1
|
Aykanat T, Jacobsen JA, Hindar K. Ontogenetic variation in the marine foraging of Atlantic salmon functionally links genomic diversity with a major life history polymorphism. Mol Ecol 2024; 33:e17465. [PMID: 38994907 DOI: 10.1111/mec.17465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
The ecological role of heritable phenotypic variation in free-living populations remains largely unknown. Knowledge of the genetic basis of functional ecological processes can link genomic and phenotypic diversity, providing insight into polymorphism evolution and how populations respond to environmental changes. By quantifying the marine diet of Atlantic salmon, we assessed how foraging behaviour changes along the ontogeny, and in relation to genetic variation in two loci with major effects on age at maturity (six6 and vgll3). We used a two-component, zero-inflated negative binomial model to simultaneously quantify foraging frequency and foraging outcome, separately for fish and crustaceans diets. We found that older salmon forage for both prey types more actively (as evidenced by increased foraging frequency), but with a decreased efficiency (as evidenced by fewer prey in the diet), suggesting an age-dependent shift in foraging dynamics. The vgll3 locus was linked to age-dependent changes in foraging behaviour: Younger salmon with vgll3LL (the genotype associated with late maturation) tended to forage crustaceans more often than those with vgll3EE (the genotype associated with early maturation), whereas the pattern was reversed in older salmon. Vgll3 LL genotype was also linked to a marginal increase in fish acquisition, especially in younger salmon, while six6 was not a factor explaining the diet variation. Our results suggest a functional role for marine feeding behaviour linking genomic diversity at vgll3 with age at maturity among salmon, with potential age-dependent trade-offs maintaining the genetic variation. A shared genetic basis between dietary ecology and age at maturity likely subjects Atlantic salmon populations to evolution induced by bottom-up changes in marine productivity.
Collapse
Affiliation(s)
- Tutku Aykanat
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Kjetil Hindar
- Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| |
Collapse
|
2
|
Aykanat T, McLennan D, Metcalfe NB, Prokkola JM. Early survival in Atlantic salmon is associated with parental genotypes at loci linked to timing of maturation. Evolution 2024; 78:1441-1452. [PMID: 38736399 DOI: 10.1093/evolut/qpae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Large effect loci often contain genes with critical developmental functions and potentially broad effects across life stages. However, their life stage-specific fitness consequences are rarely explored. In Atlantic salmon, variation in two large-effect loci, six6 and vgll3, is linked to age at maturity and several physiological and behavioral traits in early life. By genotyping the progeny of wild Atlantic salmon that were planted into natural streams with nutrient manipulations, we tested if genetic variation in these loci is associated with survival in early life. We found that higher early-life survival was linked to the genotype associated with late maturation in the vgll3, but with early maturation in the six6 locus. These effects were significant in high nutrients but not in low-nutrient streams. The differences in early survival were not explained by additive genetic effects in the offspring generation but by maternal genotypes in the six6 locus and by both parents' genotypes in the vgll3 locus. Our results suggest that indirect genetic effects of large-effect loci can be significant determinants of offspring fitness. This study demonstrates an intriguing case of how large-effect loci can exhibit complex fitness associations across life stages in the wild and indicates that predicting evolutionary dynamics is difficult.
Collapse
Affiliation(s)
- Tutku Aykanat
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Darryl McLennan
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Neil B Metcalfe
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Jenni M Prokkola
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland (LUKE), Oulu, Finland
| |
Collapse
|
3
|
Selvarajah K, Tan JJ, Shaharuddin B. Corneal Epithelial Development and the Role of Induced Pluripotent Stem Cells for Regeneration. Curr Stem Cell Res Ther 2024; 19:292-306. [PMID: 36915985 DOI: 10.2174/1574888x18666230313094121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/02/2022] [Accepted: 01/02/2023] [Indexed: 03/16/2023]
Abstract
Severe corneal disorders due to infective aetiologies, trauma, chemical injuries, and chronic cicatricial inflammations, are among vision-threatening pathologies leading to permanent corneal scarring. The whole cornea or lamellar corneal transplantation is often used as a last resort to restore vision. However, limited autologous tissue sources and potential adverse post-allotransplantation sequalae urge the need for more robust and strategic alternatives. Contemporary management using cultivated corneal epithelial transplantation has paved the way for utilizing stem cells as a regenerative potential. Humaninduced pluripotent stem cells (hiPSCs) can generate ectodermal progenitors and potentially be used for ocular surface regeneration. This review summarizes the process of corneal morphogenesis and the signaling pathways underlying the development of corneal epithelium, which is key to translating the maturation and differentiation process of hiPSCs in vitro. The current state of knowledge and methodology for driving efficient corneal epithelial cell differentiation from pluripotent stem cells are highlighted.
