1
|
Neal SJ, Rajasekaran A, Jusić N, Taylor L, Read M, Alfandari D, Pignoni F, Moody SA. Using Xenopus to discover new candidate genes involved in BOR and other congenital hearing loss syndromes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:212-240. [PMID: 37830236 PMCID: PMC11014897 DOI: 10.1002/jez.b.23222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/15/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023]
Abstract
Hearing in infants is essential for brain development, acquisition of verbal language skills, and development of social interactions. Therefore, it is important to diagnose hearing loss soon after birth so that interventions can be provided as early as possible. Most newborns in the United States are screened for hearing deficits and commercially available next-generation sequencing hearing loss panels often can identify the causative gene, which may also identify congenital defects in other organs. One of the most prevalent autosomal dominant congenital hearing loss syndromes is branchio-oto-renal syndrome (BOR), which also presents with defects in craniofacial structures and the kidney. Currently, mutations in three genes, SIX1, SIX5, and EYA1, are known to be causative in about half of the BOR patients that have been tested. To uncover new candidate genes that could be added to congenital hearing loss genetic screens, we have combined the power of Drosophila mutants and protein biochemical assays with the embryological advantages of Xenopus, a key aquatic animal model with a high level of genomic similarity to human, to identify potential Six1 transcriptional targets and interacting proteins that play a role during otic development. We review our transcriptomic, yeast 2-hybrid, and proteomic approaches that have revealed a large number of new candidates. We also discuss how we have begun to identify how Six1 and co-factors interact to direct developmental events necessary for normal otic development.
Collapse
Affiliation(s)
- Scott J. Neal
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Anindita Rajasekaran
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Nisveta Jusić
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Louis Taylor
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Mai Read
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Francesca Pignoni
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Sally A. Moody
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
2
|
Warren J, Kumar JP. Patterning of the Drosophila retina by the morphogenetic furrow. Front Cell Dev Biol 2023; 11:1151348. [PMID: 37091979 PMCID: PMC10117938 DOI: 10.3389/fcell.2023.1151348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/23/2023] [Indexed: 04/25/2023] Open
Abstract
Pattern formation is the process by which cells within a homogeneous epithelial sheet acquire distinctive fates depending upon their relative spatial position to each other. Several proposals, starting with Alan Turing's diffusion-reaction model, have been put forth over the last 70 years to describe how periodic patterns like those of vertebrate somites and skin hairs, mammalian molars, fish scales, and avian feather buds emerge during development. One of the best experimental systems for testing said models and identifying the gene regulatory networks that control pattern formation is the compound eye of the fruit fly, Drosophila melanogaster. Its cellular morphogenesis has been extensively studied for more than a century and hundreds of mutants that affect its development have been isolated. In this review we will focus on the morphogenetic furrow, a wave of differentiation that takes an initially homogeneous sheet of cells and converts it into an ordered array of unit eyes or ommatidia. Since the discovery of the furrow in 1976, positive and negative acting morphogens have been thought to be solely responsible for propagating the movement of the furrow across a motionless field of cells. However, a recent study has challenged this model and instead proposed that mechanical driven cell flow also contributes to retinal pattern formation. We will discuss both models and their impact on patterning.
Collapse
Affiliation(s)
| | - Justin P. Kumar
- Department of Biology, Indiana University, Bloomington, IN, United States
| |
Collapse
|
3
|
Highly interconnected enhancer communities control lineage-determining genes in human mesenchymal stem cells. Nat Genet 2020; 52:1227-1238. [PMID: 33020665 DOI: 10.1038/s41588-020-0709-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 09/01/2020] [Indexed: 12/20/2022]
Abstract
Adipocyte differentiation is driven by waves of transcriptional regulators that reprogram the enhancer landscape and change the wiring of the promoter interactome. Here, we use high-throughput chromosome conformation enhancer capture to interrogate the role of enhancer-to-enhancer interactions during differentiation of human mesenchymal stem cells. We find that enhancers form an elaborate network that is dynamic during differentiation and coupled with changes in enhancer activity. Transcription factors (TFs) at baited enhancers amplify TF binding at target enhancers, a phenomenon we term cross-interaction stabilization of TFs. Moreover, highly interconnected enhancers (HICE) act as integration hubs orchestrating differentiation by the formation of three-dimensional enhancer communities, inside which, HICE, and other enhancers, converge on phenotypically important gene promoters. Collectively, these results indicate that enhancer interactions play a key role in the regulation of enhancer function, and that HICE are important for both signal integration and compartmentalization of the genome.
