1
|
Aldrich JC, Vanderlinden LA, Jacobsen TL, Wood C, Saba LM, Britt SG. Genome-Wide Association Study and transcriptome analysis reveals a complex gene network that regulates opsin gene expression and cell fate determination in Drosophila R7 photoreceptor cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606616. [PMID: 39149333 PMCID: PMC11326169 DOI: 10.1101/2024.08.05.606616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Background An animal's ability to discriminate between differing wavelengths of light (i.e., color vision) is mediated, in part, by a subset of photoreceptor cells that express opsins with distinct absorption spectra. In Drosophila R7 photoreceptors, expression of the rhodopsin molecules, Rh3 or Rh4, is determined by a stochastic process mediated by the transcription factor spineless. The goal of this study was to identify additional factors that regulate R7 cell fate and opsin choice using a Genome Wide Association Study (GWAS) paired with transcriptome analysis via RNA-Seq. Results We examined Rh3 and Rh4 expression in a subset of fully-sequenced inbred strains from the Drosophila Genetic Reference Panel and performed a GWAS to identify 42 naturally-occurring polymorphisms-in proximity to 28 candidate genes-that significantly influence R7 opsin expression. Network analysis revealed multiple potential interactions between the associated candidate genes, spineless and its partners. GWAS candidates were further validated in a secondary RNAi screen which identified 12 lines that significantly reduce the proportion of Rh3 expressing R7 photoreceptors. Finally, using RNA-Seq, we demonstrated that all but four of the GWAS candidates are expressed in the pupal retina at a critical developmental time point and that five are among the 917 differentially expressed genes in sevenless mutants, which lack R7 cells. Conclusions Collectively, these results suggest that the relatively simple, binary cell fate decision underlying R7 opsin expression is modulated by a larger, more complex network of regulatory factors. Of particular interest are a subset of candidate genes with previously characterized neuronal functions including neurogenesis, neurodegeneration, photoreceptor development, axon growth and guidance, synaptogenesis, and synaptic function.
Collapse
Affiliation(s)
- John C. Aldrich
- Department of Neurology, Department of Ophthalmology, Dell Medical School; University of Texas at Austin, Austin, TX 78712
- Department of Psychology, University of Texas at Austin, Austin, TX 78712
| | - Lauren A. Vanderlinden
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Thomas L. Jacobsen
- Department of Neurology, Department of Ophthalmology, Dell Medical School; University of Texas at Austin, Austin, TX 78712
| | - Cheyret Wood
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Laura M. Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Steven G. Britt
- Department of Neurology, Department of Ophthalmology, Dell Medical School; University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
2
|
Lim-Kian-Siang G, Izawa-Ishiguro AR, Rao Y. Neurexin-1-dependent circuit activity is required for the maintenance of photoreceptor subtype identity in Drosophila. Mol Brain 2024; 17:2. [PMID: 38167109 PMCID: PMC10759516 DOI: 10.1186/s13041-023-01073-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
In the human and Drosophila color vision system, each photoreceptor neuron (cone cell in humans and R7/R8 photoreceptor cell in Drosophila) makes a stochastic decision to express a single photopigment of the same family with the exclusion of the others. While recent studies have begun to reveal the mechanisms that specify the generation of cone subtypes during development in mammals, nothing is known about how the mosaic of mutually exclusive cone subtypes is maintained in the mammalian retina. In Drosophila, recent work has led to the identification of several intrinsic factors that maintain the identity of R8 photoreceptor subtypes in adults. Whether and how extrinsic mechanisms are involved, however, remain unknown. In this study, we present evidence that supports that the Drosophila transsynaptic adhesion molecule Neurexin 1 (Dnrx-1) is required non-cell autonomously in R8p subtypes for the maintenance of R8y subtype identity. Silencing the activity of R8p subtypes caused a phenotype identical to that in dnrx-1 mutants. These results support a novel role for Nrx-1-dependent circuit activity in mediating the communication between R8 photoreceptor subtypes for maintaining the subtype identity in the retina.
Collapse
Affiliation(s)
- Gabrielle Lim-Kian-Siang
- McGill Centre for Research in Neuroscience, Montreal, Canada
- Integrated Program in Neuroscience, McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada
| | - Arianna R Izawa-Ishiguro
- McGill Centre for Research in Neuroscience, Montreal, Canada
- Integrated Program in Neuroscience, McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada
| | - Yong Rao
- McGill Centre for Research in Neuroscience, Montreal, Canada.
- Department of Neurology and Neurosurgery, Montreal, Canada.
- Integrated Program in Neuroscience, McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada.
- Centre for Research in Neuroscience, McGill University Health Centre, Room L7-136, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada.
| |
Collapse
|
3
|
Bollepogu Raja KK, Yeung K, Shim YK, Li Y, Chen R, Mardon G. A single cell genomics atlas of the Drosophila larval eye reveals distinct photoreceptor developmental timelines. Nat Commun 2023; 14:7205. [PMID: 37938573 PMCID: PMC10632452 DOI: 10.1038/s41467-023-43037-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023] Open
Abstract
The Drosophila eye is a powerful model system to study the dynamics of cell differentiation, cell state transitions, cell maturation, and pattern formation. However, a high-resolution single cell genomics resource that accurately profiles all major cell types of the larval eye disc and their spatiotemporal relationships is lacking. Here, we report transcriptomic and chromatin accessibility data for all known cell types in the developing eye. Photoreceptors appear as strands of cells that represent their dynamic developmental timelines. As photoreceptor subtypes mature, they appear to assume a common transcriptomic profile that is dominated by genes involved in axon function. We identify cell type maturation genes, enhancers, and potential regulators, as well as genes with distinct R3 or R4 photoreceptor specific expression. Finally, we observe that the chromatin accessibility between cones and photoreceptors is distinct. These single cell genomics atlases will greatly enhance the power of the Drosophila eye as a model system.
