1
|
Song XQ, Li Q, Zhang J. A double-edged sword: DLG5 in diseases. Biomed Pharmacother 2023; 162:114611. [PMID: 37001186 DOI: 10.1016/j.biopha.2023.114611] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Discs large homolog 5 (DLG5), a key member of the membrane-associated guanylate kinase (MAGUKs) family, is a scaffold molecule for signal transduction complexes and is responsible for assembling receptors and adapters. This scaffold protein stabilizes adhesion and tight bonding complexes in many organs and tissues, and is involved of maintaining epithelial polarity. Although DLG5 plays a role in normal development in mice, it has also been linked to the onset and development of several diseases, particularly Crohn's disease and various malignancies. DLG5 has been shown to impact the progression of cancer through direct or indirect interactions with H-catenin, E-cadherin, Vimentin, p53, P21, Cyclin D1, TGF-β1, AKT, Hippo, and classic G protein signaling pathways. DLG5 and DLG5 variants has been found to have a dual role in human diseases. Although it is overexpressed in pancreatic adenocarcinoma, its expression is reduced in lung, liver, breast, prostate, and bladder cancers. However, two independent studies on glioblastoma (GBM) have shown the opposite effects of DLG5. Our study evaluates the existing literature on the role of DLG5 and DLG5 variants in disease processes, and summarizes the available data on the role of DLG5 in disease based on cell experiments, clinical samples, and animal models, while highlighting its future potential in disease treatment.
Collapse
|
2
|
Tilston-Lunel AM, Varelas X. Polarity in respiratory development, homeostasis and disease. Curr Top Dev Biol 2023; 154:285-315. [PMID: 37100521 DOI: 10.1016/bs.ctdb.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
The respiratory system is composed of a multitude of cells that organize to form complex branched airways that end in alveoli, which respectively function to guide air flow and mediate gas exchange with the bloodstream. The organization of the respiratory sytem relies on distinct forms of cell polarity, which guide lung morphogenesis and patterning in development and provide homeostatic barrier protection from microbes and toxins. The stability of lung alveoli, the luminal secretion of surfactants and mucus in the airways, and the coordinated motion of multiciliated cells that generate proximal fluid flow, are all critical functions regulated by cell polarity, with defects in polarity contributing to respiratory disease etiology. Here, we summarize the current knowledge of cell polarity in lung development and homeostasis, highlighting key roles for polarity in alveolar and airway epithelial function and outlining relationships with microbial infections and diseases, such as cancer.
Collapse
|
3
|
Marquez J, Mann N, Arana K, Deniz E, Ji W, Konstantino M, Mis EK, Deshpande C, Jeffries L, McGlynn J, Hugo H, Widmeier E, Konrad M, Tasic V, Morotti R, Baptista J, Ellard S, Lakhani SA, Hildebrandt F, Khokha MK. DLG5 variants are associated with multiple congenital anomalies including ciliopathy phenotypes. J Med Genet 2021; 58:453-464. [PMID: 32631816 PMCID: PMC7785698 DOI: 10.1136/jmedgenet-2019-106805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/01/2020] [Accepted: 05/25/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cilia are dynamic cellular extensions that generate and sense signals to orchestrate proper development and tissue homeostasis. They rely on the underlying polarisation of cells to participate in signalling. Cilia dysfunction is a well-known cause of several diseases that affect multiple organ systems including the kidneys, brain, heart, respiratory tract, skeleton and retina. METHODS Among individuals from four unrelated families, we identified variants in discs large 5 (DLG5) that manifested in a variety of pathologies. In our proband, we also examined patient tissues. We depleted dlg5 in Xenopus tropicalis frog embryos to generate a loss-of-function model. Finally, we tested the pathogenicity of DLG5 patient variants through rescue experiments in the frog model. RESULTS Patients with variants of DLG5 were found to have a variety of phenotypes including cystic kidneys, nephrotic syndrome, hydrocephalus, limb abnormalities, congenital heart disease and craniofacial malformations. We also observed a loss of cilia in cystic kidney tissue of our proband. Knockdown of dlg5 in Xenopus embryos recapitulated many of these phenotypes and resulted in a loss of cilia in multiple tissues. Unlike introduction of wildtype DLG5 in frog embryos depleted of dlg5, introduction of DLG5 patient variants was largely ineffective in restoring proper ciliation and tissue morphology in the kidney and brain suggesting that the variants were indeed detrimental to function. CONCLUSION These findings in both patient tissues and Xenopus shed light on how mutations in DLG5 may lead to tissue-specific manifestations of disease. DLG5 is essential for cilia and many of the patient phenotypes are in the ciliopathy spectrum.
