole retina. In the present study, using a tissue culture model, it was examined whether upregulation of matrix metalloproteinases (Mmps) triggers retinal regeneration. Soon after retinal removal, Xmmp9 and Xmmp18 were strongly upregulated in the tissues of the RPE and the choroid. In the culture, Mmp expression in the RPE cells corresponded with their migration from the choroid. A potent MMP inhibitor, 1,10-PNTL, suppressed RPE cell migration, proliferation, and formation of an epithelial structure in vitro. The mechanism involved in upregulation of Mmps was further investigated. After retinal removal, inflammatory cytokine genes, IL-1β and TNF-α, were upregulated both in vivo and in vitro. When the inflammation inhibitors dexamethasone or Withaferin A were applied in vitro, RPE cell migration was severely affected, suppressing transdifferentiation. These results demonstrate that Mmps play a pivotal role in retinal regeneration, and suggest that inflammatory cytokines trigger Mmp upregulation, indicating a direct link between the inflammatory reaction and retinal regeneration. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1086-1100, 2017.
Collapse
Affiliation(s)
- Hanako Naitoh
- Developmental Neurobiology Laboratory, Department of Biological Sciences, Nara Women's University, Nara, 630-8506, Japan
| | - Yukari Suganuma
- Developmental Neurobiology Laboratory, Department of Biological Sciences, Nara Women's University, Nara, 630-8506, Japan
| | - Yoko Ueda
- Developmental Neurobiology Laboratory, Department of Biological Sciences, Nara Women's University, Nara, 630-8506, Japan
| | - Takahiko Sato
- Department of Growth Regulation, Institute of Frontier Medical Sciences, Kyoto University, 606-8585, Japan
| | - Yosuke Hiramuki
- Department of Growth Regulation, Institute of Frontier Medical Sciences, Kyoto University, 606-8585, Japan
| | - Atsuko Fujisawa-Sehara
- Department of Growth Regulation, Institute of Frontier Medical Sciences, Kyoto University, 606-8585, Japan
| | - Shigeru Taketani
- Department of Biotechnology, Kyoto Institute of Technology, Kyoto, 606-8585, Japan
| | - Masasuke Araki
- Developmental Neurobiology Laboratory, Department of Biological Sciences, Nara Women's University, Nara, 630-8506, Japan.,Unit of Neural Development and Regeneration, Department of Biology, Nara Medical University, Nara, 634-8521, Japan
| |
Collapse
|
14
|
Tseng AS. Seeing the future: usingXenopusto understand eye regeneration. Genesis 2017; 55. [DOI: 10.1002/dvg.23003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Ai-Sun Tseng
- School of Life Sciences; University of Nevada; Las Vegas, 4505 South Maryland Parkway, Box 454004 Las Vegas Nevada 89154
| |
Collapse
|
15
|
Ail D, Perron M. Retinal Degeneration and Regeneration-Lessons From Fishes and Amphibians. CURRENT PATHOBIOLOGY REPORTS 2017; 5:67-78. [PMID: 28255526 PMCID: PMC5309292 DOI: 10.1007/s40139-017-0127-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Retinal degenerative diseases have immense socio-economic impact. Studying animal models that recapitulate human eye pathologies aids in understanding the pathogenesis of diseases and allows for the discovery of novel therapeutic strategies. Some non-mammalian species are known to have remarkable regenerative abilities and may provide the basis to develop strategies to stimulate self-repair in patients suffering from these retinal diseases. RECENT FINDINGS Non-mammalian organisms, such as zebrafish and Xenopus, have become attractive model systems to study retinal diseases. Additionally, many fish and amphibian models of retinal cell ablation and cell lineage analysis have been developed to study regeneration. These investigations highlighted several cellular sources for retinal repair in different fish and amphibian species. Moreover, major differences in repair mechanisms have been reported in these animal models. SUMMARY This review aims to emphasize first on the importance of zebrafish and Xenopus models in studying the pathogenesis of retinal diseases and, second, on the different modes of regeneration processes in these model organisms.