Collapse
Affiliation(s)
- Komal Kumar Bollepogu Raja
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Kelvin Yeung
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yoon-Kyung Shim
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Graeme Mardon
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Aughey GN. Maintenance of neuronal fate and transcriptional identity. Biol Open 2023; 12:bio059953. [PMID: 37272626 PMCID: PMC10259840 DOI: 10.1242/bio.059953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
The processes that drive naive multipotent stem cells towards fully differentiated fates are increasingly well understood. However, once differentiated, the mechanisms and molecular factors involved in maintaining differentiated states and associated transcriptomes are less well studied. Neurons are a post-mitotic cell-type with highly specialised functions that largely lack the capacity for renewal. Therefore, neuronal cell identities and the transcriptional states that underpin them are locked into place by active mechanisms that prevent lineage reversion/dedifferentiation and repress cell cycling. Furthermore, individual neurons may be very long-lived, so these mechanisms must be sufficient to ensure the fidelity of neuronal transcriptomes over long time periods. This Review aims to provide an overview of recent progress in understanding how neuronal cell fate and associated gene expression are maintained and the transcriptional regulators that are involved. Maintenance of neuronal fate and subtype specification are discussed, as well as the activating and repressive mechanisms involved. The relevance of these processes to disease states, such as brain cancers and neurodegeneration is outlined. Finally, outstanding questions and hypotheses in this field are proposed.
Collapse
Affiliation(s)
- Gabriel N. Aughey
- Queen Square Institute of Neurology, Department of Clinical and Experimental Epilepsy, University College London, London WC1N 3BG, UK
| |
Collapse
|
5
|
Zaytseva O, Mitchell NC, Muckle D, Delandre C, Nie Z, Werner JK, Lis JT, Eyras E, Hannan RD, Levens DL, Marshall OJ, Quinn LM. Psi promotes Drosophila wing growth via direct transcriptional activation of cell cycle targets and repression of growth inhibitors. Development 2023; 150:286725. [PMID: 36692218 PMCID: PMC10110491 DOI: 10.1242/dev.201563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/25/2023]
Abstract
The first characterised FUSE Binding Protein family member, FUBP1, binds single-stranded DNA to activate MYC transcription. Psi, the sole FUBP protein in Drosophila, binds RNA to regulate P-element and mRNA splicing. Our previous work revealed pro-growth functions for Psi, which depend, in part, on transcriptional activation of Myc. Genome-wide functions for FUBP family proteins in transcriptional control remain obscure. Here, through the first genome-wide binding and expression profiles obtained for a FUBP family protein, we demonstrate that, in addition to being required to activate Myc to promote cell growth, Psi also directly binds and activates stg to couple growth and cell division. Thus, Psi knockdown results in reduced cell division in the wing imaginal disc. In addition to activating these pro-proliferative targets, Psi directly represses transcription of the growth inhibitor tolkin (tok, a metallopeptidase implicated in TGFβ signalling). We further demonstrate tok overexpression inhibits proliferation, while tok loss of function increases mitosis alone and suppresses impaired cell division caused by Psi knockdown. Thus, Psi orchestrates growth through concurrent transcriptional activation of the pro-proliferative genes Myc and stg, in combination with repression of the growth inhibitor tok.
Collapse
Affiliation(s)
- Olga Zaytseva
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia
| | - Naomi C Mitchell
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia
| | - Damien Muckle
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia
| | - Caroline Delandre
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Zuqin Nie
- National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | - John T Lis
- Cornell University, Ithaca, NY 14850, USA
| | - Eduardo Eyras
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia
| | - Ross D Hannan
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia
| | | | - Owen J Marshall
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Leonie M Quinn
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
6
|
Saul J, Hirose T, Horvitz HR. The transcriptional corepressor CTBP-1 acts with the SOX family transcription factor EGL-13 to maintain AIA interneuron cell identity in Caenorhabditis elegans. eLife 2022; 11:74557. [PMID: 35119366 PMCID: PMC8816384 DOI: 10.7554/elife.74557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
Cell identity is characterized by a distinct combination of gene expression, cell morphology, and cellular function established as progenitor cells divide and differentiate. Following establishment, cell identities can be unstable and require active and continuous maintenance throughout the remaining life of a cell. Mechanisms underlying the maintenance of cell identities are incompletely understood. Here, we show that the gene ctbp-1, which encodes the transcriptional corepressor C-terminal binding protein-1 (CTBP-1), is essential for the maintenance of the identities of the two AIA interneurons in the nematode Caenorhabditis elegans. ctbp-1 is not required for the establishment of the AIA cell fate but rather functions cell-autonomously and can act in later larval stage and adult worms to maintain proper AIA gene expression, morphology and function. From a screen for suppressors of the ctbp-1 mutant phenotype, we identified the gene egl-13, which encodes a SOX family transcription factor. We found that egl-13 regulates AIA function and aspects of AIA gene expression, but not AIA morphology. We conclude that the CTBP-1 protein maintains AIA cell identity in part by utilizing EGL-13 to repress transcriptional activity in the AIAs. More generally, we propose that transcriptional corepressors like CTBP-1 might be critical factors in the maintenance of cell identities, harnessing the DNA-binding specificity of transcription factors like EGL-13 to selectively regulate gene expression in a cell-specific manner.
Collapse
Affiliation(s)
- Josh Saul
- Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical Institute, Cambridge, United States
| | - Takashi Hirose
- Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical Institute, Cambridge, United States
| | - H Robert Horvitz
- Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical Institute, Cambridge, United States
| |
Collapse
|
7
|
Traets JJ, van der Burght SN, Rademakers S, Jansen G, van Zon JS. Mechanism of life-long maintenance of neuron identity despite molecular fluctuations. eLife 2021; 10:66955. [PMID: 34908528 PMCID: PMC8735970 DOI: 10.7554/elife.66955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Cell fate is maintained over long timescales, yet molecular fluctuations can lead to spontaneous loss of this differentiated state. Our simulations identified a possible mechanism that explains life-long maintenance of ASE neuron fate in Caenorhabditis elegans by the terminal selector transcription factor CHE-1. Here, fluctuations in CHE-1 level are buffered by the reservoir of CHE-1 bound at its target promoters, which ensures continued che-1 expression by preferentially binding the che-1 promoter. We provide experimental evidence for this mechanism by showing that che-1 expression was resilient to induced transient CHE-1 depletion, while both expression of CHE-1 targets and ASE function were lost. We identified a 130 bp che-1 promoter fragment responsible for this resilience, with deletion of a homeodomain binding site in this fragment causing stochastic loss of ASE identity long after its determination. Because network architectures that support this mechanism are highly conserved in cell differentiation, it may explain stable cell fate maintenance in many systems.
