1
|
Hallikas O, Das Roy R, Christensen MM, Renvoisé E, Sulic AM, Jernvall J. System-level analyses of keystone genes required for mammalian tooth development. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:7-17. [PMID: 33128445 PMCID: PMC7894285 DOI: 10.1002/jez.b.23009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/21/2022]
Abstract
When a null mutation of a gene causes a complete developmental arrest, the gene is typically considered essential for life. Yet, in most cases, null mutations have more subtle effects on the phenotype. Here we used the phenotypic severity of mutations as a tool to examine system‐level dynamics of gene expression. We classify genes required for the normal development of the mouse molar into different categories that range from essential to subtle modification of the phenotype. Collectively, we call these the developmental keystone genes. Transcriptome profiling using microarray and RNAseq analyses of patterning stage mouse molars show highly elevated expression levels for genes essential for the progression of tooth development, a result reminiscent of essential genes in single‐cell organisms. Elevated expression levels of progression genes were also detected in developing rat molars, suggesting evolutionary conservation of this system‐level dynamics. Single‐cell RNAseq analyses of developing mouse molars reveal that even though the size of the expression domain, measured in the number of cells, is the main driver of organ‐level expression, progression genes show high cell‐level transcript abundances. Progression genes are also upregulated within their pathways, which themselves are highly expressed. In contrast, a high proportion of the genes required for normal tooth patterning are secreted ligands that are expressed in fewer cells than their receptors and intracellular components. Overall, even though expression patterns of individual genes can be highly different, conserved system‐level principles of gene expression can be detected using phenotypically defined gene categories. The phenotypic severity of mutations on mouse teeth is used to classify genes. Genes essential for the progression of odontogenesis are highly expressed at the organ and cell level. Many of the genes required for normal patterning are locally expressed ligands.
Collapse
Affiliation(s)
- Outi Hallikas
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Rishi Das Roy
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Elodie Renvoisé
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Lycée des Métiers Claude Chappe, Arnage, France
| | - Ana-Marija Sulic
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jukka Jernvall
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Coronado-Zamora M, Salvador-Martínez I, Castellano D, Barbadilla A, Salazar-Ciudad I. Adaptation and Conservation throughout the Drosophila melanogaster Life-Cycle. Genome Biol Evol 2019; 11:1463-1482. [PMID: 31028390 PMCID: PMC6535812 DOI: 10.1093/gbe/evz086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2019] [Indexed: 01/09/2023] Open
Abstract
Previous studies of the evolution of genes expressed at different life-cycle stages of Drosophila melanogaster have not been able to disentangle adaptive from nonadaptive substitutions when using nonsynonymous sites. Here, we overcome this limitation by combining whole-genome polymorphism data from D. melanogaster and divergence data between D. melanogaster and Drosophila yakuba. For the set of genes expressed at different life-cycle stages of D. melanogaster, as reported in modENCODE, we estimate the ratio of substitutions relative to polymorphism between nonsynonymous and synonymous sites (α) and then α is discomposed into the ratio of adaptive (ωa) and nonadaptive (ωna) substitutions to synonymous substitutions. We find that the genes expressed in mid- and late-embryonic development are the most conserved, whereas those expressed in early development and postembryonic stages are the least conserved. Importantly, we found that low conservation in early development is due to high rates of nonadaptive substitutions (high ωna), whereas in postembryonic stages it is due, instead, to high rates of adaptive substitutions (high ωa). By using estimates of different genomic features (codon bias, average intron length, exon number, recombination rate, among others), we also find that genes expressed in mid- and late-embryonic development show the most complex architecture: they are larger, have more exons, more transcripts, and longer introns. In addition, these genes are broadly expressed among all stages. We suggest that all these genomic features are related to the conservation of mid- and late-embryonic development. Globally, our study supports the hourglass pattern of conservation and adaptation over the life-cycle.
