1
|
Zhu C, Baumgarten N, Wu M, Wang Y, Das AP, Kaur J, Ardakani FB, Duong TT, Pham MD, Duda M, Dimmeler S, Yuan T, Schulz MH, Krishnan J. CVD-associated SNPs with regulatory potential reveal novel non-coding disease genes. Hum Genomics 2023; 17:69. [PMID: 37491351 PMCID: PMC10369730 DOI: 10.1186/s40246-023-00513-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Genome-wide association studies (GWAS) have identified many single nucleotide polymorphisms (SNPs) appearing in non-coding genomic regions in CVDs. The SNPs may alter gene expression by modifying transcription factor (TF) binding sites and lead to functional consequences in cardiovascular traits or diseases. To understand the underlying molecular mechanisms, it is crucial to identify which variations are involved and how they affect TF binding. METHODS The SNEEP (SNP exploration and analysis using epigenomics data) pipeline was used to identify regulatory SNPs, which alter the binding behavior of TFs and link GWAS SNPs to their potential target genes for six CVDs. The human-induced pluripotent stem cells derived cardiomyocytes (hiPSC-CMs), monoculture cardiac organoids (MCOs) and self-organized cardiac organoids (SCOs) were used in the study. Gene expression, cardiomyocyte size and cardiac contractility were assessed. RESULTS By using our integrative computational pipeline, we identified 1905 regulatory SNPs in CVD GWAS data. These were associated with hundreds of genes, half of them non-coding RNAs (ncRNAs), suggesting novel CVD genes. We experimentally tested 40 CVD-associated non-coding RNAs, among them RP11-98F14.11, RPL23AP92, IGBP1P1, and CTD-2383I20.1, which were upregulated in hiPSC-CMs, MCOs and SCOs under hypoxic conditions. Further experiments showed that IGBP1P1 depletion rescued expression of hypertrophic marker genes, reduced hypoxia-induced cardiomyocyte size and improved hypoxia-reduced cardiac contractility in hiPSC-CMs and MCOs. CONCLUSIONS IGBP1P1 is a novel ncRNA with key regulatory functions in modulating cardiomyocyte size and cardiac function in our disease models. Our data suggest ncRNA IGBP1P1 as a potential therapeutic target to improve cardiac function in CVDs.
Collapse
Affiliation(s)
- Chaonan Zhu
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt Am Main, Germany
- Cardio-Pulmonary Institute, Goethe University Hospital, 60590, Frankfurt Am Main, Germany
| | - Nina Baumgarten
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt Am Main, Germany
- German Center for Cardiovascular Research, Partner Site Rhein-Main, 60590, Frankfurt Am Main, Germany
- Cardio-Pulmonary Institute, Goethe University Hospital, 60590, Frankfurt Am Main, Germany
| | - Meiqian Wu
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt Am Main, Germany
| | - Yue Wang
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt Am Main, Germany
| | - Arka Provo Das
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt Am Main, Germany
- Cardio-Pulmonary Institute, Goethe University Hospital, 60590, Frankfurt Am Main, Germany
| | - Jaskiran Kaur
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt Am Main, Germany
| | - Fatemeh Behjati Ardakani
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt Am Main, Germany
- German Center for Cardiovascular Research, Partner Site Rhein-Main, 60590, Frankfurt Am Main, Germany
- Cardio-Pulmonary Institute, Goethe University Hospital, 60590, Frankfurt Am Main, Germany
| | - Thanh Thuy Duong
- Genome Biologics, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Minh Duc Pham
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt Am Main, Germany
- Cardio-Pulmonary Institute, Goethe University Hospital, 60590, Frankfurt Am Main, Germany
- Department of Medicine III, Cardiology/Angiology/ Nephrology, Goethe University Hospital, Frankfurt, Germany
- Genome Biologics, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Maria Duda
- Genome Biologics, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt Am Main, Germany
- German Center for Cardiovascular Research, Partner Site Rhein-Main, 60590, Frankfurt Am Main, Germany
- Cardio-Pulmonary Institute, Goethe University Hospital, 60590, Frankfurt Am Main, Germany
| | - Ting Yuan
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt Am Main, Germany.
- Cardio-Pulmonary Institute, Goethe University Hospital, 60590, Frankfurt Am Main, Germany.