Collapse
Affiliation(s)
- Komathi Selvarajah
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
- Department of Microbiology, Faculty of Medicine, Asian Institute of Medical Sciences and Technology (AIMST) University, Kedah, Malaysia
| | - Jun Jie Tan
- Department of Microbiology, Faculty of Medicine, Asian Institute of Medical Sciences and Technology (AIMST) University, Kedah, Malaysia
| | - Bakiah Shaharuddin
- Department of Microbiology, Faculty of Medicine, Asian Institute of Medical Sciences and Technology (AIMST) University, Kedah, Malaysia
| |
Collapse
|
4
|
Diacou R, Nandigrami P, Fiser A, Liu W, Ashery-Padan R, Cvekl A. Cell fate decisions, transcription factors and signaling during early retinal development. Prog Retin Eye Res 2022; 91:101093. [PMID: 35817658 PMCID: PMC9669153 DOI: 10.1016/j.preteyeres.2022.101093] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022]
Abstract
The development of the vertebrate eyes is a complex process starting from anterior-posterior and dorso-ventral patterning of the anterior neural tube, resulting in the formation of the eye field. Symmetrical separation of the eye field at the anterior neural plate is followed by two symmetrical evaginations to generate a pair of optic vesicles. Next, reciprocal invagination of the optic vesicles with surface ectoderm-derived lens placodes generates double-layered optic cups. The inner and outer layers of the optic cups develop into the neural retina and retinal pigment epithelium (RPE), respectively. In vitro produced retinal tissues, called retinal organoids, are formed from human pluripotent stem cells, mimicking major steps of retinal differentiation in vivo. This review article summarizes recent progress in our understanding of early eye development, focusing on the formation the eye field, optic vesicles, and early optic cups. Recent single-cell transcriptomic studies are integrated with classical in vivo genetic and functional studies to uncover a range of cellular mechanisms underlying early eye development. The functions of signal transduction pathways and lineage-specific DNA-binding transcription factors are dissected to explain cell-specific regulatory mechanisms underlying cell fate determination during early eye development. The functions of homeodomain (HD) transcription factors Otx2, Pax6, Lhx2, Six3 and Six6, which are required for early eye development, are discussed in detail. Comprehensive understanding of the mechanisms of early eye development provides insight into the molecular and cellular basis of developmental ocular anomalies, such as optic cup coloboma. Lastly, modeling human development and inherited retinal diseases using stem cell-derived retinal organoids generates opportunities to discover novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Raven Diacou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Prithviraj Nandigrami
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wei Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
5
|
Meurer L, Ferdman L, Belcher B, Camarata T. The SIX Family of Transcription Factors: Common Themes Integrating Developmental and Cancer Biology. Front Cell Dev Biol 2021; 9:707854. [PMID: 34490256 PMCID: PMC8417317 DOI: 10.3389/fcell.2021.707854] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/28/2021] [Indexed: 01/19/2023] Open
Abstract
The sine oculis (SIX) family of transcription factors are key regulators of developmental processes during embryogenesis. Members of this family control gene expression to promote self-renewal of progenitor cell populations and govern mechanisms of cell differentiation. When the function of SIX genes becomes disrupted, distinct congenital defects develops both in animal models and humans. In addition to the embryonic setting, members of the SIX family have been found to be critical regulators of tumorigenesis, promoting cell proliferation, epithelial-to-mesenchymal transition, and metastasis. Research in both the fields of developmental biology and cancer research have provided an extensive understanding of SIX family transcription factor functions. Here we review recent progress in elucidating the role of SIX family genes in congenital disease as well as in the promotion of cancer. Common themes arise when comparing SIX transcription factor function during embryonic and cancer development. We highlight the complementary nature of these two fields and how knowledge in one area can open new aspects of experimentation in the other.