Collapse
Affiliation(s)
- Jonathan Marquez
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nina Mann
- Division of Nephrology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kathya Arana
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Engin Deniz
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Weizhen Ji
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Monica Konstantino
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Emily K Mis
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Lauren Jeffries
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Julie McGlynn
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hannah Hugo
- Division of Nephrology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eugen Widmeier
- Division of Nephrology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Martin Konrad
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - Velibor Tasic
- Department of Pediatric Nephrology, University Children's Hospital, Skopje, North Macedonia
| | - Raffaella Morotti
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Julia Baptista
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
- Institute of Biomedical & Clinical Science, College of Medicine and Health, Exeter, UK
| | - Sian Ellard
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
- Institute of Biomedical & Clinical Science, College of Medicine and Health, Exeter, UK
| | - Saquib Ali Lakhani
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Che J, Wang J, Li H, Zhen H, Shang K, Yang Y, Cao B. Decreased expression of Dlg5 is associated with a poor prognosis and epithelial-mesenchymal transition in squamous cell lung cancer. J Thorac Dis 2021; 13:3115-3125. [PMID: 34164202 PMCID: PMC8182517 DOI: 10.21037/jtd-21-752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background Discs large homolog 5 (Dlg5) is a newly discovered member of the membrane-associated guanylate kinase superfamily (MAGUK) that is involved in several important processes, including the maintenance of epithelial cell polarity, cell proliferation control, and cell migration and invasion. Decreased expression of Dlg5 has been reported in malignancies arising from different organs. In the present study, we analyzed Dlg5 expression and its prognostic value in squamous cell lung cancer (SqCLC). Methods Tumor tissue and adjacent normal tissue sections were collected from 98 patients with SqCLC. The expression levels of Dlg5 and epithelial-mesenchymal transition (EMT) biomarkers in the tissue sections were examined by immunohistochemistry and western blot. Results There were 80 males and 18 females in the study cohort. Patients at pathological stages I and IIIA accounted for 64.3% and 35.7% of the cohort, respectively. Western blot showed that Dlg5 expression differed between SqCLC and healthy tissues. Western blot also revealed low Dlg5 expression to be associated with low E-cadherin expression and high vimentin expression, which was consistent with the findings of immunohistochemical staining. Dlg5 expression was significantly correlated with lymph node (LN) metastasis (P=0.001) and disease recurrence (P<0.001), as well as with E-cadherin and vimentin expression (P=0.025 and P=0.001, respectively). Univariate analysis showed that overall survival was significantly correlated with the tumor-node-metastasis (P<0.001) and T (P=0.001) stages, LN metastasis (P<0.001), Dig5 expression (P<0.001), β-catenin expression (P=0.004), and vimentin expression (P=0.002). Patients with overexpression of Dlg5 and β-catenin had a more favorable prognosis than those without. Multivariate analysis revealed that tumor-node-metastasis stage [hazard ratio (HR) =2.124; 95% confidence interval (CI), 1.195–3.777; P=0.010], Dlg5 expression (HR =0.548; 95% CI, 0.313–0.959; P=0.035), β-catenin expression (HR =0.545; 95% CI, 0.312–0.953; P=0.033), and vimentin expression (HR =1.850; 95% CI, 1.050–3.258; P=0.033) could all independently predict the overall survival of patients with SqCLC. Conclusions Dlg5 is an important player in EMT which may have potential predictive value for SqCLC prognosis after surgery.
Collapse
Affiliation(s)
- Juanjuan Che
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing Wang
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Huihui Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongchao Zhen
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Kun Shang
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yan Yang
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bangwei Cao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Wang M, Xu T, Feng W, Liu J, Wang Z. Advances in Understanding the LncRNA-Mediated Regulation of the Hippo Pathway in Cancer. Onco Targets Ther 2021; 14:2397-2415. [PMID: 33854336 PMCID: PMC8039192 DOI: 10.2147/ott.s283157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/08/2021] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are a class of RNA molecules that are longer than 200 nucleotides and cannot encode proteins. Over the past decade, lncRNAs have been defined as regulatory elements of multiple biological processes, and their aberrant expression contributes to the development and progression of various malignancies. Recent studies have shown that lncRNAs are involved in key cancer-related signaling pathways, including the Hippo signaling pathway, which plays a prominent role in controlling organ size and tissue homeostasis by regulating cell proliferation, apoptosis, and differentiation. However, dysregulation of this pathway is associated with pathological conditions, especially cancer. Accumulating evidence has revealed that lncRNAs can modulate the Hippo signaling pathway in cancer. In this review, we elaborate on the role of the Hippo signaling pathway and the advances in the understanding of its lncRNA-mediated regulation in cancer. This review provides additional insight into carcinogenesis and will be of great clinical value for developing novel early detection and treatment strategies for this deadly disease.
