1
|
Long GY, Gong MF, Yang H, Yang XB, Zhou C, Jin DC. Buprofezin affects the molting process by regulating nuclear receptors SfHR3 and SfHR4 in Sogatella furcifera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105695. [PMID: 38072550 DOI: 10.1016/j.pestbp.2023.105695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023]
Abstract
Nuclear receptors play a crucial role in various signaling and metabolic pathways, such as insect molting and development. Buprofezin (2-tert-butylimino-3-isopropyl-5-phenyl-perhydro-1, 3, 5-thiadiazin-4-one), a chitin synthesis inhibitor, causes molting deformities and slow death in insects by inhibiting chitin synthesis and interfering with their metabolism. This study investigated whether buprofezin affects insect ecdysteroid signaling pathway. The treatment of buprofezin significantly suppressed the transcription levels of SfHR3 and SfHR4, two nuclear receptor genes, in third-instar nymphs of Sogatella furcifera. Meanwhile, the transcription levels of SfHR3 and SfHR4 in first-day fifth-instar nymphs were induced at 12 h after 20E treatment. In addition, the silencing of SfHR3 and SfHR4 genes in first-day fifth-instar nymphs caused severe developmental delay and molting failure, resulting in a significant reduction of survival rates at 7.36% and 2.99% on the eighth day, respectively. Further analysis showed that the silencing SfHR3 and SfHR4 significantly inhibited the transcription levels of chitin synthesis and degradation-related genes. These results indicate that buprofezin can inhibits chitin synthesis and degradation by suppressing the signal transduction of 20E through SfHR3 and SfHR4, leading to molting failure and death. This study not only expands our understanding of the molecular mechanism of buprofezin in pest control but also lays a foundation for developing new control strategies of RNAi by targeting SfHR3 and SfHR4.
Collapse
Affiliation(s)
- Gui-Yun Long
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Key Laboratory of Guizhou Ethnic Medicine Resource Development and Utilization in Guizhou Minzu University, State Ethnic Affairs Commission, Guiyang, China
| | - Ming-Fu Gong
- Institute of Entomology, Guizhou University, Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
| | - Hong Yang
- Institute of Entomology, Guizhou University, Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
| | - Xi-Bin Yang
- Plant Protection and Quarantine Station, Department of Agriculture and Rural Affairs of Guizhou Province, Guiyang, China
| | - Cao Zhou
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China.
| | - Dao-Chao Jin
- Institute of Entomology, Guizhou University, Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
| |
Collapse
|
2
|
Yu J, Song H, Wang Y, Liu Z, Wang H, Xu B. 20-hydroxyecdysone Upregulates Ecdysone Receptor (ECR) Gene to Promote Pupation in the Honeybee, Apis mellifera Ligustica. Integr Comp Biol 2023; 63:288-303. [PMID: 37365683 DOI: 10.1093/icb/icad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/24/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023] Open
Abstract
A heterodimeric complex of two nuclear receptors, the ecdysone receptor (ECR) and ultraspiracle (USP), transduces 20-hydroxyecdysone (20E) signaling to modulate insect growth and development. Here, we aimed to determine the relationship between ECR and 20E during larval metamorphosis and also the specific roles of ECR during larval-adult transition in Apis mellifera. We found that ECR gene expression peaked in the 7-day-old larvae, then decreased gradually from the pupae stage. 20E slowly reduced food consumption and then induced starvation, resulting in small-sized adults. In addition, 20E induced ECR expression to regulate larval development time. Double-stranded RNAs (dsRNAs) were prepared using common dsECR as templates. After dsECR injection, larval transition to the pupal stage was delayed, and 80% of the larvae showed prolonged pupation beyond 18 h. Moreover, the mRNA levels of shd, sro, nvd, and spo, and ecdysteroid titers were significantly decreased in ECR RNAi larvae compared with those in GFP RNAi control larvae. ECR RNAi disrupted 20E signaling during larval metamorphosis. We performed rescuing experiments by injecting 20E in ECR RNAi larvae and found that the mRNA levels of ECR, USP, E75, E93, and Br-c were not restored. 20E induced apoptosis in the fat body during larval pupation, while RNAi knockdown of ECR genes reduced apoptosis. We concluded that 20E induced ECR to modulate 20E signaling to promote honeybee pupation. These results assist our understanding of the complicated molecular mechanisms of insect metamorphosis.