Collapse
Affiliation(s)
- Logan Meurer
- Department of Basic Sciences, NYIT College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| | - Leonard Ferdman
- Department of Basic Sciences, NYIT College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| | - Beau Belcher
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, United States
| | - Troy Camarata
- Department of Basic Sciences, NYIT College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| |
Collapse
|
6
|
Diaz C, Puelles L. Developmental Genes and Malformations in the Hypothalamus. Front Neuroanat 2020; 14:607111. [PMID: 33324176 PMCID: PMC7726113 DOI: 10.3389/fnana.2020.607111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
The hypothalamus is a heterogeneous rostral forebrain region that regulates physiological processes essential for survival, energy metabolism, and reproduction, mainly mediated by the pituitary gland. In the updated prosomeric model, the hypothalamus represents the rostralmost forebrain, composed of two segmental regions (terminal and peduncular hypothalamus), which extend respectively into the non-evaginated preoptic telencephalon and the evaginated pallio-subpallial telencephalon. Complex genetic cascades of transcription factors and signaling molecules rule their development. Alterations of some of these molecular mechanisms acting during forebrain development are associated with more or less severe hypothalamic and pituitary dysfunctions, which may be associated with brain malformations such as holoprosencephaly or septo-optic dysplasia. Studies on transgenic mice with mutated genes encoding critical transcription factors implicated in hypothalamic-pituitary development are contributing to understanding the high clinical complexity of these pathologies. In this review article, we will analyze first the complex molecular genoarchitecture of the hypothalamus resulting from the activity of previous morphogenetic signaling centers and secondly some malformations related to alterations in genes implicated in the development of the hypothalamus.
Collapse
Affiliation(s)
- Carmen Diaz
- Department of Medical Sciences, School of Medicine and Institute for Research in Neurological Disabilities, University of Castilla-La Mancha, Albacete, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology and IMIB-Arrixaca Institute, University of Murcia, Murcia, Spain
| |
Collapse
|
7
|
Mariniello K, Ruiz-Babot G, McGaugh EC, Nicholson JG, Gualtieri A, Gaston-Massuet C, Nostro MC, Guasti L. Stem Cells, Self-Renewal, and Lineage Commitment in the Endocrine System. Front Endocrinol (Lausanne) 2019; 10:772. [PMID: 31781041 PMCID: PMC6856655 DOI: 10.3389/fendo.2019.00772] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022] Open
Abstract
The endocrine system coordinates a wide array of body functions mainly through secretion of hormones and their actions on target tissues. Over the last decades, a collective effort between developmental biologists, geneticists, and stem cell biologists has generated a wealth of knowledge related to the contribution of stem/progenitor cells to both organogenesis and self-renewal of endocrine organs. This review provides an up-to-date and comprehensive overview of the role of tissue stem cells in the development and self-renewal of endocrine organs. Pathways governing crucial steps in both development and stemness maintenance, and that are known to be frequently altered in a wide array of endocrine disorders, including cancer, are also described. Crucially, this plethora of information is being channeled into the development of potential new cell-based treatment modalities for endocrine-related illnesses, some of which have made it through clinical trials.