Collapse
Affiliation(s)
| | | | | | - Gert Jansen
- Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
| | - Jeroen S van Zon
- Quantitative Developmental Biology, AMOLF, Amsterdam, Netherlands
| |
Collapse
|
8
|
Liu S, Aldinger KA, Cheng CV, Kiyama T, Dave M, McNamara HK, Zhao W, Stafford JM, Descostes N, Lee P, Caraffi SG, Ivanovski I, Errichiello E, Zweier C, Zuffardi O, Schneider M, Papavasiliou AS, Perry MS, Humberson J, Cho MT, Weber A, Swale A, Badea TC, Mao CA, Garavelli L, Dobyns WB, Reinberg D. NRF1 association with AUTS2-Polycomb mediates specific gene activation in the brain. Mol Cell 2021; 81:4663-4676.e8. [PMID: 34637754 PMCID: PMC8604784 DOI: 10.1016/j.molcel.2021.09.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/21/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022]
Abstract
The heterogeneous family of complexes comprising Polycomb repressive complex 1 (PRC1) is instrumental for establishing facultative heterochromatin that is repressive to transcription. However, two PRC1 species, ncPRC1.3 and ncPRC1.5, are known to comprise novel components, AUTS2, P300, and CK2, that convert this repressive function to that of transcription activation. Here, we report that individuals harboring mutations in the HX repeat domain of AUTS2 exhibit defects in AUTS2 and P300 interaction as well as a developmental disorder reflective of Rubinstein-Taybi syndrome, which is mainly associated with a heterozygous pathogenic variant in CREBBP/EP300. Moreover, the absence of AUTS2 or mutation in its HX repeat domain gives rise to misregulation of a subset of developmental genes and curtails motor neuron differentiation of mouse embryonic stem cells. The transcription factor nuclear respiratory factor 1 (NRF1) has a novel and integral role in this neurodevelopmental process, being required for ncPRC1.3 recruitment to chromatin.
Collapse
Affiliation(s)
- Sanxiong Liu
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Chi Vicky Cheng
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Takae Kiyama
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Mitali Dave
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Hanna K McNamara
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Wukui Zhao
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA
| | - James M Stafford
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Nicolas Descostes
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Pedro Lee
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Stefano G Caraffi
- Struttura Semplice Dipartimentale di Genetica Medica, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Ivan Ivanovski
- Struttura Semplice Dipartimentale di Genetica Medica, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy; Institute of Medical Genetics, University of Zürich, Zürich, Switzerland
| | - Edoardo Errichiello
- Dipartimento di Medicina Molecolare, Università di Pavia, Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054 Erlangen, Germany; Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Orsetta Zuffardi
- Dipartimento di Medicina Molecolare, Università di Pavia, Pavia, Italy
| | - Michael Schneider
- Carle Physicians Group, Section of Neurology, St. Christopher's Hospital for Children, Urbana, IL, USA
| | | | - M Scott Perry
- Comprehensive Epilepsy Program, Jane and John Justin Neuroscience Center, Cook Children's Medical Center, Fort Worth, TX 76104, USA
| | - Jennifer Humberson
- Division of Genetics, Department of Pediatrics, University of Virginia Children's Hospital, Charlottesville, VA, USA
| | | | | | - Andrew Swale
- Liverpool Women's Hospital, Liverpool, UK; Manchester Centre for Genomic Medicine, Manchester, UK
| | - Tudor C Badea
- National Eye Institute, NIH, Bethesda, MD 20892, USA; Research and Development Institute, Transilvania University of Brasov, School of Medicine, Brasov, Romania
| | - Chai-An Mao
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Livia Garavelli
- Struttura Semplice Dipartimentale di Genetica Medica, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics (Genetic Medicine), University of Washington, Seattle, WA, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
9
|
Smylla TK, Wagner K, Huber A. Application of Fluorescent Proteins for Functional Dissection of the Drosophila Visual System. Int J Mol Sci 2021; 22:8930. [PMID: 34445636 PMCID: PMC8396179 DOI: 10.3390/ijms22168930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 11/22/2022] Open
Abstract
The Drosophila eye has been used extensively to study numerous aspects of biological systems, for example, spatio-temporal regulation of differentiation, visual signal transduction, protein trafficking and neurodegeneration. Right from the advent of fluorescent proteins (FPs) near the end of the millennium, heterologously expressed fusion proteins comprising FPs have been applied in Drosophila vision research not only for subcellular localization of proteins but also for genetic screens and analysis of photoreceptor function. Here, we summarize applications for FPs used in the Drosophila eye as part of genetic screens, to study rhodopsin expression patterns, subcellular protein localization, membrane protein transport or as genetically encoded biosensors for Ca2+ and phospholipids in vivo. We also discuss recently developed FPs that are suitable for super-resolution or correlative light and electron microscopy (CLEM) approaches. Illustrating the possibilities provided by using FPs in Drosophila photoreceptors may aid research in other sensory or neuronal systems that have not yet been studied as well as the Drosophila eye.