Collapse
Affiliation(s)
- Divya Ail
- Paris-Saclay Institute of Neuroscience, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Muriel Perron
- Paris-Saclay Institute of Neuroscience, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Orsay, France
- Centre d’Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France
| |
Collapse
|
16
|
Bosse JL, El-Hodiri HM. Expression of the insulinoma-associated 1 (insm1) gene in Xenopus laevis tadpole retina and brain. Gene Expr Patterns 2016; 22:26-29. [PMID: 27670931 DOI: 10.1016/j.gep.2016.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 11/29/2022]
Abstract
The insulinoma-associated 1 (insm1) gene is involved in the differentiation of several neuronal and endoderm derived cell types. insm1 is expressed in the retina and brain of several vertebrates including Xenopus laevis. We report the detailed expression pattern of insm1 in the X. laevis tadpole retina and brain. X. laevis insm1 is expressed in most of the ciliary marginal zone of the mature retina and the optic tectum, dorsal pallium, hypothalamus and preoptic areas of the developing tadpole brain. Overall, insm1 is expressed in regions of the tadpole brain and retina harboring populations of progenitor cells.
Collapse
Affiliation(s)
- Jennifer L Bosse
- Graduate Program in Molecular, Cellular, and Developmental Biology, College of Biological Sciences, Ohio State University, Columbus, OH, USA
| | - Heithem M El-Hodiri
- Graduate Program in Molecular, Cellular, and Developmental Biology, College of Biological Sciences, Ohio State University, Columbus, OH, USA; Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, College of Medicine, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
17
|
Martinez-De Luna RI, Ku RY, Aruck AM, Santiago F, Viczian AS, San Mauro D, Zuber ME. Müller glia reactivity follows retinal injury despite the absence of the glial fibrillary acidic protein gene in Xenopus. Dev Biol 2016; 426:219-235. [PMID: 26996101 DOI: 10.1016/j.ydbio.2016.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 01/02/2023]
Abstract
Intermediate filament proteins are structural components of the cellular cytoskeleton with cell-type specific expression and function. Glial fibrillary acidic protein (GFAP) is a type III intermediate filament protein and is up-regulated in glia of the nervous system in response to injury and during neurodegenerative diseases. In the retina, GFAP levels are dramatically increased in Müller glia and are thought to play a role in the extensive structural changes resulting in Müller cell hypertrophy and glial scar formation. In spite of similar changes to the morphology of Xenopus Müller cells following injury, we found that Xenopus lack a gfap gene. Other type III intermediate filament proteins were, however, significantly induced following rod photoreceptor ablation and retinal ganglion cell axotomy. The recently available X. tropicalis and X. laevis genomes indicate a small deletion most likely resulted in the loss of the gfap gene during anuran evolution. Lastly, a survey of representative species from all three extant amphibian orders including the Anura (frogs, toads), Caudata (salamanders, newts), and Gymnophiona (caecilians) suggests that deletion of the gfap locus occurred in the ancestor of all Anura after its divergence from the Caudata ancestor around 290 million years ago. Our results demonstrate that extensive changes in Müller cell morphology following retinal injury do not require GFAP in Xenopus, and other type III intermediate filament proteins may be involved in the gliotic response.