Collapse
Affiliation(s)
- Mengwei Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Tianwei Xu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Wenyan Feng
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Junxia Liu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
6
|
Venugopal P, Veyssière H, Couderc JL, Richard G, Vachias C, Mirouse V. Multiple functions of the scaffold protein Discs large 5 in the control of growth, cell polarity and cell adhesion in Drosophila melanogaster. BMC DEVELOPMENTAL BIOLOGY 2020; 20:10. [PMID: 32552730 PMCID: PMC7301484 DOI: 10.1186/s12861-020-00218-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/28/2020] [Indexed: 12/24/2022]
Abstract
Background Scaffold proteins support a variety of key processes during animal development. Mutant mouse for the MAGUK protein Discs large 5 (Dlg5) presents a general growth impairment and moderate morphogenetic defects. Results Here, we generated null mutants for Drosophila Dlg5 and show that it owns similar functions in growth and epithelial architecture. Dlg5 is required for growth at a cell autonomous level in several tissues and at the organism level, affecting cell size and proliferation. Our results are consistent with Dlg5 modulating hippo pathway in the wing disc, including the impact on cell size, a defect that is reproduced by the loss of yorkie. However, other observations indicate that Dlg5 regulates growth by at least another way that may involve Myc protein but nor PI3K neither TOR pathways. Moreover, epithelia cells mutant for Dlg5 also show a reduction of apical domain determinants, though not sufficient to induce a complete loss of cell polarity. Dlg5 is also essential, in the same cells, for the presence at Adherens junctions of N-Cadherin, but not E-Cadherin. Genetic analyses indicate that junction and polarity defects are independent. Conclusions Together our data show that Dlg5 own several conserved functions that are independent of each other in regulating growth, cell polarity and cell adhesion. Moreover, they reveal a differential regulation of E-cadherin and N-cadherin apical localization.
Collapse
Affiliation(s)
- Parvathy Venugopal
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne, UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000, Clermont-Ferrand, France.,present address : School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India
| | - Hugo Veyssière
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne, UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000, Clermont-Ferrand, France.,present address : University Clermont Auvergne, INSERM U1240, Centre de Lutte Contre le Cancer Jean PERRIN, 58 rue Montalembert, 63011, Clermont-Ferrand, France
| | - Jean-Louis Couderc
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne, UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000, Clermont-Ferrand, France
| | - Graziella Richard
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne, UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000, Clermont-Ferrand, France
| | - Caroline Vachias
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne, UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000, Clermont-Ferrand, France
| | - Vincent Mirouse
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne, UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000, Clermont-Ferrand, France.
| |
Collapse
|
7
|
Cytoskeletal Organization and Cell Polarity in the Pathogenesis of Crohn’s Disease. Clin Rev Allergy Immunol 2020; 60:164-174. [DOI: 10.1007/s12016-020-08795-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
PABPC1-induced stabilization of BDNF-AS inhibits malignant progression of glioblastoma cells through STAU1-mediated decay. Cell Death Dis 2020; 11:81. [PMID: 32015336 PMCID: PMC6997171 DOI: 10.1038/s41419-020-2267-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/29/2022]
Abstract
Glioblastoma is the most common and malignant form of primary central nervous tumor in adults. Long noncoding RNAs (lncRNAs) have been reported to play a pivotal role in modulating gene expression and regulating human tumor’s malignant behaviors. In this study, we confirmed that lncRNA brain-derived neurotrophic factor antisense (BDNF-AS) was downregulated in glioblastoma tissues and cells, interacted and stabilized by polyadenylate-binding protein cytoplasmic 1 (PABPC1). Overexpression of BDNF-AS inhibited the proliferation, migration, and invasion, as well as induced the apoptosis of glioblastoma cells. In the in vivo study, PABPC1 overexpression combined with BDNF-AS overexpression produced the smallest tumor and the longest survival. Moreover, BDNF-AS could elicit retina and anterior neural fold homeobox 2 (RAX2) mRNA decay through STAU1-mediated decay (SMD), and thereby regulated the malignant behaviors glioblastoma cells. Knockdown of RAX2 produced tumor-suppressive function in glioblastoma cells and increased the expression of discs large homolog 5 (DLG5), leading to the activation of the Hippo pathway. In general, this study elucidated that the PABPC1-BDNF-AS-RAX2-DLG5 mechanism may contribute to the anticancer potential of glioma cells and may provide potential therapeutic targets for human glioma.
Collapse
|
9
|
Luo J, Zhou P, Guo X, Wang D, Chen J. The polarity protein Dlg5 regulates collective cell migration during Drosophila oogenesis. PLoS One 2019; 14:e0226061. [PMID: 31856229 PMCID: PMC6922378 DOI: 10.1371/journal.pone.0226061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/19/2019] [Indexed: 01/17/2023] Open
Abstract
Collective migration plays critical roles in animal development, physiological events, and cancer metastasis. However, the molecular mechanisms of collective cell migration are not well understood. Drosophila border cells represent an excellent in vivo genetic model to study collective cell migration and identify novel regulatory genes for cell migration. Using the Mosaic Analysis with a Repressible Cell Marker (MARCM) system, we screened 240 P-element insertion lines to identify essential genes for border cell migration. Two genes were uncovered, including dlg5 (discs large 5) and CG31689. Further analysis showed that Dlg5 regulates the apical-basal polarity and cluster integrity in border cell clusters. Dlg5 is enriched in lateral surfaces between border cells and central polar cells but also shows punctate localization between border cells. We found that the distribution of Dlg5 in border cell clusters is regulated by Armadillo. Structure-function analysis revealed that the N-terminal Coiled-coil domain and the C-terminal PDZ3-PDZ4-SH3-GUK domains but not the PDZ1-PDZ2 domains of Dlg5 are required for BC migration. The Coiled-coil domain and the PDZ4-SH3-GUK domains are critical for Dlg5’s cell surface localization in border cell clusters.