Collapse
Affiliation(s)
- Thomas K. Smylla
- Department of Biochemistry, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany; (K.W.); (A.H.)
| | | | | |
Collapse
|
10
|
Tan H, Fulton RE, Chou WH, Birkholz DA, Mannino MP, Yamaguchi DM, Aldrich JC, Jacobsen TL, Britt SG. Drosophila R8 photoreceptor cell subtype specification requires hibris. PLoS One 2020; 15:e0240451. [PMID: 33052948 PMCID: PMC7556441 DOI: 10.1371/journal.pone.0240451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 09/25/2020] [Indexed: 11/18/2022] Open
Abstract
Cell differentiation and cell fate determination in sensory systems are essential for stimulus discrimination and coding of environmental stimuli. Color vision is based on the differential color sensitivity of retinal photoreceptors, however the developmental programs that control photoreceptor cell differentiation and specify color sensitivity are poorly understood. In Drosophila melanogaster, there is evidence that the color sensitivity of different photoreceptors in the compound eye is regulated by inductive signals between cells, but the exact nature of these signals and how they are propagated remains unknown. We conducted a genetic screen to identify additional regulators of this process and identified a novel mutation in the hibris gene, which encodes an irre cell recognition module protein (IRM). These immunoglobulin super family cell adhesion molecules include human KIRREL and nephrin (NPHS1). hibris is expressed dynamically in the developing Drosophila melanogaster eye and loss-of-function mutations give rise to a diverse range of mutant phenotypes including disruption of the specification of R8 photoreceptor cell diversity. We demonstrate that hibris is required within the retina, and that hibris over-expression is sufficient to disrupt normal photoreceptor cell patterning. These findings suggest an additional layer of complexity in the signaling process that produces paired expression of opsin genes in adjacent R7 and R8 photoreceptor cells.
Collapse
Affiliation(s)
- Hong Tan
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Ruth E. Fulton
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Wen-Hai Chou
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Denise A. Birkholz
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Meridee P. Mannino
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - David M. Yamaguchi
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - John C. Aldrich
- Department of Neurology, Department of Ophthalmology, Dell Medical School, University of Texas at Austin, Austin, Texas, United States of America
| | - Thomas L. Jacobsen
- Department of Neurology, Department of Ophthalmology, Dell Medical School, University of Texas at Austin, Austin, Texas, United States of America
| | - Steven G. Britt
- Department of Neurology, Department of Ophthalmology, Dell Medical School, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
11
|
Huang HW, Brown B, Chung J, Domingos PM, Ryoo HD. highroad Is a Carboxypetidase Induced by Retinoids to Clear Mutant Rhodopsin-1 in Drosophila Retinitis Pigmentosa Models. Cell Rep 2019; 22:1384-1391. [PMID: 29425495 PMCID: PMC5832065 DOI: 10.1016/j.celrep.2018.01.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 12/15/2017] [Accepted: 01/10/2018] [Indexed: 11/02/2022] Open
Abstract
Rhodopsins require retinoid chromophores for their function. In vertebrates, retinoids also serve as signaling molecules, but whether these molecules similarly regulate gene expression in Drosophila remains unclear. Here, we report the identification of a retinoid-inducible gene in Drosophila, highroad, which is required for photoreceptors to clear folding-defective mutant Rhodopsin-1 proteins. Specifically, knockdown or genetic deletion of highroad blocks the degradation of folding-defective Rhodopsin-1 mutant, ninaEG69D. Moreover, loss of highroad accelerates the age-related retinal degeneration phenotype of ninaEG69D mutants. Elevated highroad transcript levels are detected in ninaEG69D flies, and interestingly, deprivation of retinoids in the fly diet blocks this effect. Consistently, mutations in the retinoid transporter, santa maria, impairs the induction of highroad in ninaEG69D flies. In cultured S2 cells, highroad expression is induced by retinoic acid treatment. These results indicate that cellular quality-control mechanisms against misfolded Rhodopsin-1 involve regulation of gene expression by retinoids.
Collapse
Affiliation(s)
- Huai-Wei Huang
- Department of Cell Biology, New York University School of Medicine 550 First Avenue, New York, NY 10016, USA
| | - Brian Brown
- Department of Cell Biology, New York University School of Medicine 550 First Avenue, New York, NY 10016, USA
| | - Jaehoon Chung
- Department of Cell Biology, New York University School of Medicine 550 First Avenue, New York, NY 10016, USA
| | - Pedro M Domingos
- Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University School of Medicine 550 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
12
|
Kiyama T, Chen CK, Wang SW, Pan P, Ju Z, Wang J, Takada S, Klein WH, Mao CA. Essential roles of mitochondrial biogenesis regulator Nrf1 in retinal development and homeostasis. Mol Neurodegener 2018; 13:56. [PMID: 30333037 PMCID: PMC6192121 DOI: 10.1186/s13024-018-0287-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 10/02/2018] [Indexed: 01/08/2023] Open
Abstract
Background Mitochondrial dysfunction has been implicated in the pathologies of a number of retinal degenerative diseases in both the outer and inner retina. In the outer retina, photoreceptors are particularly vulnerable to mutations affecting mitochondrial function due to their high energy demand and sensitivity to oxidative stress. However, it is unclear how defective mitochondrial biogenesis affects neural development and contributes to neural degeneration. In this report, we investigated the in vivo function of nuclear respiratory factor 1 (Nrf1), a major transcriptional regulator of mitochondrial biogenesis in both proliferating retinal progenitor cells (RPCs) and postmitotic rod photoreceptor cells (PRs). Methods We used mouse genetic techniques to generate RPC-specific and rod PR-specific Nrf1 conditional knockout mouse models. We then applied a comprehensive set of tools, including histopathological and molecular analyses, RNA-seq, and electroretinography on these mouse lines to study Nrf1-regulated genes and Nrf1’s roles in both developing retinas and differentiated rod PRs. For all comparisons between genotypes, a two-tailed two-sample student’s t-test was used. Results were considered significant when P < 0.05. Results We uncovered essential roles of Nrf1 in cell proliferation in RPCs, cell migration and survival of newly specified retinal ganglion cells (RGCs), neurite outgrowth in retinal explants, reconfiguration of metabolic pathways in RPCs, and mitochondrial morphology, position, and function in rod PRs. Conclusions Our findings provide in vivo evidence that Nrf1 and Nrf1-mediated pathways have context-dependent and cell-state-specific functions during neural development, and disruption of Nrf1-mediated mitochondrial biogenesis in rod PRs results in impaired mitochondria and a slow, progressive degeneration of rod PRs. These results offer new insights into the roles of Nrf1 in retinal development and neuronal homeostasis and the differential sensitivities of diverse neuronal tissues and cell types of dysfunctional mitochondria. Moreover, the conditional Nrf1 allele we have generated provides the opportunity to develop novel mouse models to understand how defective mitochondrial biogenesis contributes to the pathologies and disease progression of several neurodegenerative diseases, including glaucoma, age-related macular degeneration, Parkinson’s diseases, and Huntington’s disease.