Collapse
|
4
|
Yeung K, Wang F, Li Y, Wang K, Mardon G, Chen R. Integrative genomic analysis reveals novel regulatory mechanisms of eyeless during Drosophila eye development. Nucleic Acids Res 2019; 46:11743-11758. [PMID: 30295802 PMCID: PMC6294497 DOI: 10.1093/nar/gky892] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/02/2018] [Indexed: 01/22/2023] Open
Abstract
Eyeless (ey) is one of the most critical transcription factors for initiating the entire eye development in Drosophila. However, the molecular mechanisms through which Ey regulates target genes and pathways have not been characterized at the genomic level. Using ChIP-Seq, we generated an endogenous Ey-binding profile in Drosophila developing eyes. We found that Ey binding occurred more frequently at promoter compared to non-promoter regions. Ey promoter binding was correlated with the active transcription of genes involved in development and transcription regulation. An integrative analysis revealed that Ey directly regulated a broad and highly connected genetic network, including many essential patterning pathways, and known and novel eye genes. Interestingly, we observed that Ey could target multiple components of the same pathway, which might enhance its control of these pathways during eye development. In addition to protein-coding genes, we discovered Ey also targeted non-coding RNAs, which represents a new regulatory mechanism employed by Ey. These findings suggest that Ey could use multiple molecular mechanisms to regulate target gene expression and pathway function, which might enable Ey to exhibit a greater flexibility in controlling different processes during eye development.
Collapse
Affiliation(s)
- Kelvin Yeung
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Feng Wang
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Keqing Wang
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Graeme Mardon
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Rui Chen
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
5
|
Sánchez-Aragón M, Cantisán-Gómez J, Luque CM, Brás-Pereira C, Lopes CS, Lemos MC, Casares F. A Toggle-Switch and a Feed-Forward Loop Engage in the Control of the Drosophila Retinal Determination Gene Network. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
6
|
Gaspar P, Almudi I, Nunes MDS, McGregor AP. Human eye conditions: insights from the fly eye. Hum Genet 2018; 138:973-991. [PMID: 30386938 DOI: 10.1007/s00439-018-1948-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/20/2018] [Indexed: 12/22/2022]
Abstract
The fruit fly Drosophila melanogaster has served as an excellent model to study and understand the genetics of many human diseases from cancer to neurodegeneration. Studying the regulation of growth, determination and differentiation of the compound eyes of this fly, in particular, have provided key insights into a wide range of diseases. Here we review the regulation of the development of fly eyes in light of shared aspects with human eye development. We also show how understanding conserved regulatory pathways in eye development together with the application of tools for genetic screening and functional analyses makes Drosophila a powerful model to diagnose and characterize the genetics underlying many human eye conditions, such as aniridia and retinitis pigmentosa. This further emphasizes the importance and vast potential of basic research to underpin applied research including identifying and treating the genetic basis of human diseases.
Collapse
Affiliation(s)
- Pedro Gaspar
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Isabel Almudi
- Centro Andaluz de Biología del Desarrollo, CSIC/ Universidad Pablo de Olavide, Carretera de Utrera Km1, 41013, Sevilla, Spain
| | - Maria D S Nunes
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| |
Collapse
|
7
|
Davis TL, Rebay I. Pleiotropy in Drosophila organogenesis: Mechanistic insights from Combgap and the retinal determination gene network. Fly (Austin) 2018; 12:62-70. [PMID: 29125381 DOI: 10.1080/19336934.2017.1402994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Master regulatory transcription factors cooperate in networks to shepherd cells through organogenesis. In the Drosophila eye, a collection of master control proteins known as the retinal determination gene network (RDGN) switches the direction and targets of its output to choreograph developmental transitions, but the molecular partners that enable such regulatory flexibility are not known. We recently showed that two RDGN members, Eyes absent (Eya) and Sine oculis (So), promote exit from the terminal cell cycle known as the second mitotic wave (SMW) to permit differentiation. A search for co-factors identified the ubiquitously expressed Combgap (Cg) as a novel transcriptional partner that impedes cell cycle exit and interferes with Eya-So activity specifically in this context. Here, we argue that Cg acts as a flexible transcriptional platform that contributes to numerous gene expression outcomes by a variety of mechanisms. For example, Cg provides repressive activities that dampen Eya-So output, but not by recruiting Polycomb chromatin-remodeling complexes as it does in other contexts. We propose that master regulators depend on both specifically expressed co-factors that assemble the combinatorial code and broadly expressed partners like Cg that recruit the diverse molecular activities needed to appropriately regulate their target enhancers.