Collapse
Affiliation(s)
- Jun Luo
- College of Life Science, Shangrao Normal University, Shangrao, China
- * E-mail: (JL); (JC)
| | - Ping Zhou
- College of Life Science, Shangrao Normal University, Shangrao, China
| | - Xuan Guo
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Dou Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jiong Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
- * E-mail: (JL); (JC)
| |
Collapse
|
10
|
Saito Y, Desai RR, Muthuswamy SK. Reinterpreting polarity and cancer: The changing landscape from tumor suppression to tumor promotion. Biochim Biophys Acta Rev Cancer 2018; 1869:103-116. [DOI: 10.1016/j.bbcan.2017.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 12/21/2022]
|
11
|
Kwan J, Sczaniecka A, Heidary Arash E, Nguyen L, Chen CC, Ratkovic S, Klezovitch O, Attisano L, McNeill H, Emili A, Vasioukhin V. DLG5 connects cell polarity and Hippo signaling protein networks by linking PAR-1 with MST1/2. Genes Dev 2017; 30:2696-2709. [PMID: 28087714 PMCID: PMC5238729 DOI: 10.1101/gad.284539.116] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 12/07/2016] [Indexed: 12/21/2022]
Abstract
Here, Kwan et al. investigated the mechanisms connecting cell polarity proteins with intracellular signaling pathways. They found that DLG5 functions as an evolutionarily conserved scaffold and negative regulator of Hippo signaling, demonstrating a direct connection between cell polarity proteins and Hippo that is needed for proper development of multicellular organisms. Disruption of apical–basal polarity is implicated in developmental disorders and cancer; however, the mechanisms connecting cell polarity proteins with intracellular signaling pathways are largely unknown. We determined previously that membrane-associated guanylate kinase (MAGUK) protein discs large homolog 5 (DLG5) functions in cell polarity and regulates cellular proliferation and differentiation via undefined mechanisms. We report here that DLG5 functions as an evolutionarily conserved scaffold and negative regulator of Hippo signaling, which controls organ size through the modulation of cell proliferation and differentiation. Affinity purification/mass spectrometry revealed a critical role of DLG5 in the formation of protein assemblies containing core Hippo kinases mammalian ste20 homologs 1/2 (MST1/2) and Par-1 polarity proteins microtubule affinity-regulating kinases 1/2/3 (MARK1/2/3). Consistent with this finding, Hippo signaling is markedly hyperactive in mammalian Dlg5−/− tissues and cells in vivo and ex vivo and in Drosophila upon dlg5 knockdown. Conditional deletion of Mst1/2 fully rescued the phenotypes of brain-specific Dlg5 knockout mice. Dlg5 also interacts genetically with Hippo effectors Yap1/Taz. Mechanistically, we show that DLG5 inhibits the association between MST1/2 and large tumor suppressor homologs 1/2 (LATS1/2), uses its scaffolding function to link MST1/2 with MARK3, and inhibits MST1/2 kinase activity. These data reveal a direct connection between cell polarity proteins and Hippo, which is essential for proper development of multicellular organisms.
Collapse
Affiliation(s)
- Julian Kwan
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Anna Sczaniecka
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Emad Heidary Arash
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Liem Nguyen
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Chia-Chun Chen
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Srdjana Ratkovic
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Olga Klezovitch
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Liliana Attisano
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Helen McNeill
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Andrew Emili
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Valeri Vasioukhin
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Department of Pathology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
12
|
Ke Y, Bao T, Zhou Q, Wang Y, Ge J, Fu B, Wu X, Tang H, Shi Z, Lei X, Zhang C, Tan Y, Chen H, Guo Z, Wang L. Discs large homolog 5 decreases formation and function of invadopodia in human hepatocellular carcinoma via Girdin and Tks5. Int J Cancer 2017; 141:364-376. [PMID: 28390157 DOI: 10.1002/ijc.30730] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 02/23/2017] [Accepted: 03/22/2017] [Indexed: 12/21/2022]
Abstract
Invadopodium formation is a crucial early event of invasion and metastasis of hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying regulation of invadopodia remain elusive. This study aimed to investigate the potential role of discs large homolog 5 (Dlg5) in invadopodium formation and function in HCC. We found that Dlg5 expression was significantly lower in human HCC tissues and cell lines than adjacent nontumor tissues and liver cells. Lower Dlg5 expression was associated with advanced stages of HCC, and poor overall and disease-free survival of HCC patients. Dlg5-silencing promoted epithelial-mesenchymal transition, invadopodium formation, gelatin degradation function, and invadopodium-associated invasion of HepG2 cells. In contrast, Dlg5 overexpression inhibited epithelial-mesenchymal transition, functional invadopodium formation, and invasion of SK-Hep1 cells. Both Girdin and Tks5, but not the Tks5 nonphosphorylatable mutant, were responsible for the enhanced invadopodium formation and invasion of Dlg5-silenced HepG2 cells. Furthermore, Dlg5 interacted with Girdin and interfered with the interaction of Girdin and Tks5. Dlg5 silencing promoted Girdin and Tks5 phosphorylation, which was abrogated by Girdin silencing and rescued by inducing shRNA-resistant Girdin expression. Moreover, Dlg5 overexpression significantly inhibited HCC intrahepatic and lung metastasis in vivo. Taken together, our data indicate that Dlg5 acts as a novel regulator of invadopodium-associated invasion via Girdin and by interfering with the interaction between Girdin and Tks5, which might be important for Tks5 phosphorylation in HCC cells. Conceivably, Dlg5 may act as a new biomarker for prognosis of HCC patients.