Collapse
Affiliation(s)
- Reyna I Martinez-De Luna
- Departments of Ophthalmology, Biochemistry & Molecular Biology, Neuroscience & Physiology, The Center for Vision Research and SUNY Eye Institute, Upstate Medical University, Syracuse 13210, NY, USA
| | - Ray Y Ku
- Departments of Ophthalmology, Biochemistry & Molecular Biology, Neuroscience & Physiology, The Center for Vision Research and SUNY Eye Institute, Upstate Medical University, Syracuse 13210, NY, USA
| | - Alexandria M Aruck
- Departments of Ophthalmology, Biochemistry & Molecular Biology, Neuroscience & Physiology, The Center for Vision Research and SUNY Eye Institute, Upstate Medical University, Syracuse 13210, NY, USA
| | - Francesca Santiago
- Departments of Ophthalmology, Biochemistry & Molecular Biology, Neuroscience & Physiology, The Center for Vision Research and SUNY Eye Institute, Upstate Medical University, Syracuse 13210, NY, USA
| | - Andrea S Viczian
- Departments of Ophthalmology, Biochemistry & Molecular Biology, Neuroscience & Physiology, The Center for Vision Research and SUNY Eye Institute, Upstate Medical University, Syracuse 13210, NY, USA
| | - Diego San Mauro
- Department of Zoology & Physical Anthropology, Faculty of Biological Sciences, Complutense University, Madrid 28040, Spain
| | - Michael E Zuber
- Departments of Ophthalmology, Biochemistry & Molecular Biology, Neuroscience & Physiology, The Center for Vision Research and SUNY Eye Institute, Upstate Medical University, Syracuse 13210, NY, USA.
| |
Collapse
|
18
|
Hamon A, Roger JE, Yang XJ, Perron M. Müller glial cell-dependent regeneration of the neural retina: An overview across vertebrate model systems. Dev Dyn 2016; 245:727-38. [PMID: 26661417 PMCID: PMC4900950 DOI: 10.1002/dvdy.24375] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/12/2015] [Accepted: 11/22/2015] [Indexed: 12/21/2022] Open
Abstract
Retinal dystrophies are a major cause of blindness for which there are currently no curative treatments. Transplantation of stem cell‐derived neuronal progenitors to replace lost cells has been widely investigated as a therapeutic option. Another promising strategy would be to trigger self‐repair mechanisms in patients, through the recruitment of endogenous cells with stemness properties. Accumulating evidence in the past 15 year0s has revealed that several retinal cell types possess neurogenic potential, thus opening new avenues for regenerative medicine. Among them, Müller glial cells have been shown to be able to undergo a reprogramming process to re‐acquire a stem/progenitor state, allowing them to proliferate and generate new neurons for repair following retinal damages. Although Müller cell–dependent spontaneous regeneration is remarkable in some species such as the fish, it is extremely limited and ineffective in mammals. Understanding the cellular events and molecular mechanisms underlying Müller cell activities in species endowed with regenerative capacities could provide knowledge to unlock the restricted potential of their mammalian counterparts. In this context, the present review provides an overview of Müller cell responses to injury across vertebrate model systems and summarizes recent advances in this rapidly evolving field. Developmental Dynamics 245:727–738, 2016. © 2015 The Authors. Developmental Dynamics published by Wiley Periodicals, Inc. The present review provides an overview of Müller cell responses to injury across vertebrate model systems and summarizes recent advances in this rapidly evolving field.