Collapse
Affiliation(s)
- Jing Yu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, China
| | - Hongyu Song
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, China
| |
Collapse
|
3
|
Cao L, Zhao T, Xue Y, Xue L, Chen Y, Quan F, Xiao Y, Wan W, Han M, Jiang Q, Lu L, Zou H, Zhu X. The Anti-Inflammatory and Uric Acid Lowering Effects of Si-Miao-San on Gout. Front Immunol 2022; 12:777522. [PMID: 35069549 PMCID: PMC8769502 DOI: 10.3389/fimmu.2021.777522] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Background Si-Miao-San (SMS) is a well-known traditional Chinese medicine. This study aims to evaluate the anti-inflammatory effects of SMS on gouty arthritis and its potential mechanism of action. Methods The effects and mechanism of SMS were evaluated in monosodium urate (MSU)-treated mice or macrophages. The expression of cytokines and PI3K/Akt was analyzed using real-time PCR and Western blotting analyses. Macrophage polarization was assessed with immunofluorescence assays, real-time PCR, and Western blotting. Mass spectrometry was used to screen the active ingredients of SMS. Results Pretreatment with SMS ameliorated MSU-induced acute gouty arthritis in mice with increased PI3K/Akt activation and M2 macrophage polarization in the joint tissues. In vitro, SMS treatment significantly inhibited MSU-triggered inflammatory response, increased p-Akt and Arg-1 expression in macrophages, and promoted M2 macrophage polarization. These effects of SMS were inhibited when PI3K/Akt activation was blocked by LY294002 in the macrophages. Moreover, SMS significantly reduced serum uric acid levels in the hyperuricemia mice. Using mass spectrometry, the plant hormones ecdysone and estrone were detected as the potentially effective ingredients of SMS. Conclusion SMS ameliorated MSU-induced gouty arthritis and inhibited hyperuricemia. The anti-inflammatory mechanism of SMS may exert anti-inflammatory effects by promoting M2 polarization via PI3K/Akt signaling. Ecdysone and estrone might be the potentially effective ingredients of SMS. This research may provide evidence for the application of SMS in the treatment of gout.
Collapse
Affiliation(s)
- Ling Cao
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Tianyi Zhao
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Yu Xue
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Luan Xue
- Department of Rheumatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueying Chen
- Department of Rheumatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Quan
- Department of Rheumatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Xiao
- Institute of Spacecraft Equipment, Shanghai, China
| | - Weiguo Wan
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Man Han
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Quan Jiang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hejian Zou
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Xiaoxia Zhu
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Dib A, Zanet J, Mancheno-Ferris A, Gallois M, Markus D, Valenti P, Marques-Prieto S, Plaza S, Kageyama Y, Chanut-Delalande H, Payre F. Pri smORF Peptides Are Wide Mediators of Ecdysone Signaling, Contributing to Shape Spatiotemporal Responses. Front Genet 2021; 12:714152. [PMID: 34527021 DOI: 10.3389/fgene.2021.714152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
There is growing evidence that peptides encoded by small open-reading frames (sORF or smORF) can fulfill various cellular functions and define a novel class regulatory molecules. To which extend transcripts encoding only smORF peptides compare with canonical protein-coding genes, yet remain poorly understood. In particular, little is known on whether and how smORF-encoding RNAs might need tightly regulated expression within a given tissue, at a given time during development. We addressed these questions through the analysis of Drosophila polished rice (pri, a.k.a. tarsal less or mille pattes), which encodes four smORF peptides (11-32 amino acids in length) required at several stages of development. Previous work has shown that the expression of pri during epidermal development is regulated in the response to ecdysone, the major steroid hormone in insects. Here, we show that pri transcription is strongly upregulated by ecdysone across a large panel of cell types, suggesting that pri is a core component of ecdysone response. Although pri is produced as an intron-less short transcript (1.5 kb), genetic assays reveal that the developmental functions of pri require an unexpectedly large array of enhancers (spanning over 50 kb), driving a variety of spatiotemporal patterns of pri expression across developing tissues. Furthermore, we found that separate pri enhancers are directly activated by the ecdysone nuclear receptor (EcR) and display distinct regulatory modes between developmental tissues and/or stages. Alike major developmental genes, the expression of pri in a given tissue often involves several enhancers driving apparently redundant (or shadow) expression, while individual pri enhancers can harbor pleiotropic functions across tissues. Taken together, these data reveal the broad role of Pri smORF peptides in ecdysone signaling and show that the cis-regulatory architecture of the pri gene contributes to shape distinct spatial and temporal patterns of ecdysone response throughout development.