- Department of Medicine III, Cardiology/Angiology/ Nephrology, Goethe University Hospital, Frankfurt, Germany.
| | - Marcel H Schulz
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt Am Main, Germany.
- German Center for Cardiovascular Research, Partner Site Rhein-Main, 60590, Frankfurt Am Main, Germany.
- Cardio-Pulmonary Institute, Goethe University Hospital, 60590, Frankfurt Am Main, Germany.
| | - Jaya Krishnan
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt Am Main, Germany.
- German Center for Cardiovascular Research, Partner Site Rhein-Main, 60590, Frankfurt Am Main, Germany.
- Cardio-Pulmonary Institute, Goethe University Hospital, 60590, Frankfurt Am Main, Germany.
- Department of Medicine III, Cardiology/Angiology/ Nephrology, Goethe University Hospital, Frankfurt, Germany.
| |
Collapse
|
2
|
Qi Y, Wang X, Li W, Chen D, Meng H, An S. Pseudogenes in Cardiovascular Disease. Front Mol Biosci 2021; 7:622540. [PMID: 33644114 PMCID: PMC7902774 DOI: 10.3389/fmolb.2020.622540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/07/2020] [Indexed: 11/23/2022] Open
Abstract
Cardiovascular disease is the main disease that affects human life span. In recent years, the disease has been increasingly addressed at the molecular levels, for example, pseudogenes are now known to be involved in the pathogenesis and development of cardiovascular diseases. Pseudogenes are non-coding homologs of protein-coding genes and were once called “junk gene.” Since they are highly homologous to their functional parental genes, it is somewhat difficult to distinguish them. With the development of sequencing technology and bioinformatics, pseudogenes have become readily identifiable. Recent studies indicate that pseudogenes are closely related to cardiovascular diseases. This review provides an overview of pseudogenes and their roles in the pathogenesis of cardiovascular diseases. This new knowledge adds to our understanding of cardiovascular disease at the molecular level and will help develop new biomarkers and therapeutic approaches designed to prevent and treat the disease.
Collapse
Affiliation(s)
- Yanyan Qi
- Department of Cardiology, Anesthesiology and Emergency Medicine, Henan Province People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xi Wang
- Department of Cardiology, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenbo Li
- Department of Cardiology, Henan Province People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongchang Chen
- Department of Cardiology, Henan Province People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Hua Meng
- Department of Cardiology, Henan Province People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Songtao An
- Department of Cardiology, Henan Province People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Zhu Y, Zeng Q, Li F, Fang H, Zhou Z, Jiang T, Yin C, Wei Q, Wang Y, Ruan J, Huang J. Dysregulated H3K27 Acetylation Is Implicated in Fatty Liver Hemorrhagic Syndrome in Chickens. Front Genet 2021; 11:574167. [PMID: 33505421 PMCID: PMC7831272 DOI: 10.3389/fgene.2020.574167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/23/2020] [Indexed: 12/29/2022] Open
Abstract
Epigenetic regulation of gene expression has been reported in the pathogenesis of metabolic disorders such as diabetes and liver steatosis in humans. However, the molecular mechanisms of fatty liver hemorrhagic syndrome (FLHS) in chickens have been rarely studied. H3K27ac chromatin immunoprecipitation coupled with high-throughput sequencing and high-throughput RNA sequencing was performed to compare genome-wide H3K27ac profiles and transcriptomes of liver tissue between healthy and FLHS chickens. In total, 1,321 differential H3K27ac regions and 443 differentially expressed genes were identified (| log2Fold change| ≥ 1 and P-value ≤ 0.05) between the two groups. Binding motifs for transcription factors involved in immune processes and metabolic homeostasis were enriched among those differential H3K27ac regions. Differential H3K27ac peaks were associated with multiple known FLHS risk genes, involved in lipid and energy metabolism (PCK1, APOA1, ANGPTL4, and FABP1) and the immune system (FGF7, PDGFRA, and KIT). Previous studies and our current results suggested that the high-energy, low-protein (HELP) diet might have an impact on histone modification and chromatin structure, leading to the dysregulation of candidate genes and the peroxisome proliferator-activated receptor (PPAR) signaling pathway, which causes excessive accumulation of fat in the liver tissue and induces the development of FLHS. These findings highlight that epigenetic modifications contribute to the regulation of gene expression and play a central regulatory role in FLHS. The PPAR signaling pathway and other genes implicated in FLHS are of great importance for the development of novel and specific therapies for FLHS-susceptible commercial laying hens.