Collapse
Affiliation(s)
- Takae Kiyama
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., MSB 7.024, Houston, TX, 77030, USA
| | - Ching-Kang Chen
- Department of Ophthalmology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Steven W Wang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Ping Pan
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., MSB 7.024, Houston, TX, 77030, USA
| | - Zhenlin Ju
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Shinako Takada
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Present Address: Office of Scientific Review, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - William H Klein
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Chai-An Mao
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., MSB 7.024, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Anderson C, Reiss I, Zhou C, Cho A, Siddiqi H, Mormann B, Avelis CM, Deford P, Bergland A, Roberts E, Taylor J, Vasiliauskas D, Johnston RJ. Natural variation in stochastic photoreceptor specification and color preference in Drosophila. eLife 2017; 6:29593. [PMID: 29251595 PMCID: PMC5745083 DOI: 10.7554/elife.29593] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 12/15/2017] [Indexed: 11/25/2022] Open
Abstract
Each individual perceives the world in a unique way, but little is known about the genetic basis of variation in sensory perception. In the fly eye, the random mosaic of color-detecting R7 photoreceptor subtypes is determined by stochastic on/off expression of the transcription factor Spineless (Ss). In a genome-wide association study, we identified a naturally occurring insertion in a regulatory DNA element in ss that lowers the ratio of SsON to SsOFF cells. This change in photoreceptor fates shifts the innate color preference of flies from green to blue. The genetic variant increases the binding affinity for Klumpfuss (Klu), a zinc finger transcriptional repressor that regulates ss expression. Klu is expressed at intermediate levels to determine the normal ratio of SsON to SsOFF cells. Thus, binding site affinity and transcription factor levels are finely tuned to regulate stochastic expression, setting the ratio of alternative fates and ultimately determining color preference.
Collapse
Affiliation(s)
- Caitlin Anderson
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - India Reiss
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Cyrus Zhou
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Annie Cho
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Haziq Siddiqi
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Benjamin Mormann
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| | - Cameron M Avelis
- Department of Biophysics, Johns Hopkins University, Baltimore, United States
| | - Peter Deford
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Alan Bergland
- Department of Biology, University of Virginia, Charlottesville, United States
| | - Elijah Roberts
- Department of Biophysics, Johns Hopkins University, Baltimore, United States
| | - James Taylor
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Daniel Vasiliauskas
- Paris-Saclay Institute of Neuroscience, Université Paris Sud, Centre National de la Recherche Scientifque, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
14
|
Computational genome-wide survey of odorant receptors from two solitary bees Dufourea novaeangliae (Hymenoptera: Halictidae) and Habropoda laboriosa (Hymenoptera: Apidae). Sci Rep 2017; 7:10823. [PMID: 28883425 PMCID: PMC5589748 DOI: 10.1038/s41598-017-11098-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/16/2017] [Indexed: 11/08/2022] Open
Abstract
Olfactory/odorant receptors (ORs) probably govern eusocial behaviour in honey bees through detection of cuticular hydrocarbons (CHCs) and queen mandibular gland pheromones (QMP). CHCs are involved in nest-mate recognition whereas QMP acts as sex pheromone for drones and as retinue pheromone for female workers. Further studies on the effect of eusociality on the evolution of ORs are hindered by the non-availability of comprehensive OR sets of solitary species. We report complete OR repertoires from two solitary bees Dufourea novaeangliae (112 ORs) and Habropoda laboriosa (151 ORs). We classify these ORs into 34 phylogenetic clades/subfamilies. Differences in the OR sets of solitary and eusocial bees are observed in individual subfamilies like subfamily 9-exon (putative CHC receptors) and L (contains putative QMP receptor group). A subfamily (H) including putative floral scent receptors is expanded in the generalist honey bees only, but not in the specialists. On the contrary, subfamily J is expanded in all bees irrespective of their degree of social complexity or food preferences. Finally, we show species-lineage specific and OR-subfamily specific differences in the putative cis-regulatory DNA motifs of the ORs from six hymenopteran species. Out of these, [A/G]CGCAAGCG[C/T] is a candidate master transcription factor binding site for multiple olfactory genes.
Collapse
|
15
|
Wells BS, Pistillo D, Barnhart E, Desplan C. Parallel Activin and BMP signaling coordinates R7/R8 photoreceptor subtype pairing in the stochastic Drosophila retina. eLife 2017; 6:25301. [PMID: 28853393 PMCID: PMC5599232 DOI: 10.7554/elife.25301] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 08/25/2017] [Indexed: 12/27/2022] Open
Abstract
Drosophila color vision is achieved by comparing outputs from two types of color-sensitive photoreceptors, R7 and R8. Ommatidia (unit eyes) are classified into two subtypes, known as 'pale' or 'yellow', depending on Rhodopsin expression in R7 and R8. Subtype specification is controlled by a stochastic decision in R7 and instructed to the underlying R8. We find that the Activin receptor Baboon is required in R8 to receive non-redundant signaling from the three Activin ligands, activating the transcription factor dSmad2. Concomitantly, two BMP ligands activate their receptor, Thickveins, and the transcriptional effector, Mad. The Amon TGFβ processing factor appears to regulate components of the TGFβ pathway specifically in pale R7. Mad and dSmad2 cooperate to modulate the Hippo pathway kinase Warts and the growth regulator Melted; two opposing factors of a bi-stable loop regulating R8 Rhodopsin expression. Therefore, TGFβ and growth pathways interact in postmitotic cells to precisely coordinate cell-specific output.