Collapse
Affiliation(s)
- Azza Dib
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Jennifer Zanet
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Alexandra Mancheno-Ferris
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Maylis Gallois
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Damien Markus
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Philippe Valenti
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Simon Marques-Prieto
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Serge Plaza
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Yuji Kageyama
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan.,Biosignal Research Center, Kobe University, Kobe, Japan
| | - Hélène Chanut-Delalande
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - François Payre
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| |
Collapse
|
5
|
Rani L, Saini S, Shukla N, Chowdhuri DK, Gautam NK. High sucrose diet induces morphological, structural and functional impairments in the renal tubules of Drosophila melanogaster: A model for studying type-2 diabetes mediated renal tubular dysfunction. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 125:103441. [PMID: 32735915 DOI: 10.1016/j.ibmb.2020.103441] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Continuous feeding of high dietary sugar is strongly associated with type 2 diabetes (T2D) and its secondary complications. Diabetic nephropathy (DN) is a major secondary complication that leads to glomerular and renal tubular dysfunction. The present study is aimed to investigate the effects of chronic exposure of high sugar diet (HSD) on renal tubules. Malpighian tubules (MTs), a renal organ of Drosophila, were used as a model in the study. Feeding of HSD develops T2D condition in Drosophila. The MTs showed structural abnormalities in 20 days of HSD fed flies. Impaired insulin signaling, oxidative stress, enhanced levels of AGE-RAGE and induction of apoptosis were observed in the MTs of these flies. Further, altered expression of transporters, enhanced uric acid level and reduced fluid secretion rate confirmed the impaired function of MTs in these flies. RNA-seq and RT-PCR analyses in the MTs of HSD fed-and control-flies revealed the altered expression of candidate genes that regulate several important pathways including extracellular matrix (ECM), advanced glycation end products-receptor for advanced glycation end products (AGE-RAGE), transforming growth factor β (TGF-β), galactose, starch and sucrose metabolism that are well known mediators of renal tubular dysfunction in DN patients. Disruption of insulin signaling in the MTs also causes renal tubular dysfunction similar to HSD fed flies. Overall, the study suggests that phenotypes observed in the MTs of HSD fed flies recapitulate several hallmarks of renal tubular dysfunction in DN patients. Therefore, we conclude that MTs of HSD fed flies may be used for deciphering the underlying mechanisms of T2D mediated renal tubular dysfunction.
Collapse
Affiliation(s)
- Lavi Rani
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India
| | - Sanjay Saini
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Neha Shukla
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| | - Debapratim Kar Chowdhuri
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India
| | - Naveen Kumar Gautam
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India; Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India.
| |
Collapse
|
6
|
Chebbo S, Josway S, Belote JM, Manier MK. A putative novel role for Eip74EF in male reproduction in promoting sperm elongation at the cost of male fecundity. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:620-628. [PMID: 32725718 DOI: 10.1002/jez.b.22986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 06/22/2020] [Accepted: 07/06/2020] [Indexed: 11/06/2022]
Abstract
Spermatozoa are the most morphologically variable cell type, yet little is known about genes controlling natural variation in sperm shape. Drosophila fruit flies have the longest sperm known, which are evolving under postcopulatory sexual selection, driven by sperm competition and cryptic female choice. Long sperm outcompete short sperm but primarily when females have a long seminal receptacle (SR), the primary sperm storage organ. Thus, the selection on sperm length is mediated by SR length, and the two traits are coevolving across the Drosophila lineage, driven by a genetic correlation and fitness advantage of long sperm and long SR genotypes in both males and females. Ecdysone-induced protein 74EF (Eip74EF) is expressed during postmeiotic stages of spermatogenesis when spermatid elongation occurs, and we found that it is rapidly evolving under positive selection in Drosophila. Hypomorphic knockout of the E74A isoform leads to shorter sperm but does not affect SR length, suggesting that E74A may be involved in promoting spermatid elongation but is not a genetic driver of male-female coevolution. We also found that E74A knockout has opposing effects on fecundity in males and females, with an increase in fecundity for males but a decrease in females, consistent with its documented role in oocyte maturation. Our results suggest a novel function of Eip74EF in spermatogenesis and demonstrates that this gene influences both male and female reproductive success. We speculate on possible roles for E74A in spermatogenesis and male reproductive success.