Collapse
Affiliation(s)
- Yang Ke
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Tianhao Bao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China.,The Mental Health Center of Kunming Medical University, Kunming, China
| | - Qixin Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yan Wang
- Department of Pathology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiayun Ge
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bimang Fu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuesong Wu
- Department of Gastroenterological Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Haoran Tang
- Department of Gastroenterological Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhitian Shi
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuefen Lei
- Deparment of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Cheng Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuqi Tan
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Haotian Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhitang Guo
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
13
|
Shafer MER, Nguyen AHT, Tremblay M, Viala S, Béland M, Bertos NR, Park M, Bouchard M. Lineage Specification from Prostate Progenitor Cells Requires Gata3-Dependent Mitotic Spindle Orientation. Stem Cell Reports 2017; 8:1018-1031. [PMID: 28285879 PMCID: PMC5390093 DOI: 10.1016/j.stemcr.2017.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 12/31/2022] Open
Abstract
During prostate development, basal and luminal cell lineages are generated through symmetric and asymmetric divisions of bipotent basal cells. However, the extent to which spindle orientation controls division symmetry or cell fate, and the upstream factors regulating this process, are still elusive. We report that GATA3 is expressed in both prostate basal progenitor and luminal cells and that loss of GATA3 leads to a mislocalization of PRKCZ, resulting in mitotic spindle randomization during progenitor cell division. Inherently proliferative intermediate progenitor cells accumulate, leading to an expansion of the luminal compartment. These defects ultimately result in a loss of tissue polarity and defective branching morphogenesis. We further show that disrupting the interaction between PRKCZ and PARD6B is sufficient to recapitulate the spindle and cell lineage phenotypes. Collectively, these results identify a critical role for GATA3 in prostate lineage specification, and further highlight the importance of regulating spindle orientation for hierarchical cell lineage organization. Gata3 regulates prostate lineage specification and tissue architecture Loss of Gata3 causes aPKC mislocalization and mitotic spindle randomization aPKC-Par6 decoupling randomizes the spindle and perturbs lineage specification Spindle regulation prevents progenitor cell accumulation and tissue hyperplasia
Collapse
Affiliation(s)
- Maxwell E R Shafer
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 415, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Alana H T Nguyen
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 415, Montreal, QC H3A 1A3, Canada
| | - Mathieu Tremblay
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 415, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Sophie Viala
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 415, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Mélanie Béland
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 415, Montreal, QC H3A 1A3, Canada
| | - Nicholas R Bertos
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 415, Montreal, QC H3A 1A3, Canada
| | - Morag Park
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 415, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada; Departments of Medicine and Oncology, McGill University, Montreal, QC H4A 3T2, Canada
| | - Maxime Bouchard
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 415, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
14
|
Dlg5 maintains apical polarity by promoting membrane localization of Crumbs during Drosophila oogenesis. Sci Rep 2016; 6:26553. [PMID: 27211898 PMCID: PMC4876392 DOI: 10.1038/srep26553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/03/2016] [Indexed: 12/25/2022] Open
Abstract
Apical-basal polarity plays critical roles in the functions of epithelial tissues. However, the mechanisms of epithelial polarity establishment and maintenance remain to be fully elucidated. Here we show that the membrane-associated guanylate kinase (MAGUK) family protein Dlg5 is required for the maintenance of apical polarity of follicle epithelium during Drosophila oogenesis. Dlg5 localizes at the apical membrane and adherens junction (AJ) of follicle epithelium in early stage egg chambers. Specifically, we demonstrate that the major function of Dlg5 is to promote apical membrane localization of Crumbs, since overexpression of Crumbs but not other major apical or AJ components could rescue epithelial polarity defects resulted from loss of Dlg5. Furthermore, we performed a structure-function analysis of Dlg5 and found that the C-terminal PDZ3 and PDZ4 domains are required for all Dlg5’s functions as well as its ability to localize to apical membrane. The N-terminal coiled-coil motif could be individually targeted to the apical membrane, while the central linker region could be targeted to AJ. Lastly, the MAGUK core domains of PDZ4-SH3-GUK could be individually targeted to apical, AJ and basolateral membranes.