Collapse
Affiliation(s)
- Brent S Wells
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| | - Daniela Pistillo
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| | - Erin Barnhart
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| | - Claude Desplan
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| |
Collapse
|
16
|
Yan J, Anderson C, Viets K, Tran S, Goldberg G, Small S, Johnston RJ. Regulatory logic driving stable levels of defective proventriculus expression during terminal photoreceptor specification in flies. Development 2017; 144:844-855. [PMID: 28126841 DOI: 10.1242/dev.144030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/02/2017] [Indexed: 12/13/2022]
Abstract
How differential levels of gene expression are controlled in post-mitotic neurons is poorly understood. In the Drosophila retina, expression of the transcription factor Defective Proventriculus (Dve) at distinct cell type-specific levels is required for terminal differentiation of color- and motion-detecting photoreceptors. Here, we find that the activities of two cis-regulatory enhancers are coordinated to drive dve expression in the fly eye. Three transcription factors act on these enhancers to determine cell-type specificity. Negative autoregulation by Dve maintains expression from each enhancer at distinct homeostatic levels. One enhancer acts as an inducible backup ('dark' shadow enhancer) that is normally repressed but becomes active in the absence of the other enhancer. Thus, two enhancers integrate combinatorial transcription factor input, feedback and redundancy to generate cell type-specific levels of dve expression and stable photoreceptor fate. This regulatory logic may represent a general paradigm for how precise levels of gene expression are established and maintained in post-mitotic neurons.
Collapse
Affiliation(s)
- Jenny Yan
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2685, USA
| | - Caitlin Anderson
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2685, USA
| | - Kayla Viets
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2685, USA
| | - Sang Tran
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2685, USA
| | - Gregory Goldberg
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA
| | - Stephen Small
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2685, USA
| |
Collapse
|
17
|
Fallahi E, O'Driscoll NA, Matallanas D. The MST/Hippo Pathway and Cell Death: A Non-Canonical Affair. Genes (Basel) 2016; 7:genes7060028. [PMID: 27322327 PMCID: PMC4929427 DOI: 10.3390/genes7060028] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 01/06/2023] Open
Abstract
The MST/Hippo signalling pathway was first described over a decade ago in Drosophila melanogaster and the core of the pathway is evolutionary conserved in mammals. The mammalian MST/Hippo pathway regulates organ size, cell proliferation and cell death. In addition, it has been shown to play a central role in the regulation of cellular homeostasis and it is commonly deregulated in human tumours. The delineation of the canonical pathway resembles the behaviour of the Hippo pathway in the fly where the activation of the core kinases of the pathway prevents the proliferative signal mediated by the key effector of the pathway YAP. Nevertheless, several lines of evidence support the idea that the mammalian MST/Hippo pathway has acquired new features during evolution, including different regulators and effectors, crosstalk with other essential signalling pathways involved in cellular homeostasis and the ability to actively trigger cell death. Here we describe the current knowledge of the mechanisms that mediate MST/Hippo dependent cell death, especially apoptosis. We include evidence for the existence of complex signalling networks where the core proteins of the pathway play a central role in controlling the balance between survival and cell death. Finally, we discuss the possible involvement of these signalling networks in several human diseases such as cancer, diabetes and neurodegenerative disorders.
Collapse
Affiliation(s)
- Emma Fallahi
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland. emma.fallahi---
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland. emma.fallahi---
| | - Niamh A O'Driscoll
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - David Matallanas
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
18
|
Jukam D, Viets K, Anderson C, Zhou C, DeFord P, Yan J, Cao J, Johnston RJ. The insulator protein BEAF-32 is required for Hippo pathway activity in the terminal differentiation of neuronal subtypes. Development 2016; 143:2389-97. [PMID: 27226322 DOI: 10.1242/dev.134700] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/11/2016] [Indexed: 01/07/2023]
Abstract
The Hippo pathway is crucial for not only normal growth and apoptosis but also cell fate specification during development. What controls Hippo pathway activity during cell fate specification is incompletely understood. In this article, we identify the insulator protein BEAF-32 as a regulator of Hippo pathway activity in Drosophila photoreceptor differentiation. Though morphologically uniform, the fly eye is composed of two subtypes of R8 photoreceptor neurons defined by expression of light-detecting Rhodopsin proteins. In one R8 subtype, active Hippo signaling induces Rhodopsin 6 (Rh6) and represses Rhodopsin 5 (Rh5), whereas in the other subtype, inactive Hippo signaling induces Rh5 and represses Rh6. The activity state of the Hippo pathway in R8 cells is determined by the expression of warts, a core pathway kinase, which interacts with the growth regulator melted in a double-negative feedback loop. We show that BEAF-32 is required for expression of warts and repression of melted Furthermore, BEAF-32 plays a second role downstream of Warts to induce Rh6 and prevent Rh5 fate. BEAF-32 is dispensable for Warts feedback, indicating that BEAF-32 differentially regulates warts and Rhodopsins. Loss of BEAF-32 does not noticeably impair the functions of the Hippo pathway in eye growth regulation. Our study identifies a context-specific regulator of Hippo pathway activity in post-mitotic neuronal fate, and reveals a developmentally specific role for a broadly expressed insulator protein.