Collapse
Affiliation(s)
- Sharif Chebbo
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Sarah Josway
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - John M Belote
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Mollie K Manier
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| |
Collapse
|
7
|
Su Y, Guo Q, Gong J, Cheng Y, Wu X. Functional expression patterns of four ecdysteroid receptor isoforms indicate their different functions during vitellogenesis of Chinese mitten crab, Eriocheir sinensis. Comp Biochem Physiol A Mol Integr Physiol 2020; 248:110754. [PMID: 32649982 DOI: 10.1016/j.cbpa.2020.110754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/04/2020] [Accepted: 06/30/2020] [Indexed: 11/30/2022]
Abstract
In arthropods, alternative splicing of ecdysteroid receptor gene (EcR) leads to multiple functions of different EcR isoforms during metamorphosis, growth and ovarian development via ecdysteroid signaling pathway. This study was conducted to investigate the expression patterns of four EcRs of Eriocheir sinensis (EsEcRs) and the changes of haemolymph ecdysteroid titer during the ovarian development. The results showed that four EsEcR isoforms had the tissue-specific expression among 12 examined tissues, and the highest transcript levels of the four EsEcR isoforms were detected in Y-organ or sinus gland. During the ovarian development, EsEcR1 showed the highest transcript abundance of the four EsEcR isoforms. The expression profiles of all the EsEcR isoforms were similar in the hepatopancreas during the ovarian maturation cycle of E. sinensis with a trend of "high-low-high-low". In ovary, the highest expression levels of EsEcR1 and EsEcR4 were both found at stage V ovary, while the peaks of EsEcR2 and EsEcR3 were found on stage III ovary and stage IV ovary, respectively. Meanwhile, the ecdysteroid titer in haemolymph decreased gradually during ovarian maturation cycle. Further regression analysis revealed significant negative correlations were found between the ovarian EsEcR3/ EsEcR4 expression levels and haemolymph ecdysteroid titer during part or whole ovarian development cycle. These results together indicated that four EsEcR isoforms may have different functions during ovary maturation of E. sinensis. All EcR isoforms and ecdysteroid seemed to have important roles in the hepatopancreas during early ovarian development stages, while EsEcR3 and EsEcR4 were closely related to the mid-late vitellogenesis stages.
Collapse
Affiliation(s)
- Yu Su
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Qing Guo
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Jie Gong
- School of Life Sciences (School of Ocean Science), Nantong University, Nantong 226000, China.
| | - Yongxu Cheng
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Xugan Wu
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
8
|
Xu Q, Deng P, Zhang Q, Li A, Fu K, Guo W, Li G. Ecdysone receptor isoforms play distinct roles in larval-pupal-adult transition in Leptinotarsa decemlineata. INSECT SCIENCE 2020; 27:487-499. [PMID: 30688001 PMCID: PMC7277042 DOI: 10.1111/1744-7917.12662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/31/2018] [Accepted: 01/22/2019] [Indexed: 05/25/2023]
Abstract
A heterodimer of two nuclear receptors, ecdysone receptor (EcR) and ultraspiracle, mediates 20-hydroxyecdysone (20E) signaling to modulate many aspects in insect life, such as molting and metamorphosis, reproduction, diapause and innate immunity. In the present paper, we intended to determine the isoform-specific roles of EcR during larval-pupal-adult transition in the Colorado potato beetle. Double-stranded RNAs (dsRNAs) were prepared using the common (dsEcR) or isoform-specific (dsEcRA, dsEcRB1) regions of EcR as templates. Ingestion of either dsEcR or dsEcRA, rather than dsEcRB1, by the penultimate (3rd) and final (4th) instar larvae caused failure of larval-pupal and pupal-adult ecdysis. The RNA interference (RNAi) larvae remained as prepupae, or became deformed pupae and adults. Determination of messenger RNA (mRNA) levels of EcR isoforms found that LdEcRA regulates the expression of LdEcRB1. Moreover, silencing the two EcR transcripts, LdEcRA or LdEcRB1 reduced the mRNA levels of Ldspo and Ldsad, and lowered 20E titer. In contrast, the expression levels of HR3, HR4, E74 and E75 were significantly decreased in the LdEcR or LdEcRA RNAi larvae, but not in LdEcRB1 depleted specimens. Dietary supplement with 20E did not restore the expression of five 20E signaling genes (USP, HR3, HR4, E74 and E75), and only partially alleviated the pupation defects in dsEcR- or dsEcRA-fed beetles. These data suggest that EcR plays isoform-specific roles in the regulation of ecdysteroidogenesis and the transduction of 20E signal in L. decemlineata.