Collapse
Affiliation(s)
- Annaïg Hamon
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, France.,Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France
| | - Jérôme E Roger
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, France.,Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France
| | - Xian-Jie Yang
- Stein Eye Institute, University of California Los Angeles, Los Angeles, California
| | - Muriel Perron
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, France.,Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France.,Stein Eye Institute, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
19
|
Chen X, Xu C. Protein expression profiling in head fragments during planarian regeneration after amputation. Dev Genes Evol 2015; 225:79-93. [PMID: 25697422 DOI: 10.1007/s00427-015-0494-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 02/09/2015] [Indexed: 10/24/2022]
Abstract
Following amputation, a planarian tail fragment can regrow into a complete organism including a well-organized brain within about 2-3 weeks, thus restoring the structure and function to presurgical levels. Despite the enormous potential of these animals for regenerative medicine, our understanding of the exact mechanism of planarian regeneration is incomplete. To better understand the molecular nature of planarian head regeneration, we applied two-dimensional electrophoresis (2-DE)/matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF)/time-of-flight mass spectrometry (TOF MS) technique to analyze the dynamic proteomic expression profiles over the course of 6 to 168 h post-decapitation. This approach identified a total of 141 differentially expressed proteins, 47 of which exhibited exceptionally high fold changes (≥3-fold change). Of these, Rx protein, an important regulator of head and brain development, was considered to be closely related to planarian head regeneration because of its exceptional high expression almost throughout the time course of regeneration process. Functional annotation analysis classified the 141 proteins into eight categories: (1) signaling, (2) Ca(2+) binding and translocation, (3) transcription and translation, (4) cytoskeleton, (5) metabolism, (6) cell protection, (7) tissue differentiation, and (8) cell cycle. Signaling pathway analysis indicated that Wnt1/Ca(2+) signaling pathway was activated during head regeneration. Integrating the analyses of proteome expression profiling, functional annotation, and signaling pathway, amputation-induced head reformation requires some mechanisms to promote cell proliferation and differentiation, including differential regulation of proapoptotic and antiapoptotic proteins, and the regulation of proliferation and differentiation-related proteins. Importantly, Wnt1/Ca(2+) signaling pathway upregulates Rx expression, finally facilitating the differentiation of neoblasts into various cell types. Taken together, our study demonstrated that proteomic analysis approach used by us is a powerful tool in understanding molecular process related to head regeneration of planarian.
Collapse
Affiliation(s)
- Xiaoguang Chen
- Animal Science and Technology School, Henan University of Science and Technology, Luoyang, 471003, China
| | | |
Collapse
|
20
|
Yin J, Morrissey ME, Shine L, Kennedy C, Higgins DG, Kennedy BN. Genes and signaling networks regulated during zebrafish optic vesicle morphogenesis. BMC Genomics 2014; 15:825. [PMID: 25266257 PMCID: PMC4190348 DOI: 10.1186/1471-2164-15-825] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 09/24/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The genetic cascades underpinning vertebrate early eye morphogenesis are poorly understood. One gene family essential for eye morphogenesis encodes the retinal homeobox (Rx) transcription factors. Mutations in the human retinal homeobox gene (RAX) can lead to gross morphological phenotypes ranging from microphthalmia to anophthalmia. Zebrafish rx3 null mutants produce a similar striking eyeless phenotype with an associated expanded forebrain. Thus, we used zebrafish rx3-/- mutants as a model to uncover an Rx3-regulated gene network during early eye morphogenesis. RESULTS Rx3-regulated genes were identified using whole transcriptomic sequencing (RNA-seq) of rx3-/- mutants and morphologically wild-type siblings during optic vesicle morphogenesis. A gene co-expression network was then constructed for the Rx3-regulated genes, identifying gene cross-talk during early eye development. Genes highly connected in the network are hub genes, which tend to exhibit higher expression changes between rx3-/- mutants and normal phenotype siblings. Hub genes down-regulated in rx3-/- mutants encompass homeodomain transcription factors and mediators of retinoid-signaling, both associated with eye development and known human eye disorders. In contrast, genes up-regulated in rx3-/- mutants are centered on Wnt signaling pathways, associated with brain development and disorders. The temporal expression pattern of Rx3-regulated genes was further profiled during early development from maternal stage until visual function is fully mature. Rx3-regulated genes exhibited synchronized expression patterns, and a transition of gene expression during the early segmentation stage when Rx3 was highly expressed. Furthermore, most of these deregulated genes are enriched with multiple RAX-binding motif sequences on the gene promoter. CONCLUSIONS Here, we assembled a comprehensive model of Rx3-regulated genes during early eye morphogenesis. Rx3 promotes optic vesicle morphogenesis and represses brain development through a highly correlated and modulated network, exhibiting repression of genes mediating Wnt signaling and concomitant enhanced expression of homeodomain transcription factors and retinoid-signaling genes.