Collapse
Affiliation(s)
- Trevor L Davis
- a Committee on Development, Regeneration, and Stem Cell Biology , University of Chicago , Chicago , IL , USA
| | - Ilaria Rebay
- a Committee on Development, Regeneration, and Stem Cell Biology , University of Chicago , Chicago , IL , USA.,b Ben May Department for Cancer Research , University of Chicago , Chicago , IL , USA
| |
Collapse
|
8
|
Davis TL, Rebay I. Antagonistic regulation of the second mitotic wave by Eyes absent-Sine oculis and Combgap coordinates proliferation and specification in the Drosophila retina. Development 2017; 144:2640-2651. [PMID: 28619818 DOI: 10.1242/dev.147231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 06/08/2017] [Indexed: 12/12/2022]
Abstract
The transition from proliferation to specification is fundamental to the development of appropriately patterned tissues. In the developing Drosophila eye, Eyes absent (Eya) and Sine oculis (So) orchestrate the progression of progenitor cells from asynchronous cell division to G1 arrest and neuronal specification at the morphogenetic furrow. Here, we uncover a novel role for Eya and So in promoting cell cycle exit in the second mitotic wave (SMW), a synchronized, terminal cell division that occurs several hours after passage of the furrow. We show that Combgap (Cg), a zinc-finger transcription factor, antagonizes Eya-So function in the SMW. Based on the ability of Cg to attenuate Eya-So transcriptional output in vivo and in cultured cells and on meta analysis of their chromatin occupancy profiles, we speculate that Cg limits Eya-So activation of select target genes posterior to the furrow to ensure properly timed mitotic exit. Our work supports a model in which context-specific modulation of transcriptional activity enables Eya and So to promote both entry into and exit from the cell cycle in a distinct spatiotemporal sequence.
Collapse
Affiliation(s)
- Trevor L Davis
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Ilaria Rebay
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA .,Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Neilson KM, Abbruzzesse G, Kenyon K, Bartolo V, Krohn P, Alfandari D, Moody SA. Pa2G4 is a novel Six1 co-factor that is required for neural crest and otic development. Dev Biol 2017; 421:171-182. [PMID: 27940157 PMCID: PMC5221411 DOI: 10.1016/j.ydbio.2016.11.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/15/2016] [Accepted: 11/28/2016] [Indexed: 11/29/2022]
Abstract
Mutations in SIX1 and in its co-factor, EYA1, underlie Branchiootorenal Spectrum disorder (BOS), which is characterized by variable branchial arch, otic and kidney malformations. However, mutations in these two genes are identified in only half of patients. We screened for other potential co-factors, and herein characterize one of them, Pa2G4 (aka Ebp1/Plfap). In human embryonic kidney cells, Pa2G4 binds to Six1 and interferes with the Six1-Eya1 complex. In Xenopus embryos, knock-down of Pa2G4 leads to down-regulation of neural border zone, neural crest and cranial placode genes, and concomitant expansion of neural plate genes. Gain-of-function leads to a broader neural border zone, expanded neural crest and altered cranial placode domains. In loss-of-function assays, the later developing otocyst is reduced in size, which impacts gene expression. In contrast, the size of the otocyst in gain-of-function assays is not changed but the expression domains of several otocyst genes are reduced. Together these findings establish an interaction between Pa2G4 and Six1, and demonstrate that it has an important role in the development of tissues affected in BOS. Thereby, we suggest that pa2g4 is a potential candidate gene for BOS.