Collapse
Affiliation(s)
- Qing‐Yu Xu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Pan Deng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Qiong Zhang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Ang Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Kai‐Yun Fu
- Institute of Plant ProtectionXinjiang Academy of Agricultural SciencesUrumqiChina
| | - Wen‐Chao Guo
- Institute of Microbiological ApplicationXinjiang Academy of Agricultural ScienceUrumqiChina
| | - Guo‐Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
9
|
Beyenbach KW, Schöne F, Breitsprecher LF, Tiburcy F, Furuse M, Izumi Y, Meyer H, Jonusaite S, Rodan AR, Paululat A. The septate junction protein Tetraspanin 2A is critical to the structure and function of Malpighian tubules in Drosophila melanogaster. Am J Physiol Cell Physiol 2020; 318:C1107-C1122. [PMID: 32267718 DOI: 10.1152/ajpcell.00061.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tetraspanin-2A (Tsp2A) is an integral membrane protein of smooth septate junctions in Drosophila melanogaster. To elucidate its structural and functional roles in Malpighian tubules, we used the c42-GAL4/UAS system to selectively knock down Tsp2A in principal cells of the tubule. Tsp2A localizes to smooth septate junctions (sSJ) in Malpighian tubules in a complex shared with partner proteins Snakeskin (Ssk), Mesh, and Discs large (Dlg). Knockdown of Tsp2A led to the intracellular retention of Tsp2A, Ssk, Mesh, and Dlg, gaps and widening spaces in remaining sSJ, and tumorous and cystic tubules. Elevated protein levels together with diminished V-type H+-ATPase activity in Tsp2A knockdown tubules are consistent with cell proliferation and reduced transport activity. Indeed, Malpighian tubules isolated from Tsp2A knockdown flies failed to secrete fluid in vitro. The absence of significant transepithelial voltages and resistances manifests an extremely leaky epithelium that allows secreted solutes and water to leak back to the peritubular side. The tubular failure to excrete fluid leads to extracellular volume expansion in the fly and to death within the first week of adult life. Expression of the c42-GAL4 driver begins in Malpighian tubules in the late embryo and progresses upstream to distal tubules in third instar larvae, which can explain why larvae survive Tsp2A knockdown and adults do not. Uncontrolled cell proliferation upon Tsp2A knockdown confirms the role of Tsp2A as tumor suppressor in addition to its role in sSJ structure and transepithelial transport.
Collapse
Affiliation(s)
- Klaus W Beyenbach
- Department of Zoology/Developmental Biology, University of Osnabrück, Osnabrück, Germany.,Department of Animal Physiology, University of Osnabrück, Osnabrück, Germany
| | - Frederike Schöne
- Department of Zoology/Developmental Biology, University of Osnabrück, Osnabrück, Germany
| | | | - Felix Tiburcy
- Department of Animal Physiology, University of Osnabrück, Osnabrück, Germany
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Sokendai, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Yasushi Izumi
- Division of Cell Structure, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Sokendai, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Heiko Meyer
- Department of Zoology/Developmental Biology, University of Osnabrück, Osnabrück, Germany
| | - Sima Jonusaite
- Division of Nephrology and Hypertension, Department of Internal Medicine, Molecular Medicine Program, University of Utah, Salt Lake City, Utah.,Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Aylin R Rodan
- Division of Nephrology and Hypertension, Department of Internal Medicine, Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Achim Paululat
- Department of Zoology/Developmental Biology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
10
|
Jonusaite S, Beyenbach KW, Meyer H, Paululat A, Izumi Y, Furuse M, Rodan AR. The septate junction protein Mesh is required for epithelial morphogenesis, ion transport, and paracellular permeability in the Drosophila Malpighian tubule. Am J Physiol Cell Physiol 2020; 318:C675-C694. [PMID: 31913700 DOI: 10.1152/ajpcell.00492.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Septate junctions (SJs) are occluding cell-cell junctions that have roles in paracellular permeability and barrier function in the epithelia of invertebrates. Arthropods have two types of SJs, pleated SJs and smooth SJs (sSJs). In Drosophila melanogaster, sSJs are found in the midgut and Malpighian tubules, but the functions of sSJs and their protein components in the tubule epithelium are unknown. Here we examined the role of the previously identified integral sSJ component, Mesh, in the Malpighian tubule. We genetically manipulated mesh specifically in the principal cells of the tubule at different life stages. Tubules of flies with developmental mesh knockdown revealed defects in epithelial architecture, sSJ molecular and structural organization, and lack of urine production in basal and kinin-stimulated conditions, resulting in edema and early adult lethality. Knockdown of mesh during adulthood did not disrupt tubule epithelial and sSJ integrity but decreased the transepithelial potential, diminished transepithelial fluid and ion transport, and decreased paracellular permeability to 4-kDa dextran. Drosophila kinin decreased transepithelial potential and increased chloride permeability, and it stimulated fluid secretion in both control and adult mesh knockdown tubules but had no effect on 4-kDa dextran flux. Together, these data indicate roles for Mesh in the developmental maturation of the Drosophila Malpighian tubule and in ion and macromolecular transport in the adult tubule.