Collapse
Affiliation(s)
- Jun Yin
- />UCD Conway Institute, UCD School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4 Ireland
- />Department of Genetics, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Maria E Morrissey
- />UCD Conway Institute, UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4 Ireland
| | - Lisa Shine
- />UCD Conway Institute, UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4 Ireland
| | - Ciarán Kennedy
- />UCD Conway Institute, UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4 Ireland
| | - Desmond G Higgins
- />UCD Conway Institute, UCD School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4 Ireland
| | - Breandán N Kennedy
- />UCD Conway Institute, UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4 Ireland
| |
Collapse
|
21
|
Fischer AJ, Bosse JL, El-Hodiri HM. Reprint of: the ciliary marginal zone (CMZ) in development and regeneration of the vertebrate eye. Exp Eye Res 2014; 123:115-20. [PMID: 24811219 DOI: 10.1016/j.exer.2014.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 08/25/2013] [Indexed: 10/25/2022]
Abstract
The ciliary marginal zone (CMZ) is a circumferential ring of cells found at the extreme periphery of the maturing and mature neural retina that consists of retinal stem and progenitor cells. It functions to add retinal neurons to the periphery of the neural retina in larval and adult fish, larval frogs, and birds. Additionally, the CMZ may contribute to regeneration of the damaged retina in frogs and fish. In mammals, cells from the ciliary epithelium can be induced to express retinal stem cell-like characteristics in culture but may not comprise a classically defined CMZ.
Collapse
Affiliation(s)
- Andy J Fischer
- Department of Neuroscience, The Ohio State University, USA; Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, USA
| | - Jennifer L Bosse
- Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, USA
| | - Heithem M El-Hodiri
- Department of Neuroscience, The Ohio State University, USA; Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, USA; Department of Pediatrics, The Ohio State University, USA; Center for Molecular and Human Genetics, Nationwide Children's Research Institute, Columbus, OH, USA.
| |
Collapse
|
22
|
Luz-Madrigal A, Grajales-Esquivel E, McCorkle A, DiLorenzo AM, Barbosa-Sabanero K, Tsonis PA, Del Rio-Tsonis K. Reprogramming of the chick retinal pigmented epithelium after retinal injury. BMC Biol 2014; 12:28. [PMID: 24742279 PMCID: PMC4026860 DOI: 10.1186/1741-7007-12-28] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/31/2014] [Indexed: 01/01/2023] Open
Abstract
Background One of the promises in regenerative medicine is to regenerate or replace damaged tissues. The embryonic chick can regenerate its retina by transdifferentiation of the retinal pigmented epithelium (RPE) and by activation of stem/progenitor cells present in the ciliary margin. These two ways of regeneration occur concomitantly when an external source of fibroblast growth factor 2 (FGF2) is present after injury (retinectomy). During the process of transdifferentiation, the RPE loses its pigmentation and is reprogrammed to become neuroepithelium, which differentiates to reconstitute the different cell types of the neural retina. Somatic mammalian cells can be reprogrammed to become induced pluripotent stem cells by ectopic expression of pluripotency-inducing factors such as Oct4, Sox2, Klf4, c-Myc and in some cases Nanog and Lin-28. However, there is limited information concerning the expression of these factors during natural regenerative processes. Organisms that are able to regenerate their organs could share similar mechanisms and factors with the reprogramming process of somatic cells. Herein, we investigate the expression of pluripotency-inducing factors in the RPE after retinectomy (injury) and during transdifferentiation in the presence of FGF2. Results We present evidence that upon injury, the quiescent (p27Kip1+/BrdU-) RPE cells transiently dedifferentiate and express sox2, c-myc and klf4 along with eye field transcriptional factors and display a differential up-regulation of alternative splice variants of pax6. However, this transient process of dedifferentiation is not sustained unless FGF2 is present. We have identified lin-28 as a downstream target of FGF2 during the process of retina regeneration. Moreover, we show that overexpression of lin-28 after retinectomy was sufficient to induce transdifferentiation of the RPE in the absence of FGF2. Conclusion These findings delineate in detail the molecular changes that take place in the RPE during the process of transdifferentiation in the embryonic chick, and specifically identify Lin-28 as an important factor in this process. We propose a novel model in which injury signals initiate RPE dedifferentiation, while FGF2 up-regulates Lin-28, allowing for RPE transdifferentiation to proceed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Katia Del Rio-Tsonis