Collapse
Affiliation(s)
- Karen M Neilson
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Genevieve Abbruzzesse
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Kristy Kenyon
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, USA
| | - Vanessa Bartolo
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Patrick Krohn
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Sally A Moody
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
10
|
Davis TL, Rebay I. Master regulators in development: Views from the Drosophila retinal determination and mammalian pluripotency gene networks. Dev Biol 2016; 421:93-107. [PMID: 27979656 DOI: 10.1016/j.ydbio.2016.12.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/03/2016] [Accepted: 12/03/2016] [Indexed: 02/07/2023]
Abstract
Among the mechanisms that steer cells to their correct fate during development, master regulatory networks are unique in their sufficiency to trigger a developmental program outside of its normal context. In this review we discuss the key features that underlie master regulatory potency during normal and ectopic development, focusing on two examples, the retinal determination gene network (RDGN) that directs eye development in the fruit fly and the pluripotency gene network (PGN) that maintains cell fate competency in the early mammalian embryo. In addition to the hierarchical transcriptional activation, extensive positive transcriptional feedback, and cooperative protein-protein interactions that enable master regulators to override competing cellular programs, recent evidence suggests that network topology must also be dynamic, with extensive rewiring of the interactions and feedback loops required to navigate the correct sequence of developmental transitions to reach a final fate. By synthesizing the in vivo evidence provided by the RDGN with the extensive mechanistic insight gleaned from the PGN, we highlight the unique regulatory capabilities that continual reorganization into new hierarchies confers on master control networks. We suggest that deeper understanding of such dynamics should be a priority, as accurate spatiotemporal remodeling of network topology will undoubtedly be essential for successful stem cell based therapeutic efforts.
Collapse
Affiliation(s)
- Trevor L Davis
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Ilaria Rebay
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA; Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
11
|
Zhou Q, Yu L, Friedrich M, Pignoni F. Distinct regulation of atonal in a visual organ of Drosophila: Organ-specific enhancer and lack of autoregulation in the larval eye. Dev Biol 2016; 421:67-76. [PMID: 27693434 DOI: 10.1016/j.ydbio.2016.09.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/15/2016] [Accepted: 09/28/2016] [Indexed: 01/23/2023]
Abstract
Drosophila has three types of visual organs, the larval eyes or Bolwig's organs (BO), the ocelli (OC) and the compound eyes (CE). In all, the bHLH protein Atonal (Ato) functions as the proneural factor for photoreceptors and effects the transition from progenitor cells to differentiating neurons. In this work, we investigate the regulation of ato expression in the BO primordium (BOP). Surprisingly, we find that ato transcription in the BOP is entirely independent of the shared regulatory DNA for the developing CE and OC. The core enhancer for BOP expression, atoBO, lies ~6kb upstream of the ato gene, in contrast to the downstream location of CE and OC regulatory elements. Moreover, maintenance of ato expression in the neuronal precursors through autoregulation-a common and ancient feature of ato expression that is well-documented in eyes, ocelli and chordotonal organs-does not occur in the BO. We also show that the atoBO enhancer contains two binding sites for the transcription factor Sine oculis (So), a core component of the progenitor specification network in all three visual organs. These binding sites function in vivo and are specifically bound by So in vitro. Taken together, our findings reveal that the control of ato transcription in the evolutionarily derived BO has diverged considerably from ato regulation in the more ancestral compound eyes and ocelli, to the extent of acquiring what appears to be a distinct and evolutionarily novel cis-regulatory module.
Collapse
Affiliation(s)
- Qingxiang Zhou
- Department of Ophthalmology and Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Linlin Yu
- Department of Ophthalmology and Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA; Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Francesca Pignoni
- Department of Ophthalmology and Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY, USA; Departments of Neuroscience & Physiology and Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
12
|
Zhou Q, DeSantis DF, Friedrich M, Pignoni F. Shared and distinct mechanisms of atonal regulation in Drosophila ocelli and compound eyes. Dev Biol 2016; 418:10-16. [PMID: 27565023 DOI: 10.1016/j.ydbio.2016.08.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 01/04/2023]
Abstract
The fruit fly Drosophila melanogaster has two types of external visual organs, a pair of compound eyes and a group of three ocelli. At the time of neurogenesis, the proneural transcription factor Atonal mediates the transition from progenitor cells to differentiating photoreceptor neurons in both organs. In the developing compound eye, atonal (ato) expression is directly induced by transcriptional regulators that confer retinal identity, the Retinal Determination (RD) factors. Little is known, however, about control of ato transcription in the ocelli. Here we show that a 2kb genomic DNA fragment contains distinct and common regulatory elements necessary for ato induction in compound eyes and ocelli. The three binding sites that mediate direct regulation by the RD factors Sine oculis and Eyeless in the compound eye are also required in the ocelli. However, in the latter, these sites mediate control by Sine oculis and the other Pax6 factor of Drosophila, Twin of eyeless, which can bind the Pax6 sites in vitro. Moreover, the three sites are differentially utilized in the ocelli: all three are similarly essential for atonal induction in the posterior ocelli, but show considerable redundancy in the anterior ocellus. Strikingly, this difference parallels the distinct control of ato transcription in the posterior and anterior progenitors of the developing compound eyes. From a comparative perspective, our findings suggest that the ocelli of arthropods may have originated through spatial partitioning from the dorsal edge of an ancestral compound eye.