Collapse
Affiliation(s)
- Sima Jonusaite
- Division of Nephrology and Hypertension, Department of Internal Medicine, and Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Klaus W Beyenbach
- Division of Animal Physiology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Heiko Meyer
- Division of Zoology and Developmental Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany.,Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Achim Paululat
- Division of Zoology and Developmental Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany.,Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Yasushi Izumi
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI, Okazaki, Japan
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI, Okazaki, Japan
| | - Aylin R Rodan
- Division of Nephrology and Hypertension, Department of Internal Medicine, and Molecular Medicine Program, University of Utah, Salt Lake City, Utah.,Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
| |
Collapse
|
11
|
Beňová-Liszeková D, Beňo M, Farkaš R. A protocol for processing the delicate larval and prepupal salivary glands of Drosophila for scanning electron microscopy. Microsc Res Tech 2019; 82:1145-1156. [PMID: 30912875 DOI: 10.1002/jemt.23263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/16/2019] [Accepted: 03/10/2019] [Indexed: 11/05/2022]
Abstract
Although scanning electron microscopy (SEM) has been broadly used for the examination of fixed whole insects or their hard exoskeleton-derived structures, including model organisms such as Drosophila, the routine use of SEM to evaluate vulnerable soft internal organs and tissues was often hampered by their fragile nature and frequent surface contamination. Here, we describe a simple four-step protocol that allows for the reliable and reproducible preparation of the larval and prepupal salivary glands (SGs) of Drosophila for SEM devoid of any surface contamination. The steps are to: first, proteolytically digest the adhering fat body; second, use detergent washes to remove contaminating coarse tissue fragments, including sticky remnants of the fat body; third, use nonionic emulsifying polysorbate emulsifiers to remove fine contaminants from the SGs surface; and fourth, use aminopolycarboxylate-based chelating agents to detach sessile hemocytes. Short but repeated rinses in 100 μL of a saline-based buffer between steps ensure efficient removal of remnants removed by each treatment. After these steps, the SGs are fixed in glutaraldehyde, postfixed in osmium tetroxide, dehydrated, critically point-dried, mounted on aluminum stubs, sputter coated with gold-palladium alloy and examined in the SEM.
Collapse
Affiliation(s)
- Denisa Beňová-Liszeková
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Milan Beňo
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Robert Farkaš
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
12
|
Modeling Renal Disease "On the Fly". BIOMED RESEARCH INTERNATIONAL 2018; 2018:5697436. [PMID: 29955604 PMCID: PMC6000847 DOI: 10.1155/2018/5697436] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/17/2018] [Indexed: 12/22/2022]
Abstract
Detoxification is a fundamental function for all living organisms that need to excrete catabolites and toxins to maintain homeostasis. Kidneys are major organs of detoxification that maintain water and electrolyte balance to preserve physiological functions of vertebrates. In insects, the renal function is carried out by Malpighian tubules and nephrocytes. Due to differences in their circulation, the renal systems of mammalians and insects differ in their functional modalities, yet carry out similar biochemical and physiological functions and share extensive genetic and molecular similarities. Evolutionary conservation can be leveraged to model specific aspects of the complex mammalian kidney function in the genetic powerhouse Drosophila melanogaster to study how genes interact in diseased states. Here, we compare the human and Drosophila renal systems and present selected fly disease models.