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| |
Collapse
|
23
|
Miyake A, Araki M. Retinal stem/progenitor cells in the ciliary marginal zone complete retinal regeneration: a study of retinal regeneration in a novel animal model. Dev Neurobiol 2014; 74:739-56. [PMID: 24488715 DOI: 10.1002/dneu.22169] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 01/24/2014] [Accepted: 01/26/2014] [Indexed: 01/02/2023]
Abstract
Our research group has extensively studied retinal regeneration in adult Xenopus laevis. However, X. laevis does not represent a suitable model for multigenerational genetics and genomic approaches. Instead, Xenopus tropicalis is considered as the ideal model for these studies, although little is known about retinal regeneration in X. tropicalis. In the present study, we showed that a complete retina regenerates at approximately 30 days after whole retinal removal. The regenerating retina was derived from the stem/progenitor cells in the ciliary marginal zone (CMZ), indicating a novel mode of vertebrate retinal regeneration, which has not been previously reported. In a previous study, we showed that in X. laevis, retinal regeneration occurs primarily through the transdifferentiation of retinal pigmented epithelial (RPE) cells. RPE cells migrate to the retinal vascular membrane and reform a new epithelium, which then differentiates into the retina. In X. tropicalis, RPE cells also migrated to the vascular membrane, but transdifferentiation was not evident. Using two tissue culture models of RPE tissues, it was shown that in X. laevis RPE culture neuronal differentiation and reconstruction of the retinal three-dimensional (3-D) structure were clearly observed, while in X. tropicalis RPE culture neither ßIII tubulin-positive cells nor 3-D retinal structure were seen. These results indicate that the two Xenopus species are excellent models to clarify the cellular and molecular mechanisms of retinal regeneration, as these animals have contrasting modes of regeneration; one mode primarily involves RPE cells and the other mode involves stem/progenitor cells in the CMZ.
Collapse
Affiliation(s)
- Ayumi Miyake
- Department of Biological Sciences, Developmental Neurobiology Laboratory, Nara Women's University, Nara, 630-8506, Japan
| | | |
Collapse
|
24
|
Hidalgo M, Locker M, Chesneau A, Perron M. Stem Cells and Regeneration in the Xenopus Retina. STEM CELL BIOLOGY AND REGENERATIVE MEDICINE 2014. [DOI: 10.1007/978-1-4939-0787-8_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Martinez-De Luna RI, Zuber ME. Putting regeneration into regenerative medicine. J Ophthalmic Vis Res 2014; 9:126-33. [PMID: 24982746 PMCID: PMC4074488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
26
|
Fischer AJ, Bosse JL, El-Hodiri HM. The ciliary marginal zone (CMZ) in development and regeneration of the vertebrate eye. Exp Eye Res 2013; 116:199-204. [DOI: 10.1016/j.exer.2013.08.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 08/23/2013] [Accepted: 08/25/2013] [Indexed: 11/28/2022]
|
27
|
Fuhrmann S, Zou C, Levine EM. Retinal pigment epithelium development, plasticity, and tissue homeostasis. Exp Eye Res 2013; 123:141-50. [PMID: 24060344 DOI: 10.1016/j.exer.2013.09.003] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/05/2013] [Accepted: 09/07/2013] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium (RPE) is a simple epithelium interposed between the neural retina and the choroid. Although only 1 cell-layer in thickness, the RPE is a virtual workhorse, acting in several capacities that are essential for visual function and preserving the structural and physiological integrities of neighboring tissues. Defects in RPE function, whether through chronic dysfunction or age-related decline, are associated with retinal degenerative diseases including age-related macular degeneration. As such, investigations are focused on developing techniques to replace RPE through stem cell-based methods, motivated primarily because of the seemingly limited regeneration or self-repair properties of mature RPE. Despite this, RPE cells have an unusual capacity to transdifferentiate into various cell types, with the particular fate choices being highly context-dependent. In this review, we describe recent findings elucidating the mechanisms and steps of RPE development and propose a developmental framework for understanding the apparent contradiction in the capacity for low self-repair versus high transdifferentiation.