Collapse
|
15
|
Bonastre E, Brambilla E, Sanchez-Cespedes M. Cell adhesion and polarity in squamous cell carcinoma of the lung. J Pathol 2016; 238:606-16. [PMID: 26749265 DOI: 10.1002/path.4686] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/18/2015] [Accepted: 12/30/2015] [Indexed: 01/01/2023]
Abstract
Lung cancer is a deadly disease that can roughly be classified into three histopathological groups: lung adenocarcinomas, lung squamous cell carcinomas (LSCCs), and small cell carcinomas. These types of lung cancer are molecularly, phenotypically, and regionally diverse neoplasms, reflecting differences in their cells of origin. LSCCs commonly arise in the airway epithelium of a main or lobar bronchus, which is an important line of defence against the external environment. Furthermore, most LSCCs are characterized histopathologically by the presence of keratinization and/or intercellular bridges, consistent with the molecular features of these tumours, characterized by high levels of transcripts encoding keratins and proteins relevant to intercellular junctions and cell polarity. In this review, the relationships between the molecular features of LSCCs and the types of cell and epithelia of origin are discussed. Recurrent alterations in genes involved in intercellular adhesion and cell polarity in LSCCs are also reviewed, emphasizing the importance of the disruption of PAR3 and the PAR complex. Finally, the possible functional effects of these alterations on epithelial homeostasis, and how they contribute to the development of LSCC, are discussed.
Collapse
Affiliation(s)
- Ester Bonastre
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Elisabeth Brambilla
- Department of Pathology, Institut Albert Bonniot, INSERM U823, University Joseph Fourier, CHU, Grenoble Hopital Michallon, Grenoble, France
| | - Montse Sanchez-Cespedes
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
16
|
Oriented cell division: new roles in guiding skin wound repair and regeneration. Biosci Rep 2015; 35:BSR20150225. [PMID: 26582817 PMCID: PMC4708010 DOI: 10.1042/bsr20150225] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/12/2015] [Indexed: 01/14/2023] Open
Abstract
Tissue morphogenesis depends on precise regulation and timely co-ordination of cell division and also on the control of the direction of cell division. Establishment of polarity division axis, correct alignment of the mitotic spindle, segregation of fate determinants equally or unequally between daughter cells, are essential for the realization of oriented cell division. Furthermore, oriented cell division is regulated by intrinsic cues, extrinsic cues and other cues, such as cell geometry and polarity. However, dysregulation of cell division orientation could lead to abnormal tissue development and function. In the present study, we review recent studies on the molecular mechanism of cell division orientation and explain their new roles in skin repair and regeneration.
Collapse
|
17
|
Dunn HA, Ferguson SSG. PDZ Protein Regulation of G Protein–Coupled Receptor Trafficking and Signaling Pathways. Mol Pharmacol 2015; 88:624-39. [DOI: 10.1124/mol.115.098509] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/25/2015] [Indexed: 01/03/2023] Open
|
18
|
McCulley D, Wienhold M, Sun X. The pulmonary mesenchyme directs lung development. Curr Opin Genet Dev 2015; 32:98-105. [PMID: 25796078 PMCID: PMC4763935 DOI: 10.1016/j.gde.2015.01.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 01/27/2015] [Accepted: 01/30/2015] [Indexed: 11/22/2022]
Abstract
Each of the steps of respiratory system development relies on intricate interactions and coordinated development of the lung epithelium and mesenchyme. In the past, more attention has been paid to the epithelium than the mesenchyme. The mesenchyme is a source of specification and morphogenetic signals as well as a host of surprisingly complex cell lineages that are critical for normal lung development and function. This review highlights recent research focusing on the mesenchyme that has revealed genetic and epigenetic mechanisms of its development in the context of other cell layers during respiratory lineage specification, branching morphogenesis, epithelial differentiation, lineage distinction, vascular development, and alveolar maturation.
Collapse
Affiliation(s)
- David McCulley
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Mark Wienhold
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Xin Sun
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
19
|
Chong YC, Mann RK, Zhao C, Kato M, Beachy PA. Bifurcating action of Smoothened in Hedgehog signaling is mediated by Dlg5. Genes Dev 2015; 29:262-76. [PMID: 25644602 PMCID: PMC4318143 DOI: 10.1101/gad.252676.114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/29/2014] [Indexed: 12/19/2022]
Abstract
Binding of the Hedgehog (Hh) protein signal to its receptor, Patched, induces accumulation of the seven-pass transmembrane protein Smoothened (Smo) within the primary cilium and of the zinc finger transcription factor Gli2 at the ciliary tip, resulting ultimately in Gli-mediated changes in nuclear gene expression. However, the mechanism by which pathway activation is communicated from Smo to Gli2 is not known. In an effort to elucidate this mechanism, we identified Dlg5 (Discs large, homolog 5) in a biochemical screen for proteins that preferentially interact with activated Smo. We found that disruption of Smo-Dlg5 interactions or depletion of endogenous Dlg5 leads to diminished Hh pathway response without a significant impact on Smo ciliary accumulation. We also found that Dlg5 is localized at the basal body, where it associates with another pathway component, Kif7. We show that Dlg5 is required for Hh-induced enrichment of Kif7 and Gli2 at the tip of the cilium but is dispensable for Gpr161 exit from the cilium and the consequent suppression of Gli3 processing into its repressor form. Our findings suggest a bifurcation of Smo activity in Hh response, with a Dlg5-independent arm for suppression of Gli repressor formation and a second arm involving Smo interaction with Dlg5 for Gli activation.