Collapse
|
13
|
Structure and function of the alternatively spliced isoforms of the ecdysone receptor gene in the Chinese mitten crab, Eriocheir sinensis. Sci Rep 2017; 7:12993. [PMID: 29021633 PMCID: PMC5636884 DOI: 10.1038/s41598-017-13474-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 09/26/2017] [Indexed: 11/10/2022] Open
Abstract
Alternative splicing is an essential molecular mechanism that increase the protein diversity of a species to regulate important biological processes. Ecdysone receptor (EcR), an essential nuclear receptor, is essential in the molting, growth, development, reproduction, and regeneration of crustaceans. In this study, the whole sequence of EcR gene from Eriocheir sinensis was obtained. The sequence was 45,481 bp in length with 9 exons. Moreover, four alternatively spliced EcR isoforms (Es-EcR-1, Es-EcR-2, Es-EcR-3 and Es-EcR-4) were identified. The four isoforms harbored a common A/B domain and a DNA-binding region but different D domains and ligand-binding regions. Three alternative splicing patterns (alternative 5′ splice site, exon skipping, and intron retention) were identified in the four isoforms. Functional studies indicated that the four isoforms have specific functions. Es-EcR-3 may play essential roles in regulating periodic molting. Es-EcR-2 may participate in the regulation of ovarian development. Our results indicated that Es-EcR has broad regulatory functions in molting and development and established the molecular basis for the investigation of ecdysteroid signaling related pathways in E. sinensis.
Collapse
|
14
|
Gautam NK, Verma P, Tapadia MG. Drosophila Malpighian Tubules: A Model for Understanding Kidney Development, Function, and Disease. Results Probl Cell Differ 2017; 60:3-25. [PMID: 28409340 DOI: 10.1007/978-3-319-51436-9_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Malpighian tubules of insects are structurally simple but functionally important organs, and their integrity is important for the normal excretory process. They are functional analogs of human kidneys which are important physiological organs as they maintain water and electrolyte balance in the blood and simultaneously help the body to get rid of waste and toxic products after various metabolic activities. In addition, it receives early indications of insults to the body such as immune challenge and other toxic components and is essential for sustaining life. According to National Vital Statistics Reports 2016, renal dysfunction has been ranked as the ninth most abundant cause of death in the USA. This chapter provides detailed descriptions of Drosophila Malpighian tubule development, physiology, immune function and also presents evidences that Malpighian tubules can be used as a model organ system to address the fundamental questions in developmental and functional disorders of the kidney.
Collapse
Affiliation(s)
- Naveen Kumar Gautam
- Embryotoxicology Laboratory, Environmental Toxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Puja Verma
- Department of Zoology, Cytogenetics Laboratory, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Madhu G Tapadia
- Department of Zoology, Cytogenetics Laboratory, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
15
|
Guo Y, Flegel K, Kumar J, McKay DJ, Buttitta LA. Ecdysone signaling induces two phases of cell cycle exit in Drosophila cells. Biol Open 2016; 5:1648-1661. [PMID: 27737823 PMCID: PMC5155522 DOI: 10.1242/bio.017525] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
During development, cell proliferation and differentiation must be tightly coordinated to ensure proper tissue morphogenesis. Because steroid hormones are central regulators of developmental timing, understanding the links between steroid hormone signaling and cell proliferation is crucial to understanding the molecular basis of morphogenesis. Here we examined the mechanism by which the steroid hormone ecdysone regulates the cell cycle in Drosophila. We find that a cell cycle arrest induced by ecdysone in Drosophila cell culture is analogous to a G2 cell cycle arrest observed in the early pupa wing. We show that in the wing, ecdysone signaling at the larva-to-puparium transition induces Broad which in turn represses the cdc25c phosphatase String. The repression of String generates a temporary G2 arrest that synchronizes the cell cycle in the wing epithelium during early pupa wing elongation and flattening. As ecdysone levels decline after the larva-to-puparium pulse during early metamorphosis, Broad expression plummets, allowing String to become re-activated, which promotes rapid G2/M progression and a subsequent synchronized final cell cycle in the wing. In this manner, pulses of ecdysone can both synchronize the final cell cycle and promote the coordinated acquisition of terminal differentiation characteristics in the wing. Summary: Pulsed ecdysone signaling remodels cell cycle dynamics, causing distinct primary and secondary cell cycle arrests in Drosophila cells, analogous to those observed in the wing during metamorphosis.
Collapse
Affiliation(s)
- Yongfeng Guo
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kerry Flegel
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jayashree Kumar
- Biology Department and Genetics Department, Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel J McKay
- Biology Department and Genetics Department, Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura A Buttitta
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Xiao G, Zhou B. What can flies tell us about zinc homeostasis? Arch Biochem Biophys 2016; 611:134-141. [PMID: 27136711 DOI: 10.1016/j.abb.2016.04.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 12/14/2022]
Abstract
Zinc is an essential micronutrient for all organisms. For multicellular organisms, zinc uptake, storage, distribution and export are tightly regulated at both cellular and organismal levels, to cope with the multiple requirements versus the toxicity of the metal ion. During the past decade, the fruit fly Drosophila melanogaster has become an important model organism for the elucidation of metazoan zinc homeostasis. This review describes our current knowledge of various zinc transporters in Drosophila, with an emphasis on the process of dietary zinc uptake in the fly. We also discuss how Drosophila was used as a model to facilitate our understanding of the role of zinc in neurodegenerative diseases.