Collapse
Affiliation(s)
- Sabine Fuhrmann
- Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - ChangJiang Zou
- Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Edward M Levine
- Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| |
Collapse
|
28
|
Gallina D, Todd L, Fischer AJ. A comparative analysis of Müller glia-mediated regeneration in the vertebrate retina. Exp Eye Res 2013; 123:121-30. [PMID: 23851023 DOI: 10.1016/j.exer.2013.06.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/13/2013] [Accepted: 06/18/2013] [Indexed: 10/26/2022]
Abstract
This article reviews the current state of knowledge regarding the potential of Müller glia to become neuronal progenitor cells in the avian retina. We compare and contrast the remarkable proliferative and neurogenic capacity of Müller glia in the fish retina to the limited capacity of Müller glia in avian and rodent retinas. We summarize recent findings regarding the secreted factors, signaling pathways and cell intrinsic factors that have been implicated in the formation of Müller glia-derived progenitors. We discuss several key similarities and differences between the fish, rodent and chick model systems, highlighting several of the key transcription factors and signaling pathways that regulate the formation of Müller glia-derived progenitors.
Collapse
Affiliation(s)
- Donika Gallina
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, OH 43210-1239, USA
| | - Levi Todd
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, OH 43210-1239, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, OH 43210-1239, USA.
| |
Collapse
|
29
|
Nabeshima A, Nishibayashi C, Ueda Y, Ogino H, Araki M. Loss of cell-extracellular matrix interaction triggers retinal regeneration accompanied by Rax and Pax6 activation. Genesis 2013; 51:410-9. [PMID: 23362049 DOI: 10.1002/dvg.22378] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/16/2013] [Accepted: 01/22/2013] [Indexed: 12/26/2022]
Abstract
The whole retina regenerates from retinal pigmented epithelial (RPE) cells by transdifferentiation in the adult newt and Xenopus laevis when it is surgically removed. We produced a transgenic animal line, in which EGFP expression is under the control of Rax pomotor. Using F1 and F2 generations, we analyzed Rax-EGFP expression during retinal regeneration in a tissue culture model. In the culture, 4 zones were distinguished as RPE cells migrating outwards from the periphery of the explant: the explant zone, epithelial zone, transition zone and differentiation zone. Expression of transcription factors such as Pax6 and Rax-EGFP was observed in different zones. Rax-EGFP expression preceded Pax6 expression, and the expression of both genes occurred in RPE cells that had lost contact with the basement membrane facing the choroid. We have developed a new culture method in which RPE tissues are embedded in Matrigel. This method has many advantages over the previous gel-overlay method to reproduce construction of 3D-retinal structures and clearly showed that RPE cells need to be detached from the choroid before entering the regeneration pathway. The present results indicate that the temporal changes in cell-cell and cell-extracellular matrix interactions regulate transdifferentiation.
Collapse
Affiliation(s)
- Ayaka Nabeshima
- Department of Biological Sciences, Developmental Neurobiology Laboratory, Nara Women's University, Nara 630-8506
| | | | | | | | | |
Collapse
|
30
|
Abstract
Comparative studies of lens and retina regeneration have been conducted within a wide variety of animals over the last 100 years. Although amphibians, fish, birds and mammals have all been noted to possess lens- or retina-regenerative properties at specific developmental stages, lens or retina regeneration in adult animals is limited to lower vertebrates. The present review covers the newest perspectives on lens and retina regeneration from these different model organisms with a focus on future trends in regeneration research.
Collapse
|