Collapse
Affiliation(s)
- Katia Mariniello
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Gerard Ruiz-Babot
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
| | - Emily C. McGaugh
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - James G. Nicholson
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Angelica Gualtieri
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Maria Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
8
|
Pritchard VL, Mäkinen H, Vähä JP, Erkinaro J, Orell P, Primmer CR. Genomic signatures of fine-scale local selection in Atlantic salmon suggest involvement of sexual maturation, energy homeostasis and immune defence-related genes. Mol Ecol 2018; 27:2560-2575. [DOI: 10.1111/mec.14705] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 12/14/2022]
Affiliation(s)
| | - Hannu Mäkinen
- Department of Biology; University of Turku; Turku Finland
- Department of Biosciences; University of Helsinki; Helsinki Finland
| | - Juha-Pekka Vähä
- Kevo Subarctic Research Institute; University of Turku; Turku Finland
| | | | - Panu Orell
- Natural Resources Institute Finland (LUKE); Oulu Finland
| | - Craig R. Primmer
- Department of Biology; University of Turku; Turku Finland
- Department of Biosciences; University of Helsinki; Helsinki Finland
- Institute of Biotechnology; University of Helsinki; Helsinki Finland
| |
Collapse
|
9
|
Nagel S, Meyer C, Kaufmann M, Zaborski M, MacLeod RAF, Drexler HG. Aberrant activity of NKL homeobox gene NKX3-2 in a T-ALL subset. PLoS One 2018; 13:e0197194. [PMID: 29746601 PMCID: PMC5944955 DOI: 10.1371/journal.pone.0197194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/27/2018] [Indexed: 01/26/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a hematopoietic malignancy originating from T-cell progenitors in which differentiation is blocked at early stages. Physiological expression of specific NKL homeobox genes obeys a hematopoietic NKL-code implicated in the process of lymphopoiesis while in differentiated T-cells these genes are silenced. We propose that this developmental expression pattern underlies the observation that NKL homeobox genes are the most ubiquitous group of transcription factors deregulated in T-ALL, including TLX1, TLX3, NKX2-5 and NKX3-1. Here, we describe a novel member of the NKL homeobox gene subclass, NKX3-2 (BAPX1), which is aberrantly activated in 18% of pediatric T-ALL patients analyzed while being normally expressed in developing spleen. Identification of NKX3-2 expression in T-ALL cell line CCRF-CEM qualified these cells to model its deregulation and function in a leukemic context. Genomic and chromosomal analyses demonstrated normal configuration of the NKX3-2 locus at chromosome 4p15, thus excluding cytogenetic dysregulation. Comparative expression profiling analysis of NKX3-2 patient data revealed deregulated activity of BMP- and MAPK-signalling. These candidate pathways were experimentally confirmed to mediate aberrant NKX3-2 expression. We also show that homeobox gene SIX6, plus MIR17HG and GATA3 are downstream targets of NKX3-2 and plausibly contribute to the pathogenesis of this malignancy by suppressing T-cell differentiation. Finally, NKL homeobox gene NKX2-5 was activated by NKX3-2 in CCRF-CEM and by FOXG1 in PEER, representing mutually inhibitory activators of this translocated oncogene. Together, our findings reveal a novel oncogenic NKL homeobox gene subclass member which is aberrantly expressed in a large subset of T-ALL patients and participates in a deregulated gene network likely to arise in developing spleen.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- * E-mail:
| | - Corinna Meyer
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Maren Kaufmann
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Margarete Zaborski
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Roderick A. F. MacLeod
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans G. Drexler
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
10
|
Ledford KL, Martinez-De Luna RI, Theisen MA, Rawlins KD, Viczian AS, Zuber ME. Distinct cis-acting regions control six6 expression during eye field and optic cup stages of eye formation. Dev Biol 2017; 426:418-428. [PMID: 28438336 PMCID: PMC5500183 DOI: 10.1016/j.ydbio.2017.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/07/2017] [Accepted: 04/12/2017] [Indexed: 02/06/2023]
Abstract
The eye field transcription factor, Six6, is essential for both the early (specification and proliferative growth) phase of eye formation, as well as for normal retinal progenitor cell differentiation. While genomic regions driving six6 optic cup expression have been described, the sequences controlling eye field and optic vesicle expression are unknown. Two evolutionary conserved regions 5' and a third 3' to the six6 coding region were identified, and together they faithfully replicate the endogenous X. laevis six6 expression pattern. Transgenic lines were generated and used to determine the onset and expression patterns controlled by the regulatory regions. The conserved 3' region was necessary and sufficient for eye field and optic vesicle expression. In contrast, the two conserved enhancer regions located 5' of the coding sequence were required together for normal optic cup and mature retinal expression. Gain-of-function experiments indicate endogenous six6 and GFP expression in F1 transgenic embryos are similarly regulated in response to candidate trans-acting factors. Importantly, CRISPR/CAS9-mediated deletion of the 3' eye field/optic vesicle enhancer in X. laevis, resulted in a reduction in optic vesicle size. These results identify the cis-acting regions, demonstrate the modular nature of the elements controlling early versus late retinal expression, and identify potential regulators of six6 expression during the early stages of eye formation.