Collapse
Affiliation(s)
- David Jukam
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA
| | - Kayla Viets
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2685, USA
| | - Caitlin Anderson
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2685, USA
| | - Cyrus Zhou
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2685, USA
| | - Peter DeFord
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2685, USA
| | - Jenny Yan
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2685, USA
| | - Jinshuai Cao
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2685, USA
| |
Collapse
|
19
|
Moris-Sanz M, Estacio-Gómez A, Sánchez-Herrero E, Díaz-Benjumea FJ. The study of the Bithorax-complex genes in patterning CCAP neurons reveals a temporal control of neuronal differentiation by Abd-B. Biol Open 2015; 4:1132-42. [PMID: 26276099 PMCID: PMC4582124 DOI: 10.1242/bio.012872] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
During development, HOX genes play critical roles in the establishment of segmental differences. In the Drosophila central nervous system, these differences are manifested in the number and type of neurons generated by each neuroblast in each segment. HOX genes can act either in neuroblasts or in postmitotic cells, and either early or late in a lineage. Additionally, they can be continuously required during development or just at a specific stage. Moreover, these features are generally segment-specific. Lately, it has been shown that contrary to what happens in other tissues, where HOX genes define domains of expression, these genes are expressed in individual cells as part of the combinatorial codes involved in cell type specification. In this report we analyse the role of the Bithorax-complex genes - Ultrabithorax, abdominal-A and Abdominal-B - in sculpting the pattern of crustacean cardioactive peptide (CCAP)-expressing neurons. These neurons are widespread in invertebrates, express CCAP, Bursicon and MIP neuropeptides and play major roles in controlling ecdysis. There are two types of CCAP neuron: interneurons and efferent neurons. Our results indicate that Ultrabithorax and Abdominal-A are not necessary for specification of the CCAP-interneurons, but are absolutely required to prevent the death by apoptosis of the CCAP-efferent neurons. Furthermore, Abdominal-B controls by repression the temporal onset of neuropeptide expression in a subset of CCAP-efferent neurons, and a peak of ecdysone hormone at the end of larval life counteracts this repression. Thus, Bithorax complex genes control the developmental appearance of these neuropeptides both temporally and spatially.
Collapse
Affiliation(s)
- M Moris-Sanz
- Centro de Biología Molecular-Severo Ochoa (CSIC-UAM), c./Nicolás Cabrera 1, Universidad Autónoma, Madrid 28049, Spain
| | - A Estacio-Gómez
- Centro de Biología Molecular-Severo Ochoa (CSIC-UAM), c./Nicolás Cabrera 1, Universidad Autónoma, Madrid 28049, Spain
| | - E Sánchez-Herrero
- Centro de Biología Molecular-Severo Ochoa (CSIC-UAM), c./Nicolás Cabrera 1, Universidad Autónoma, Madrid 28049, Spain
| | - F J Díaz-Benjumea
- Centro de Biología Molecular-Severo Ochoa (CSIC-UAM), c./Nicolás Cabrera 1, Universidad Autónoma, Madrid 28049, Spain
| |
Collapse
|
20
|
Cattenoz PB, Giangrande A. New insights in the clockwork mechanism regulating lineage specification: Lessons from the Drosophila nervous system. Dev Dyn 2014; 244:332-41. [PMID: 25399853 DOI: 10.1002/dvdy.24228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Powerful transcription factors called fate determinants induce robust differentiation programs in multipotent cells and trigger lineage specification. These factors guarantee the differentiation of specific tissues/organs/cells at the right place and the right moment to form a fully functional organism. Fate determinants are activated by temporal, positional, epigenetic, and post-transcriptional cues, hence integrating complex and dynamic developmental networks. In turn, they activate specific transcriptional/epigenetic programs that secure novel molecular landscapes. RESULTS In this review, we use the Drosophila Gcm glial determinant as a model to discuss the mechanisms that allow lineage specification in the nervous system. The dynamic regulation of Gcm via interlocked loops has recently emerged as a key event in the establishment of stable identity. Gcm induces gliogenesis while triggering its own extinction, thus preventing the appearance of metastable states and neoplastic processes. CONCLUSIONS Using simple animal models that allow in vivo manipulations provides a key tool to disentangle the complex regulation of cell fate determinants.
Collapse
Affiliation(s)
- Pierre B Cattenoz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France; Université de Strasbourg, Illkirch, France
| | | |
Collapse
|
21
|
Rosenbaum EE, Vasiljevic E, Cleland SC, Flores C, Colley NJ. The Gos28 SNARE protein mediates intra-Golgi transport of rhodopsin and is required for photoreceptor survival. J Biol Chem 2014; 289:32392-409. [PMID: 25261468 PMCID: PMC4239595 DOI: 10.1074/jbc.m114.585166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/24/2014] [Indexed: 11/06/2022] Open
Abstract
SNARE proteins play indispensable roles in membrane fusion events in many cellular processes, including synaptic transmission and protein trafficking. Here, we characterize the Golgi SNARE protein, Gos28, and its role in rhodopsin (Rh1) transport through Drosophila photoreceptors. Mutations in gos28 lead to defective Rh1 trafficking and retinal degeneration. We have pinpointed a role for Gos28 in the intra-Golgi transport of Rh1, downstream from α-mannosidase-II in the medial- Golgi. We have confirmed the necessity of key residues in Gos28's SNARE motif and demonstrate that its transmembrane domain is not required for vesicle fusion, consistent with Gos28 functioning as a t-SNARE for Rh1 transport. Finally, we show that human Gos28 rescues both the Rh1 trafficking defects and retinal degeneration in Drosophila gos28 mutants, demonstrating the functional conservation of these proteins. Our results identify Gos28 as an essential SNARE protein in Drosophila photoreceptors and provide mechanistic insights into the role of SNAREs in neurodegenerative disease.
Collapse
Affiliation(s)
- Erica E Rosenbaum
- From the Department of Ophthalmology and Visual Sciences, Department of Genetics and The McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin 53792
| | - Eva Vasiljevic
- From the Department of Ophthalmology and Visual Sciences, Department of Genetics and The McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin 53792
| | - Spencer C Cleland
- From the Department of Ophthalmology and Visual Sciences, Department of Genetics and The McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin 53792
| | - Carlos Flores
- From the Department of Ophthalmology and Visual Sciences, Department of Genetics and The McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin 53792
| | - Nansi Jo Colley
- From the Department of Ophthalmology and Visual Sciences, Department of Genetics and The McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin 53792
| |
Collapse
|
22
|
Abstract
Post-transcriptional pre-mRNA splicing has emerged as a critical step in the gene expression cascade greatly influencing diversification and spatiotemporal control of the proteome in many developmental processes. The percentage of genes targeted by alternative splicing (AS) is shown to be over 95% in humans and 60% in Drosophila. Therefore, it is evident that deregulation of this process underlies many genetic diseases. Among all tissues, the brain shows the highest transcriptome diversity, which is not surprising in view of the complex inter- and intracellular networks underlying the development of this organ. Reports of isoforms known to function at different steps during Drosophila nervous system development are rapidly increasing as well as knowledge on their regulation and function, highlighting the role of AS during neuronal development in Drosophila.