Collapse
Affiliation(s)
- Yong Chun Chong
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California 94305, USA; Department of Developmental Biology, Stanford University, Stanford, California 94305, USA; Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Randall K Mann
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California 94305, USA; Department of Developmental Biology, Stanford University, Stanford, California 94305, USA; Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Chen Zhao
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California 94305, USA; Department of Developmental Biology, Stanford University, Stanford, California 94305, USA; Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Masaki Kato
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California 94305, USA; Department of Developmental Biology, Stanford University, Stanford, California 94305, USA
| | - Philip A Beachy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California 94305, USA; Department of Developmental Biology, Stanford University, Stanford, California 94305, USA; Department of Biochemistry, Stanford University, Stanford, California 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
20
|
Mammalian aPKC/Par polarity complex mediated regulation of epithelial division orientation and cell fate. Exp Cell Res 2014; 328:296-302. [PMID: 25128813 DOI: 10.1016/j.yexcr.2014.08.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/04/2014] [Indexed: 11/23/2022]
Abstract
Oriented cell division is a key regulator of tissue architecture and crucial for morphogenesis and homeostasis. Balanced regulation of proliferation and differentiation is an essential property of tissues not only to drive morphogenesis but also to maintain and restore homeostasis. In many tissues orientation of cell division is coupled to the regulation of differentiation producing daughters with similar (symmetric cell division, SCD) or differential fate (asymmetric cell division, ACD). This allows the organism to generate cell lineage diversity from a small pool of stem and progenitor cells. Division orientation and/or the ratio of ACD/SCD need to be tightly controlled. Loss of orientation or an altered ratio can promote overgrowth, alter tissue architecture and induce aberrant differentiation, and have been linked to morphogenetic diseases, cancer and aging. A key requirement for oriented division is the presence of a polarity axis, which can be established through cell intrinsic and/or extrinsic signals. Polarity proteins translate such internal and external cues to drive polarization. In this review we will focus on the role of the polarity complex aPKC/Par3/Par6 in the regulation of division orientation and cell fate in different mammalian epithelia. We will compare the conserved function of this complex in mitotic spindle orientation and distribution of cell fate determinants and highlight common and differential mechanisms in which this complex is used by tissues to adapt division orientation and cell fate to the specific properties of the epithelium.
Collapse
|
21
|
Liu J, Li J, Ren Y, Liu P. DLG5 in cell polarity maintenance and cancer development. Int J Biol Sci 2014; 10:543-9. [PMID: 24910533 PMCID: PMC4046881 DOI: 10.7150/ijbs.8888] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/17/2014] [Indexed: 01/11/2023] Open
Abstract
Failure in establishment and maintenance of epithelial cell polarity contributes to tumorigenesis. Loss of expression and function of cell polarity proteins is directly related to epithelial cell polarity maintenance. The polarity protein discs large homolog 5 (DLG5) belongs to a family of molecular scaffolding proteins called Membrane Associated Guanylate Kinases (MAGUKs). As the other family members, DLG5 contains the multi-PDZ, SH3 and GUK domains. DLG5 has evolved in the same manner as DLG1 and ZO1, two well-studied MAGUKs proteins. Just like DLG1 and ZO1, DLG5 plays a role in cell migration, cell adhesion, precursor cell division, cell proliferation, epithelial cell polarity maintenance, and transmission of extracellular signals to the membrane and cytoskeleton. Since the roles of DLG5 in inflammatory bowel disease (IBD) and Crohn's disease (CD) have been reviewed, here, our review focuses on the roles of DLG5 in epithelial cell polarity maintenance and cancer development.
Collapse
Affiliation(s)
- Jie Liu
- 1. Center for Translational Medicine, the First Affiliated Hospital of Xian Jiaotong University College of Medicine
| | - Juan Li
- 1. Center for Translational Medicine, the First Affiliated Hospital of Xian Jiaotong University College of Medicine
| | - Yu Ren
- 2. Department of Surgical Oncology, the First Affiliated Hospital of Xian Jiaotong University College of Medicine
| | - Peijun Liu
- 1. Center for Translational Medicine, the First Affiliated Hospital of Xian Jiaotong University College of Medicine
| |
Collapse
|
22
|
Loss of Dlg5 expression promotes the migration and invasion of prostate cancer cells via Girdin phosphorylation. Oncogene 2014; 34:1141-9. [DOI: 10.1038/onc.2014.31] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 12/11/2013] [Accepted: 12/24/2013] [Indexed: 01/18/2023]
|
23
|
Saben J, Zhong Y, McKelvey S, Dajani NK, Andres A, Badger TM, Gomez-Acevedo H, Shankar K. A comprehensive analysis of the human placenta transcriptome. Placenta 2013; 35:125-31. [PMID: 24333048 DOI: 10.1016/j.placenta.2013.11.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/25/2013] [Accepted: 11/13/2013] [Indexed: 01/16/2023]
Abstract
As the conduit for nutrients and growth signals, the placenta is critical to establishing an environment sufficient for fetal growth and development. To better understand the mechanisms regulating placental development and gene expression, we characterized the transcriptome of term placenta from 20 healthy women with uncomplicated pregnancies using RNA-seq. To identify genes that were highly expressed and unique to the placenta we compared placental RNA-seq data to data from 7 other tissues (adipose, breast, hear, kidney, liver, lung, and smooth muscle) and identified several genes novel to placental biology (QSOX1, DLG5, and SEMA7A). Semi-quantitative RT-PCR confirmed the RNA-seq results and immunohistochemistry indicated these proteins were highly expressed in the placental syncytium. Additionally, we mined our RNA-seq data to map the relative expression of key developmental gene families (Fox, Sox, Gata, Tead, and Wnt) within the placenta. We identified FOXO4, GATA3, and WNT7A to be amongst the highest expressed members of these families. Overall, these findings provide a new reference for understanding of placental transcriptome and can aid in the identification of novel pathways regulating placenta physiology that may be dysregulated in placental disease.