Collapse
Affiliation(s)
- Kelley L Ledford
- Department of Ophthalmology and The Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, United States; Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Reyna I Martinez-De Luna
- Department of Ophthalmology and The Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Matthew A Theisen
- Department of Ophthalmology and The Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Karisa D Rawlins
- Department of Ophthalmology and The Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Andrea S Viczian
- Department of Ophthalmology and The Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, United States; Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, United States; Department of Cell & Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, United States; Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, United States.
| | - Michael E Zuber
- Department of Ophthalmology and The Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, United States; Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, United States; Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| |
Collapse
|
11
|
Veale AJ, Russello MA. An ancient selective sweep linked to reproductive life history evolution in sockeye salmon. Sci Rep 2017; 7:1747. [PMID: 28496186 PMCID: PMC5431894 DOI: 10.1038/s41598-017-01890-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/05/2017] [Indexed: 11/09/2022] Open
Abstract
Study of parallel (or convergent) phenotypic evolution can provide important insights into processes driving sympatric, ecologically-mediated divergence and speciation, as ecotype pairs may provide a biological replicate of the underlying signals and mechanisms. Here, we provide evidence for a selective sweep creating an island of divergence associated with reproductive behavior in sockeye salmon (Oncorhynchus nerka), identifying a series of linked single nucleotide polymorphisms across a ~22,733 basepair region spanning the leucine-rich repeat-containing protein 9 gene exhibiting signatures of divergent selection associated with stream- and shore-spawning in both anadromous and resident forms across their pan-Pacific distribution. This divergence likely occurred ~3.8 Mya (95% HPD = 2.1–6.03 Mya), after sockeye separated from pink (O. gorbuscha) and chum (O. keta) salmon, but prior to the Pleistocene glaciations. Our results suggest recurrent evolution of reproductive ecotypes across the native range of O. nerka is at least partially associated with divergent selection of pre-existing genetic variation within or linked to this region. As sockeye salmon are unique among Pacific salmonids in their flexibility to spawn in lake-shore benthic environments, this region provides great promise for continued investigation of the genomic basis of O. nerka life history evolution, and, more broadly, for increasing our understanding of the heritable basis of adaptation of complex traits in novel environments.
Collapse
Affiliation(s)
- Andrew J Veale
- Department of Biology, The University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, British Columbia, V1V 1V7, Canada.,Department of Zoology, University of Otago, 340 Great King Street, Dunedin, 9016, New Zealand
| | - Michael A Russello
- Department of Biology, The University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, British Columbia, V1V 1V7, Canada.