Collapse
Affiliation(s)
- Qingxiang Zhou
- Department of Ophthalmology and Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dana F DeSantis
- Department of Ophthalmology and Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA; Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Francesca Pignoni
- Department of Ophthalmology and Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
13
|
Moody SA, Neilson KM, Kenyon KL, Alfandari D, Pignoni F. Using Xenopus to discover new genes involved in branchiootorenal spectrum disorders. Comp Biochem Physiol C Toxicol Pharmacol 2015; 178:16-24. [PMID: 26117063 PMCID: PMC4662879 DOI: 10.1016/j.cbpc.2015.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 12/14/2022]
Abstract
Congenital hearing loss is an important clinical problem because, without early intervention, affected children do not properly acquire language and consequently have difficulties developing social skills. Although most newborns in the US are screened for hearing deficits, even earlier diagnosis can be made with prenatal genetic screening. Genetic screening that identifies the relevant mutated gene can also warn about potential congenital defects in organs not related to hearing. We will discuss efforts to identify new candidate genes that underlie the Branchiootorenal spectrum disorders in which affected children have hearing deficits and are also at risk for kidney defects. Mutations in two genes, SIX1 and EYA1, have been identified in about half of the patients tested. To uncover new candidate genes, we have used the aquatic animal model, Xenopus laevis, to identify genes that are part of the developmental genetic pathway of Six1 during otic and kidney development. We have already identified a large number of potential Six1 transcriptional targets and candidate co-factor proteins that are expressed at the right time and in the correct tissues to interact with Six1 during development. We discuss the advantages of using this system for gene discovery in a human congenital hearing loss syndrome.
Collapse
Affiliation(s)
- Sally A Moody
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA.
| | - Karen M Neilson
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Kristy L Kenyon
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, USA
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Francesca Pignoni
- Department of Ophthalmology, Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
14
|
Yu L, Zhou Q, Pignoni F. ato-Gal4 fly lines for gene function analysis: Eya is required in late progenitors for eye morphogenesis. Genesis 2015; 53:347-55. [PMID: 25980363 DOI: 10.1002/dvg.22858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/08/2015] [Accepted: 05/12/2015] [Indexed: 11/11/2022]
Abstract
The Gal4/UAS system is one of the most powerful tools for the study of cellular and developmental processes in Drosophila. Gal4 drivers can be used to induce targeted expression of dominant-negative and dominant-active proteins, histological markers, activity sensors, gene-specific dsRNAs, modulators of cell survival or proliferation, and other reagents. Here, we describe novel atonal-Gal4 lines that contain regions of the regulatory DNA of atonal, the proneural gene for photoreceptors, stretch receptors, auditory organ, and some olfactory sensilla. During neurogenesis, the atonal gene is expressed at a critical juncture, a time of transition from progenitor cell to developing neuron. Thus, these lines are particularly well suited for the study of the transcription factors and signaling molecules orchestrating this critical transition. To demonstrate their usefulness, we focus on two visual organs, the eye and the Bolwig. We demonstrate the induction of predicted eye phenotypes when expressing the dominant-negative EGF receptor or a dsRNA against Notch in the developing eye disc. In another example, we show the deletion of the Bolwig's organ using the proapoptotic factor Hid. Finally, we investigate the function of the eye specification factor Eyes absent or Eya in late retinal progenitors, shortly before they begin morphogenesis. We show that Eya is still required in these late progenitors to promote eye formation, and show failure to induce the target gene atonal and consequent lack of neuron formation.