Collapse
Affiliation(s)
- Yaling Zhu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.,Department of Pathophysiology, Anhui Medical University, Hefei, China.,Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Qingjie Zeng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Fang Li
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Haoshu Fang
- Department of Pathophysiology, Anhui Medical University, Hefei, China.,Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Zhimin Zhou
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Tao Jiang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Chao Yin
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Qing Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yujie Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jiming Ruan
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jianzhen Huang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
4
|
Zaman NR, Kumar B, Nasrin Z, Islam MR, Maiti TK, Khan H. Proteome Analyses Reveal Macrophomina phaseolina's Survival Tools When Challenged by Burkholderia contaminans NZ. ACS OMEGA 2020; 5:1352-1362. [PMID: 32010805 PMCID: PMC6990438 DOI: 10.1021/acsomega.9b01870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 01/03/2020] [Indexed: 05/09/2023]
Abstract
A phytopathogenic fungus, Macrophomina phaseolina, which infects a wide range of plants, is an important consideration in agronomy. A jute endophytic bacterium, Burkholderia contaminans NZ, was found to have a promising effect in controlling the fungus in in vitro culture conditions. Using the iTRAQ LC-MS/MS method for quantitative proteomics study, an analysis of the whole proteome of Macrophomina phaseolina with or without B. contaminans NZ challenge identified 2204 different proteins, of which 137 were found to have significant deviation in expression. Kyoto encyclopedia of genes and genomes pathway analysis identified most of the upregulated proteins to be functionally related to energy production (26.11%), as well as defense and stress response (23.45%), while there was significant downregulation in oxidative stress protection pathways (42.61%), growth and cell wall integrity (30.95%), and virulence (23.81%). Findings of this study suggest the development of a battle when the phytopathogen encounters the bacterium. B. contaminans NZ manages to arrest the growth of the fungus and decrease its pathogenicity, but the fungus apparently survives under "hibernating" conditions by upregulating its energy metabolism. This first ever proteomic study of M. phaseolina will go a long way in understanding and developing strategies for its effective control.
Collapse
Affiliation(s)
- Nazia R. Zaman
- Department of Biochemistry
and Molecular Biology, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000, Bangladesh
- Functional Proteomics Laboratory, Regional
Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Bhoj Kumar
- Functional Proteomics Laboratory, Regional
Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Zulia Nasrin
- Department of Biochemistry
and Molecular Biology, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohammad R. Islam
- Department of Biochemistry
and Molecular Biology, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| | - Tushar K. Maiti
- Functional Proteomics Laboratory, Regional
Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India
- E-mail: (T.K.M.)
| | - Haseena Khan
- Department of Biochemistry
and Molecular Biology, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000, Bangladesh
- E-mail: (H.K.)
| |
Collapse
|
5
|
Jubin T, Kadam A, Begum R. Poly(ADP-ribose) polymerase-1 (PARP-1) regulates developmental morphogenesis and chemotaxis in Dictyostelium discoideum. Biol Cell 2019; 111:187-197. [PMID: 30866055 DOI: 10.1111/boc.201800056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND INFORMATION Poly(ADP-ribose) polymerase-1 (PARP-1) has been attributed to varied roles in DNA repair, cell cycle, cell death, etc. Our previous reports demonstrate the role of PARP-1 during Dictyostelium discoideum development by its constitutive downregulation as well as by PARP-1 ortholog, ADP ribosyl transferase 1 A (ADPRT1A) overexpression. The current study analyses and strengthens the function of ADPRT1A in multicellular morphogenesis of D. discoideum. ADPRT1A was knocked out, and its effect was studied on cAMP signalling, chemotaxis and development of D. discoideum. RESULTS We report that ADPRT1A is essential in multicellular development of D. discoideum, particularly at the aggregation stage. Genetic alterations of ADPRT1A and chemical inhibition of its activity affects the intracellular and extracellular cAMP levels during aggregation along with chemotaxis. Exogenous cAMP pulses could rescue this defect in the ADPRT1A knockout (ADPRT1A KO). Expression analysis of genes involved in cAMP signalling reveals altered transcript levels of four essential genes (PDSA, REGA, ACAA and CARA). Moreover, ADPRT1A KO affects prespore- and prestalk-specific gene expression and prestalk tendency is favoured in the ADPRT1A KO. CONCLUSION ADPRT1A plays a definite role in regulating developmental morphogenesis via cAMP signalling. SIGNIFICANCE This study helps in understanding the role of PARP-1 in multicellular development and differentiation in higher complex organisms.