| |
Collapse
|
12
|
Shah MH, Tabanera N, Krishnadas SR, Pillai MR, Bovolenta P, Sundaresan P. Identification and characterization of variants and a novel 4 bp deletion in the regulatory region of SIX6, a risk factor for primary open-angle glaucoma. Mol Genet Genomic Med 2017; 5:323-335. [PMID: 28717659 PMCID: PMC5511802 DOI: 10.1002/mgg3.290] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 12/23/2022] Open
Abstract
Background Primary open‐angle glaucoma (POAG) is a complex disease of multigenic inheritance and the most common subtype of glaucoma. SIX6 encodes a transcription factor involved in retina, optic nerve, and pituitary development. Previous studies showed a genetic association between the SIX6 locus and POAG, identifying risk alleles. Whether these alleles are present also in the south Indian population is unclear. Methods To address this question, the SIX6 gene and an already characterized and highly conserved SIX6 enhancer (Ch14:60974427‐60974430) were sequenced in two south Indian cohorts, respectively, composed of 65/65 and 200/200 POAG cases/age‐matched controls. We next used Taqman‐based allelic discrimination assay to genotype a common variant (rs33912345: c.421A>C) and the rs1048372 SNP in two cohorts, respectively, composed of 557/387 and 590/448 POAG cases/age‐matched controls. An additional cohort of 153 POAG cases was subsequently recruited to assess the association of the rs33912345:c.421A>C and rs10483727 variants with more prominent changes in two POAG diagnostic parameters: retinal nerve fiber layer thickness and vertical cup/disc ratio, using spectral domain optical coherence tomography. The activity of the newly identified enhancer variants was assessed by transgenesis in zebrafish and luciferase assays. Results We identified two known rare and two common variants in the SIX6 locus and a novel 4 bp deletion in the analyzed enhancer. Contrary to previous studies, we could not establish a significant association between the rs10483727 and rs33912345:c.421A>C variants and PAOG in the south Indian ethnicity but patients carrying the corresponding C or T risk alleles exhibited a dose‐dependent reduction of the thickness of the retinal nerve fiber layer and a significant increase in the vertical cup/disc ratio. Transgenesis in zebrafish and luciferase assays demonstrated that the newly identified 4 bp deletion significantly reduced reporter expression in cells of the retinal ganglion and amacrine layers, where human SIX6 is expressed. Conclusion Altogether, our data further support the implication of SIX6 variants as POAG risk factors and implicates SIX6 haploinsufficiency in POAG pathogenesis.
Collapse
Affiliation(s)
- Mohd Hussain Shah
- Department of Molecular GeneticsAravind Medical Research FoundationMaduraiIndia
| | - Noemi Tabanera
- Centro de Biología Molecular Severo OchoaCSIC-UAMMadridSpain.,CIBERER, ISCIIIMadridSpain
| | | | | | - Paola Bovolenta
- Centro de Biología Molecular Severo OchoaCSIC-UAMMadridSpain.,CIBERER, ISCIIIMadridSpain
| | | |
Collapse
|
13
|
Goldsmith S, Lovell-Badge R, Rizzoti K. SOX2 is sequentially required for progenitor proliferation and lineage specification in the developing pituitary. Development 2016; 143:2376-88. [PMID: 27226320 PMCID: PMC4958329 DOI: 10.1242/dev.137984] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/13/2016] [Indexed: 02/01/2023]
Abstract
Sox2 mutations are associated with pituitary hormone deficiencies and the protein is required for pituitary progenitor proliferation, but its function has not been well characterized in this context. SOX2 is known to activate expression of Six6, encoding a homeodomain transcription factor, in the ventral diencephalon. Here, we find that the same relationship likely exists in the pituitary. Moreover, because Six6 deletion is associated with a similar phenotype as described here for loss of Sox2, Six6 appears to be an essential downstream target of SOX2 in the gland. We also uncover a second role for SOX2. Whereas cell differentiation is reduced in Sox2 mutants, some endocrine cells are generated, such as POMC-positive cells in the intermediate lobe. However, loss of SOX2 here results in complete downregulation of the melanotroph pioneer factor PAX7, and subsequently a switch of identity from melanotrophs to ectopic corticotrophs. Rescuing proliferation by ablating the cell cycle negative regulator p27 (also known as Cdkn1b) in Sox2 mutants does not restore melanotroph emergence. Therefore, SOX2 has two independent roles during pituitary morphogenesis; firstly, promotion of progenitor proliferation, and subsequently, acquisition of melanotroph identity. Summary: SOX2 has two independent roles during pituitary morphogenesis: promoting progenitor proliferation via SIX6 and determining melanotroph identity via PAX7.