Collapse
Affiliation(s)
- Carmen Mohr
- Institute of Human Genetics, University Medical Center Freiburg , Freiburg , Germany
| | | |
Collapse
|
23
|
Maintenance of postmitotic neuronal cell identity. Nat Neurosci 2014; 17:899-907. [PMID: 24929660 DOI: 10.1038/nn.3731] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/28/2014] [Indexed: 02/08/2023]
Abstract
The identity of specific cell types in the nervous system is defined by the expression of neuron type-specific gene batteries. How the expression of such batteries is initiated during nervous system development has been under intensive study over the past few decades. However, comparatively little is known about how gene batteries that define the terminally differentiated state of a neuron type are maintained throughout the life of an animal. Here we provide an overview of studies in invertebrate and vertebrate model systems that have carved out the general and not commonly appreciated principle that neuronal identity is maintained in postmitotic neurons by the sustained, and often autoregulated, expression of the same transcription factors that initiate terminal differentiation in a developing organism. Disruption of postmitotic maintenance mechanisms may result in neuropsychiatric and neurodegenerative conditions.
Collapse
|
24
|
Rosenbaum EE, Vasiljevic E, Brehm KS, Colley NJ. Mutations in four glycosyl hydrolases reveal a highly coordinated pathway for rhodopsin biosynthesis and N-glycan trimming in Drosophila melanogaster. PLoS Genet 2014; 10:e1004349. [PMID: 24785692 PMCID: PMC4006722 DOI: 10.1371/journal.pgen.1004349] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/18/2014] [Indexed: 01/16/2023] Open
Abstract
As newly synthesized glycoproteins move through the secretory pathway, the asparagine-linked glycan (N-glycan) undergoes extensive modifications involving the sequential removal and addition of sugar residues. These modifications are critical for the proper assembly, quality control and transport of glycoproteins during biosynthesis. The importance of N-glycosylation is illustrated by a growing list of diseases that result from defects in the biosynthesis and processing of N-linked glycans. The major rhodopsin in Drosophila melanogaster photoreceptors, Rh1, is highly unique among glycoproteins, as the N-glycan appears to be completely removed during Rh1 biosynthesis and maturation. However, much of the deglycosylation pathway for Rh1 remains unknown. To elucidate the key steps in Rh1 deglycosylation in vivo, we characterized mutant alleles of four Drosophila glycosyl hydrolases, namely α-mannosidase-II (α-Man-II), α-mannosidase-IIb (α-Man-IIb), a β-N-acetylglucosaminidase called fused lobes (Fdl), and hexosaminidase 1 (Hexo1). We have demonstrated that these four enzymes play essential and unique roles in a highly coordinated pathway for oligosaccharide trimming during Rh1 biosynthesis. Our results reveal that α-Man-II and α-Man-IIb are not isozymes like their mammalian counterparts, but rather function at distinct stages in Rh1 maturation. Also of significance, our results indicate that Hexo1 has a biosynthetic role in N-glycan processing during Rh1 maturation. This is unexpected given that in humans, the hexosaminidases are typically lysosomal enzymes involved in N-glycan catabolism with no known roles in protein biosynthesis. Here, we present a genetic dissection of glycoprotein processing in Drosophila and unveil key steps in N-glycan trimming during Rh1 biosynthesis. Taken together, our results provide fundamental advances towards understanding the complex and highly regulated pathway of N-glycosylation in vivo and reveal novel insights into the functions of glycosyl hydrolases in the secretory pathway.
Collapse
Affiliation(s)
- Erica E. Rosenbaum
- Department of Ophthalmology & Visual Sciences and Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Eva Vasiljevic
- Department of Ophthalmology & Visual Sciences and Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kimberley S. Brehm
- Department of Ophthalmology & Visual Sciences and Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nansi Jo Colley
- Department of Ophthalmology & Visual Sciences and Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
25
|
Wernet MF, Desplan C. Homothorax and Extradenticle alter the transcription factor network in Drosophila ommatidia at the dorsal rim of the retina. Development 2014; 141:918-28. [PMID: 24496628 DOI: 10.1242/dev.103127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A narrow band of ommatidia in the dorsal periphery of the Drosophila retina called the dorsal rim area (DRA) act as detectors for polarized light. The transcription factor Homothorax (Hth) is expressed in DRA inner photoreceptors R7 and R8 and is both necessary and sufficient to induce the DRA fate, including specialized morphology and unique Rhodopsin expression. Hth expression is the result of Wingless (Wg) pathway activity at the eye margins and restriction to the dorsal eye by the selector genes of the Iroquois complex (Iro-C). However, how the DRA is limited to exactly one or two ommatidial rows is not known. Although several factors regulating the Drosophila retinal mosaic are expressed in DRA ommatidia, the role of Hth in this transcriptional network is uncharacterized. Here we show that Hth functions together with its co-factor Extradenticle (Exd) to repress the R8-specific factor Senseless (Sens) in DRA R8 cells, allowing expression of an ultraviolet-sensitive R7 Rhodopsin (Rh3). Furthermore, Hth/Exd act in concert with the transcriptional activators Orthodenticle (Otd) and Spalt (Sal), to activate expression of Rh3 in the DRA. The resulting monochromatic coupling of Rh3 between R7 and R8 in DRA ommatidia is important for comparing celestial e-vector orientation rather than wavelengths. Finally, we show that Hth expression expands to many ommatidial rows in regulatory mutants of optomotorblind (omb), a transcription factor transducing Wg signaling at the dorsal and ventral eye poles. Therefore, locally restricted recruitment of the DRA-specific factor Hth alters the transcriptional network that regulates Rhodopsin expression across ommatidia.
Collapse
Affiliation(s)
- Mathias F Wernet
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Place, New York, NY 10003, USA
| | | |
Collapse
|