Collapse
Affiliation(s)
- Tina Jubin
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India
| | - Ashlesha Kadam
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India
| |
Collapse
|
6
|
Pham J, Stam R, Heredia VM, Csukai M, Huitema E. An NMRA-Like Protein Regulates Gene Expression in Phytophthora capsici to Drive the Infection Cycle on Tomato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:665-677. [PMID: 29419371 DOI: 10.1094/mpmi-07-17-0193-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phytophthora spp. cause devastating disease epidemics on important crop plants and pose a grave threat to global crop production. Critically, Phytophthora pathogens represent a distinct evolutionary lineage in which pathogenicity has been acquired independently. Therefore, there is an urgent need to understand and disrupt the processes that drive infection if we aspire to defeat oomycete pathogens in the field. One area that has received little attention thus far in this respect is the regulation of Phytophthora gene expression during infection. Here, we characterize PcNMRAL1 (Phyca11_505845), a homolog of the Aspergillus nidulans nitrogen metabolite repression regulator NMRA and demonstrate a role for this protein in progression of the Phytophthora capsici infection cycle. PcNmrAL1 is coexpressed with the biotrophic marker gene PcHmp1 (haustorial membrane protein 1) and, when overexpressed, extends the biotrophic infection stage. Microarray analyses revealed that PcNmrAL1 overexpression in P. capsici leads to large-scale transcriptional changes during infection and in vitro. Importantly, detailed analysis reveals that PcNmrAL1 overexpression induces biotrophy-associated genes while repressing those associated with necrotrophy. In addition to factors controlling transcription, translation, and nitrogen metabolism, PcNMRAL1 helps regulate the expression of a considerable effector repertoire in P. capsici. Our data suggests that PcNMRAL1 is a transcriptional regulator that mediates the biotrophy to necrotrophy transition. PcNMRAL1 represents a novel factor that may drive the Phytophthora disease cycle on crops. This study provides the first insight into mechanisms that regulate infection-related processes in Phytophthora spp. and provides a platform for further studies aimed at disabling pathogenesis and preventing crop losses.
Collapse
Affiliation(s)
- Jasmine Pham
- 1 Division of Plant Sciences, University of Dundee, Dundee DD2 5DA, U.K
- 2 Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee DD2 5DA, U.K
| | - Remco Stam
- 3 School for Life Sciences, Weihenstephan Technische Universität München, Freising, Germany; and
| | | | - Michael Csukai
- 4 Syngenta, Jealott's Hill International Research Centre, Bracknell, U.K
| | - Edgar Huitema
- 1 Division of Plant Sciences, University of Dundee, Dundee DD2 5DA, U.K
- 2 Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee DD2 5DA, U.K
| |
Collapse
|
7
|
Singh SP, Dhakshinamoorthy R, Jaiswal P, Schmidt S, Thewes S, Baskar R. The thyroxine inactivating gene, type III deiodinase, suppresses multiple signaling centers in Dictyostelium discoideum. Dev Biol 2014; 396:256-68. [PMID: 25446527 DOI: 10.1016/j.ydbio.2014.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 12/26/2022]
Abstract
Thyroxine deiodinases, the enzymes that regulate thyroxine metabolism, are essential for vertebrate growth and development. In the genome of Dictyostelium discoideum, a single intronless gene (dio3) encoding type III thyroxine 5' deiodinase is present. The amino acid sequence of D. discoideum Dio3 shares 37% identity with human T4 deiodinase and is a member of the thioredoxin reductase superfamily. dio3 is expressed throughout growth and development and by generating a knockout of dio3, we have examined the role of thyroxine 5' deiodinase in D. discoideum. dio3(-) had multiple defects that affected growth, timing of development, aggregate size, cell streaming, and cell-type differentiation. A prominent phenotype of dio3(-) was the breaking of late aggregates into small signaling centers, each forming a fruiting body of its own. cAMP levels, its relay, photo- and chemo-taxis were also defective in dio3(-). Quantitative RT-PCR analyses suggested that expression levels of genes encoding adenylyl cyclase A (acaA), cAMP-receptor A (carA) and cAMP-phosphodiesterases were reduced. There was a significant reduction in the expression of CadA and CsaA, which are involved in cell-cell adhesion. The dio3(-) slugs had prestalk identity, with pronounced prestalk marker ecmA expression. Thus, Dio3 seems to have roles in mediating cAMP synthesis/relay, cell-cell adhesion and slug patterning. The phenotype of dio3(-) suggests that Dio3 may prevent the formation of multiple signaling centers during D. discoideum development. This is the first report of a gene involved in thyroxine metabolism that is also involved in growth and development in a lower eukaryote.