Collapse
Affiliation(s)
- Sam Goldsmith
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Robin Lovell-Badge
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Karine Rizzoti
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
14
|
Sex-dependent dominance at a single locus maintains variation in age at maturity in salmon. Nature 2015; 528:405-8. [DOI: 10.1038/nature16062] [Citation(s) in RCA: 401] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/07/2015] [Indexed: 01/14/2023]
|
15
|
Kim N, Park C, Jeong Y, Song MR. Functional Diversification of Motor Neuron-specific Isl1 Enhancers during Evolution. PLoS Genet 2015; 11:e1005560. [PMID: 26447474 PMCID: PMC4598079 DOI: 10.1371/journal.pgen.1005560] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 09/09/2015] [Indexed: 11/19/2022] Open
Abstract
Functional diversification of motor neurons has occurred in order to selectively control the movements of different body parts including head, trunk and limbs. Here we report that transcription of Isl1, a major gene necessary for motor neuron identity, is controlled by two enhancers, CREST1 (E1) and CREST2 (E2) that allow selective gene expression of Isl1 in motor neurons. Introduction of GFP reporters into the chick neural tube revealed that E1 is active in hindbrain motor neurons and spinal cord motor neurons, whereas E2 is active in the lateral motor column (LMC) of the spinal cord, which controls the limb muscles. Genome-wide ChIP-Seq analysis combined with reporter assays showed that Phox2 and the Isl1-Lhx3 complex bind to E1 and drive hindbrain and spinal cord-specific expression of Isl1, respectively. Interestingly, Lhx3 alone was sufficient to activate E1, and this may contribute to the initiation of Isl1 expression when progenitors have just developed into motor neurons. E2 was induced by onecut 1 (OC-1) factor that permits Isl1 expression in LMCm neurons. Interestingly, the core region of E1 has been conserved in evolution, even in the lamprey, a jawless vertebrate with primitive motor neurons. All E1 sequences from lamprey to mouse responded equally well to Phox2a and the Isl1-Lhx3 complex. Conversely, E2, the enhancer for limb-innervating motor neurons, was only found in tetrapod animals. This suggests that evolutionarily-conserved enhancers permit the diversification of motor neurons. During evolution, motor neurons became specialized to control movements of different body parts including head, trunk and limbs. Here we report that two enhancers of Isl1, E1 and E2, are active together with transcription factors in motor neurons. Surprisingly, E1 and its response to transcription factors has been conserved in evolution from the lamprey to man, whereas E2 is only found in animals with limbs. Our study provides an evolutionary example of how functional diversification of motor neurons is achieved by a dynamic interplay between enhancers and transcription factors.
Collapse
Affiliation(s)
- Namhee Kim
- School of Life Sciences, Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju, Republic of Korea
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, Yongbong-ro, Buk-gu, Gwangju, Republic of Korea
| | - Yongsu Jeong
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Republic of Korea
| | - Mi-Ryoung Song
- School of Life Sciences, Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju, Republic of Korea
- * E-mail:
| |
Collapse
|
16
|
Abstract
Significant progress has been made recently in unravelling the embryonic events leading to pituitary morphogenesis, both in vivo and in vitro. This includes dissection of the molecular mechanisms controlling patterning of the ventral diencephalon that regulate formation of the pituitary anlagen or Rathke's pouch. There is also a better characterisation of processes that underlie maintenance of pituitary progenitors, specification of endocrine lineages and the three-dimensional organisation of newly differentiated endocrine cells. Furthermore, a population of adult pituitary stem cells (SCs), originating from embryonic progenitors, have been described and shown to have not only regenerative potential, but also the capacity to induce tumour formation. Finally, the successful recapitulation in vitro of embryonic events leading to generation of endocrine cells from embryonic SCs, and their subsequent transplantation, represents exciting advances towards the use of regenerative medicine to treat endocrine deficits. In this review, an up-to-date description of pituitary morphogenesis will be provided and discussed with particular reference to pituitary SC studies.