Collapse
Affiliation(s)
- J Saben
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Y Zhong
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - S McKelvey
- Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - N K Dajani
- Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - A Andres
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - T M Badger
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - H Gomez-Acevedo
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - K Shankar
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
24
|
Sox9 plays multiple roles in the lung epithelium during branching morphogenesis. Proc Natl Acad Sci U S A 2013; 110:E4456-64. [PMID: 24191021 DOI: 10.1073/pnas.1311847110] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Lung branching morphogenesis is a highly orchestrated process that gives rise to the complex network of gas-exchanging units in the adult lung. Intricate regulation of signaling pathways, transcription factors, and epithelial-mesenchymal cross-talk are critical to ensuring branching morphogenesis occurs properly. Here, we describe a role for the transcription factor Sox9 during lung branching morphogenesis. Sox9 is expressed at the distal tips of the branching epithelium in a highly dynamic manner as branching occurs and is down-regulated starting at embryonic day 16.5, concurrent with the onset of terminal differentiation of type 1 and type 2 alveolar cells. Using epithelial-specific genetic loss- and gain-of-function approaches, our results demonstrate that Sox9 controls multiple aspects of lung branching. Fine regulation of Sox9 levels is required to balance proliferation and differentiation of epithelial tip progenitor cells, and loss of Sox9 leads to direct and indirect cellular defects including extracellular matrix defects, cytoskeletal disorganization, and aberrant epithelial movement. Our evidence shows that unlike other endoderm-derived epithelial tissues, such as the intestine, Wnt/β-catenin signaling does not regulate Sox9 expression in the lung. We conclude that Sox9 collectively promotes proper branching morphogenesis by controlling the balance between proliferation and differentiation and regulating the extracellular matrix.
Collapse
|
25
|
Abstract
Asymmetric cell divisions (ACDs) result in two unequal daughter cells and are a hallmark of stem cells. ACDs can be achieved either by asymmetric partitioning of proteins and organelles or by asymmetric cell fate acquisition due to the microenvironment in which the daughters are placed. Increasing evidence suggests that in the mammalian epidermis, both of these processes occur. During embryonic epidermal development, changes occur in the orientation of the mitotic spindle in relation to the underlying basement membrane. These changes are guided by conserved molecular machinery that is operative in lower eukaryotes and dictates asymmetric partitioning of proteins during cell divisions. That said, the shift in spindle alignment also determines whether a division will be parallel or perpendicular to the basement membrane, and this in turn provides a differential microenvironment for the resulting daughter cells. Here, we review how oriented divisions of progenitors contribute to the development and stratification of the epidermis.
Collapse
Affiliation(s)
- Anita Kulukian
- Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, , New York, NY 10065, USA
| | | |
Collapse
|
26
|
Lung epithelial branching program antagonizes alveolar differentiation. Proc Natl Acad Sci U S A 2013; 110:18042-51. [PMID: 24058167 DOI: 10.1073/pnas.1311760110] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mammalian organs, including the lung and kidney, often adopt a branched structure to achieve high efficiency and capacity of their physiological functions. Formation of a functional lung requires two developmental processes: branching morphogenesis, which builds a tree-like tubular network, and alveolar differentiation, which generates specialized epithelial cells for gas exchange. Much progress has been made to understand each of the two processes individually; however, it is not clear whether the two processes are coordinated and how they are deployed at the correct time and location. Here we show that an epithelial branching morphogenesis program antagonizes alveolar differentiation in the mouse lung. We find a negative correlation between branching morphogenesis and alveolar differentiation temporally, spatially, and evolutionarily. Gain-of-function experiments show that hyperactive small GTPase Kras expands the branching program and also suppresses molecular and cellular differentiation of alveolar cells. Loss-of-function experiments show that SRY-box containing gene 9 (Sox9) functions downstream of Fibroblast growth factor (Fgf)/Kras to promote branching and also suppresses premature initiation of alveolar differentiation. We thus propose that lung epithelial progenitors continuously balance between branching morphogenesis and alveolar differentiation, and such a balance is mediated by dual-function regulators, including Kras and Sox9. The resulting temporal delay of differentiation by the branching program may provide new insights to lung immaturity in preterm neonates and the increase in organ complexity during evolution.
Collapse
|