Collapse
Affiliation(s)
- Shashi Prakash Singh
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Ranjani Dhakshinamoorthy
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Pundrik Jaiswal
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Stefanie Schmidt
- Institute for Biology - Microbiology, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Sascha Thewes
- Institute for Biology - Microbiology, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Ramamurthy Baskar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600036, India.
| |
Collapse
|
8
|
Gene expression associated with intersterility in Heterobasidion. Fungal Genet Biol 2014; 73:104-19. [PMID: 25459536 DOI: 10.1016/j.fgb.2014.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/10/2014] [Accepted: 10/08/2014] [Indexed: 12/18/2022]
Abstract
Intersterility (IS) is thought to prevent mating compatibility between homokaryons that belong to different species. Although IS in Heterobasidion is regulated by the genes located at the IS loci, it is not yet known how the IS genes influence sexual compatibility and heterokaryon formation. To increase our understanding of the molecular events underlying IS, we studied mRNA abundance changes during IS compatible and incompatible interactions over time. The clustering of the transcripts into expression profiles, followed by the application of Gene Ontology (GO) enrichment pathway analysis of each of the clusters, allowed inference of biological processes participating in IS. These analyses identified events involved in mating and sexual development (i.e., linked with IS compatibility), which included processes associated with cell-cell adhesion and recognition, cell cycle control and signal transduction. We also identified events potentially involved in overriding mating between individuals belonging to different species (i.e., linked with IS incompatibility), which included reactive oxygen species (ROS) production, responses to stress (especially to oxidative stress), signal transduction and metabolic biosynthesis. Our findings thus enabled detection and characterization of gene expression changes associated with IS in Heterobasidion, as well as identification of important processes and pathways associated with this phenomenon. Overall, the results of this study increase current knowledge regarding the molecular mechanisms underpinning IS in Heterobasidion and allowed for the establishment of a vital baseline for further studies.
Collapse
|
9
|
Narita TB, Chen ZH, Schaap P, Saito T. The hybrid type polyketide synthase SteelyA is required for cAMP signalling in early Dictyostelium development. PLoS One 2014; 9:e106634. [PMID: 25222736 PMCID: PMC4164351 DOI: 10.1371/journal.pone.0106634] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/08/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In our previous study we found that the expression of stlA showed peaks both in the early and last stages of development and that a product of SteelyA, 4-methyl-5-pentylbenzene-1,3-diol (MPBD), controlled Dictyostelium spore maturation during the latter. In this study we focused on the role of SteelyA in early stage development. PRINCIPAL FINDINGS Our stlA null mutant showed aggregation delay and abnormally small aggregation territories. Chemotaxis analysis revealed defective cAMP chemotaxis in the stlA null mutant. cAMP chemotaxis was restored by MPBD addition during early stage development. Assay for cAMP relay response revealed that the stlA null mutant had lower cAMP accumulation during aggregation, suggesting lower ACA activity than the wild type strain. Exogenous cAMP pulses rescued the aggregation defect of the stlA null strain in the absence of MPBD. Expression analysis of cAMP signalling genes revealed lower expression levels in the stlA null mutant during aggregation. CONCLUSION Our data indicate a regulatory function by SteelyA on cAMP signalling during aggregation and show that SteelyA is indispensable for full activation of ACA.
Collapse
Affiliation(s)
- Takaaki B. Narita
- Graduate School of Science and Technology, Sophia University, Tokyo, Japan
- Research Fellow of Japan Society for the Promotion of Science (DC2), Tokyo, Japan
| | - Zhi-hui Chen
- College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Pauline Schaap
- College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Tamao Saito
- Department of Materials and Life Sciences, Sophia University, Tokyo, Japan
| |
Collapse
|