Collapse
Affiliation(s)
- Karine Rizzoti
- Division of Stem Cell Biology and Developmental GeneticsMRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
17
|
Song H, Lee B, Pyun D, Guimera J, Son Y, Yoon J, Baek K, Wurst W, Jeong Y. Ascl1 and Helt act combinatorially to specify thalamic neuronal identity by repressing Dlxs activation. Dev Biol 2015; 398:280-91. [DOI: 10.1016/j.ydbio.2014.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 11/25/2022]
|
18
|
Martínez-Frías ML, Ocejo-Vinyals JG, Arteaga R, Martínez-Fernández ML, MacDonald A, Pérez-Belmonte E, Bermejo-Sánchez E, Martínez S. Interstitial deletion 14q22.3-q23.2: Genotype-phenotype correlation. Am J Med Genet A 2013; 164A:639-47. [DOI: 10.1002/ajmg.a.36330] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/04/2013] [Indexed: 11/11/2022]
Affiliation(s)
- María Luisa Martínez-Frías
- Departamento de Farmacología; Facultad de Medicina; Universidad Complutense de Madrid; Madrid Spain
- Spanish Collaborative Study of Congenital Malformations (ECEMC); CIAC (Research Center on Congenital Anomalies); Instituto de Salud Carlos III; Madrid Spain
- CIBER de Enfermedades Raras (CIBERER) (U724); Instituto de Salud Carlos III; Ministerio de Economía y Competitividad; Madrid Spain
| | | | - Rosa Arteaga
- Servicio de Neurología; Hospital Universitario Marqués de Valdecilla; Santander Spain
| | - María Luisa Martínez-Fernández
- Spanish Collaborative Study of Congenital Malformations (ECEMC); CIAC (Research Center on Congenital Anomalies); Instituto de Salud Carlos III; Madrid Spain
- CIBER de Enfermedades Raras (CIBERER) (U724); Instituto de Salud Carlos III; Ministerio de Economía y Competitividad; Madrid Spain
| | - Alexandra MacDonald
- Spanish Collaborative Study of Congenital Malformations (ECEMC); CIAC (Research Center on Congenital Anomalies); Instituto de Salud Carlos III; Madrid Spain
| | - Elena Pérez-Belmonte
- Servicio de Pediatría; Hospital Universitario Marqués de Valdecilla; Santander Spain
| | - Eva Bermejo-Sánchez
- Spanish Collaborative Study of Congenital Malformations (ECEMC); CIAC (Research Center on Congenital Anomalies); Instituto de Salud Carlos III; Madrid Spain
- CIBER de Enfermedades Raras (CIBERER) (U724); Instituto de Salud Carlos III; Ministerio de Economía y Competitividad; Madrid Spain
- Instituto de Investigación de Enfermedades Raras (IIER); Instituto de Salud Carlos III. Ministerio de Economía y Competitividad; Madrid Spain
| | - Salvador Martínez
- Instituto de Neurociencias de Alicante; CSIC-UMH; San Juan de Alicante Spain
| |
Collapse
|
19
|
Lee B, Song H, Rizzoti K, Son Y, Yoon J, Baek K, Jeong Y. Genomic code for Sox2 binding uncovers its regulatory role in Six3 activation in the forebrain. Dev Biol 2013; 381:491-501. [PMID: 23792023 DOI: 10.1016/j.ydbio.2013.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 06/09/2013] [Accepted: 06/12/2013] [Indexed: 01/24/2023]
Abstract
The SRY-related HMG box transcription factor Sox2 plays critical roles throughout embryogenesis. Haploinsufficiency for SOX2 results in human developmental defects including anophthalmia, microphthalmia and septo-optic dysplasia, a congenital forebrain defect. To understand how Sox2 plays a role in neurogenesis, we combined genomic and in vivo transgenic approaches to characterize genomic regions occupied by Sox2 in the developing forebrain. Six3, a homeobox gene associated with holoprosencephaly, a forebrain midline defect, was identified as a Sox2 transcriptional target. This study shows that Sox2 directly regulates a previously unidentified long-range forebrain enhancer to activate Six3 expression in the rostral diencephalon. Further biochemical and genetic evidences indicated a direct regulatory link between Sox2 and Six3 during forebrain development, providing a better understanding of a common molecular mechanism underlying these forebrain defects.
Collapse
Affiliation(s)
- Bumwhee Lee
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si 446-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|