Collapse
Affiliation(s)
- Guiran Xiao
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
17
|
Chen Q, Pan C, Li Y, Zhang M, Gu W. The Combined Effect of Methyl- and Ethyl-Paraben on Lifespan and Preadult Development Period of Drosophila melanogaster (Diptera: Drosophilidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2016; 16:iev146. [PMID: 28076277 PMCID: PMC5778983 DOI: 10.1093/jisesa/iev146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 11/24/2015] [Indexed: 05/05/2023]
Abstract
Parabens are widely used as preservative substances in foods, pharmaceuticals, industrial products, and cosmetics. But several studies have cautioned that parabens have estrogenic or endocrine-disrupting properties. Drosophila melanogaster is an ideal model in vivo to detect the toxic effects of chemistry. The study was designed to assess the potential additive toxic effects of methylparaben (MP) and ethylparaben (EP) mixture (MP + EP) on lifespan and preadult development period in D. melanogaster The data revealed that the MP + EP can reduce the longevity of flies compared with the control group, consistent with a significant reduction in malondialdehyde levels and an increase in superoxide dismutase activities. Furthermore, MP + EP may have a greater toxic effect on longevity of flies than separate using with the same concentration. Additionally, parabens had a nonmonotonic dose-response effect on D. melanogaster preadult development period, showing that MP + EP delayed preadult development period compared with control group while individual MP or EP significantly shortened (P < 0.01) at low concentration (300 mg/l). In conclusion, MP + EP had the potential additive toxicity on lifespan and preadult development period for D. melanogaster.
Collapse
Affiliation(s)
- Qi Chen
- College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an 710119, China (; ; ; ) and
| | - Chenguang Pan
- College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an 710119, China (; ; ; ) and
| | - Yajuan Li
- College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an 710119, China (; ; ; ) and
| | - Min Zhang
- College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an 710119, China (; ; ; ) and
| | - Wei Gu
- College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an 710119, China (; ; ; ) and
| |
Collapse
|
18
|
O'Donnell MJ, Ruiz-Sanchez E. The rectal complex and Malpighian tubules of the cabbage looper (Trichoplusia ni): regional variations in Na+ and K+ transport and cation reabsorption by secondary cells. J Exp Biol 2015; 218:3206-14. [PMID: 26491192 DOI: 10.1242/jeb.128314] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
ABSTRACT
In larvae of most Lepidoptera the distal ends of the Malpighian tubules are closely applied to the rectal epithelia and are ensheathed within the perinephric membrane, thus forming the rectal complex. The cryptonephric Malpighian tubules within the rectal complex are bathed in fluid within a functional compartment, the perinephric space, which is separate from the haemolymph. In this study, the scanning ion-selective electrode technique (SIET) was used to measure transport of Na+ and K+ across the rectal complex and across multiple regions of the Malpighian tubules of larvae of the cabbage looper Trichoplusia ni. Measurements were made in an intact preparation in which connections of the tubules upstream to the rectal complex and downstream to the urinary bladder and gut remained intact. SIET measurements revealed reabsorption of Na+ and K+ across the intact rectal complex and into the bath (haemolymph), with K+ fluxes approximately twice as large as those of Na+. Analyses of fluxes in larvae with empty guts, found in recently moulted larvae, versus those with full guts highlighted differences in the rates of K+ or Na+ transport within tubule regions that appeared morphologically homogeneous, such as the rectal lead. The distal rectal lead of larvae with empty guts reabsorbed K+, whereas the same region secreted K+ in tubules of larvae with full guts. SIET measurements of the ileac plexus also indicated a novel role for secondary (type II) cells in cation reabsorption. Secondary cells reabsorb K+, whereas the adjacent principal (type I) cells secrete K+. Na+ is reabsorbed by both principal and secondary cells, but the rate of reabsorption by the secondary cells is approximately twice the rate in the adjacent principal cells.
Collapse
Affiliation(s)
- Michael J. O'Donnell
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Esau Ruiz-Sanchez
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| |
Collapse
|