Collapse
Affiliation(s)
- Linlin Yu
- Department of Ophthalmology, Center for Vision Research, and SUNY Eye Institute, SUNY Upstate Medical University, Syracuse, New York
| | - Qingxiang Zhou
- Department of Ophthalmology, Center for Vision Research, and SUNY Eye Institute, SUNY Upstate Medical University, Syracuse, New York
| | - Francesca Pignoni
- Department of Ophthalmology, Center for Vision Research, and SUNY Eye Institute, SUNY Upstate Medical University, Syracuse, New York.,Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, New York.,Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, New York
| |
Collapse
|
15
|
Lopes CS, Casares F. Eye selector logic for a coordinated cell cycle exit. PLoS Genet 2015; 11:e1004981. [PMID: 25695251 PMCID: PMC4335009 DOI: 10.1371/journal.pgen.1004981] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 01/05/2015] [Indexed: 12/15/2022] Open
Abstract
Organ-selector transcription factors control simultaneously cell differentiation and proliferation, ensuring the development of functional organs and their homeostasis. How this is achieved at the molecular level is still unclear. Here we have investigated how the transcriptional pulse of string/cdc25 (stg), the universal mitotic trigger, is regulated during Drosophila retina development as an example of coordinated deployment of differentiation and proliferation programs. We identify the eye specific stg enhancer, stg-FMW, and show that Pax6 selector genes, in cooperation with Eya and So, two members of the retinal determination network, activate stg-FMW, establishing a positive feed-forward loop. This loop is negatively modulated by the Meis1 protein, Hth. This regulatory logic is reminiscent of that controlling the expression of differentiation transcription factors. Our work shows that subjecting transcription factors and key cell cycle regulators to the same regulatory logic ensures the coupling between differentiation and proliferation programs during organ development. Organs develop from groups of undifferentiated cells that proliferate and differentiate into specific cell types. During development, the coupling between proliferation and differentiation programs ensures that enough cells of the different cell types are generated. This is critical for proper organ formation and function. Here, we use the developing Drosophila eye to examine how the coupling between these two programs is achieved. During eye development, progenitors are amplified before they exit the cell cycle and enter the differentiation program. This amplification step depends on an expression burst of the mitotic trigger string/cdc25, which, by forcing cells into mitosis, synchronizes cells in G1 just before differentiation onset. Thus string regulation acts as a hub where differentiation and proliferation programs are integrated. We identify a DNA element that controls the burst of string expression prior to differentiation, and show that it is regulated by the same gene network that triggers eye development. The transcription factor Pax6/Eyeless is a key regulator in this network. Eyeless acts cooperatively with Sine oculis and Eyes absent to regulate string, through a positive feed-forward loop. This loop is negatively modulated by the progenitor-specific transcription factor Homothorax/Meis1. This work shows that transcription factors that instruct cells to acquire an eye fate also control their proliferation regime, thus guaranteeing the coupling between proliferation and differentiation.
Collapse
Affiliation(s)
- Carla S. Lopes
- CABD (Andalusian Centre for Developmental Biology), C.S.I.C.-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
- * E-mail: (FC); (CSL)
| | - Fernando Casares
- CABD (Andalusian Centre for Developmental Biology), C.S.I.C.-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
- * E-mail: (FC); (CSL)
| |
Collapse
|
16
|
Luan Q, Chen Q, Friedrich M. The Pax6 genes eyeless and twin of eyeless are required for global patterning of the ocular segment in the Tribolium embryo. Dev Biol 2014; 394:367-81. [PMID: 25149513 DOI: 10.1016/j.ydbio.2014.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 06/23/2014] [Accepted: 08/06/2014] [Indexed: 01/08/2023]
Abstract
The transcription factor gene Pax6 is widely considered a master regulator of eye development in bilaterian animals. However, the existence of visual organs that develop without Pax6 input and the considerable pleiotropy of Pax6 outside the visual system dictate further studies into defining ancestral functions of this important regulator. Previous work has shown that the combinatorial knockdown of the insect Pax6 orthologs eyeless (ey) and twin of eyeless (toy) perturbs the development of the visual system but also other areas of the larval head in the red flour beetle Tribolium castaneum. To elucidate the role of Pax6 during Tribolium head development in more detail, we studied head cuticle morphology, brain anatomy, embryonic head morphogenesis, and developmental marker gene expression in combinatorial ey and toy knockdown animals. Our experiments reveal that Pax6 is broadly required for patterning the anterior embryonic head. One of the earliest detectable roles is the formation of the embryonic head lobes, which originate from within the ocular segment and give rise to large parts of the supraesophageal brain including the mushroom body, a part of the posterior head capsule cuticle, and the visual system. We present further evidence that toy continues to be required for the development of the larval eyes after formation of the embryonic head lobes in cooperation with the eye developmental transcription factor dachshund (dac). The sum of our findings suggests that Pax6 functions as a competence factor throughout the development of the insect ocular segment. Comparative evidence identifies this function as an ancestral aspect of bilaterian head development.
Collapse
Affiliation(s)
- Qing Luan
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA; Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
| | - Qing Chen
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA; Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA.
| |
Collapse
|