Collapse
Affiliation(s)
- Marta Coronado-Zamora
- Genomics, Bioinformatics and Evolution, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Irepan Salvador-Martínez
- Evo-Devo Helsinki Community, Centre of Excellence in Experimental and Computational Developmental Biology, Institute of Biotechnology, University of Helsinki, Finland.,Department of Genetics, Evolution and Environment, University College London, United Kingdom
| | | | - Antonio Barbadilla
- Genomics, Bioinformatics and Evolution, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Isaac Salazar-Ciudad
- Genomics, Bioinformatics and Evolution, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Evo-Devo Helsinki Community, Centre of Excellence in Experimental and Computational Developmental Biology, Institute of Biotechnology, University of Helsinki, Finland.,Centre de Recerca Matemàtica, Cerdanyola del Vallès, Spain
| |
Collapse
|
3
|
Hufnagel LA, Pierobon P, Kass-Simon G. Immunocytochemical localization of a putative strychnine-sensitive glycine receptor in Hydra vulgaris. Cell Tissue Res 2019; 377:177-191. [PMID: 30976918 DOI: 10.1007/s00441-019-03011-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/26/2019] [Indexed: 12/01/2022]
Abstract
Previous biochemical studies have identified strychnine-sensitive glycine receptors in membrane preparations of Hydra vulgaris (Cnidaria: Hydrozoa). Electrophysiological and behavioral evidence has shown that these receptors play a role in modulating pacemaker activity and feeding behavior. Here, we present our genomic analysis that revealed hydra proteins having strong homology with the strychnine-binding region of the human receptor protein, GlyRα1. We further present immunocytochemical evidence for the specific labeling of cell and tissue preparations of hydra by a commercially available polyclonal anti-GlyRα1 antibody, selected through our genomic analysis. Tissue pieces and cell macerates from the upper and lower thirds of the body and ablated tentacles were double-labeled with this antibody and with an antibody specific for α-tubulin, to identify the glycine receptors and microtubules, respectively. Extensive receptor labeling was evident on the membranes, cell bodies and myonemes of endodermal and ectodermal epithelial cells, cell bodies and neurites of nerve cells, cnidocytes and interstitial cells. Labeling of the membranes of epithelial cells frequently corresponded to conspicuous varicosities (presumptive presynaptic sites) in the associated nerve net. Our findings support the idea that glycine receptors form an integral part of the nerve and effector systems that control hydra behavior.
Collapse
Affiliation(s)
- Linda A Hufnagel
- Department of Cell and Molecular Biology & Interdisciplinary Neurosciences Program, University of Rhode Island, Flagg Road, Kingston, RI, 02881, USA.
| | - Paola Pierobon
- Institute of Applied Sciences and Intelligent Systems E. Caianiello, CNR, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Gabriele Kass-Simon
- Department of Biological Sciences & Interdisciplinary Neurosciences Program, University of Rhode Island, Flagg Road, Kingston, RI, 02881, USA.
| |
Collapse
|
4
|
Salvador-Martínez I, Coronado-Zamora M, Castellano D, Barbadilla A, Salazar-Ciudad I. Mapping Selection within Drosophila melanogaster Embryo's Anatomy. Mol Biol Evol 2019; 35:66-79. [PMID: 29040697 DOI: 10.1093/molbev/msx266] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We present a survey of selection across Drosophila melanogaster embryonic anatomy. Our approach integrates genomic variation, spatial gene expression patterns, and development with the aim of mapping adaptation over the entire embryo's anatomy. Our adaptation map is based on analyzing spatial gene expression information for 5,969 genes (from text-based annotations of in situ hybridization data directly from the BDGP database, Tomancak et al. 2007) and the polymorphism and divergence in these genes (from the project DGRP, Mackay et al. 2012).The proportion of nonsynonymous substitutions that are adaptive, neutral, or slightly deleterious are estimated for the set of genes expressed in each embryonic anatomical structure using the distribution of fitness effects-alpha method (Eyre-Walker and Keightley 2009). This method is a robust derivative of the McDonald and Kreitman test (McDonald and Kreitman 1991). We also explore whether different anatomical structures differ in the phylogenetic age, codon usage, or expression bias of the genes they express and whether genes expressed in many anatomical structures show more adaptive substitutions than other genes.We found that: 1) most of the digestive system and ectoderm-derived structures are under selective constraint, 2) the germ line and some specific mesoderm-derived structures show high rates of adaptive substitution, and 3) the genes that are expressed in a small number of anatomical structures show higher expression bias, lower phylogenetic ages, and less constraint.
Collapse
Affiliation(s)
- Irepan Salvador-Martínez
- Evo-devo Helsinki Community, Centre of Excellence in Experimental and Computational Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Marta Coronado-Zamora
- Departament de Genètica i de Microbiologia, Genomics, Bioinformatics and Evolution, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - David Castellano
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Antonio Barbadilla
- Departament de Genètica i de Microbiologia, Genomics, Bioinformatics and Evolution, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Isaac Salazar-Ciudad
- Evo-devo Helsinki Community, Centre of Excellence in Experimental and Computational Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Departament de Genètica i de Microbiologia, Genomics, Bioinformatics and Evolution, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
5
|
Salvador-Martínez I, Salazar-Ciudad I. How complexity increases in development: An analysis of the spatial-temporal dynamics of Gene expression in Ciona intestinalis. Mech Dev 2017; 144:113-124. [PMID: 28189795 DOI: 10.1016/j.mod.2017.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 02/04/2017] [Accepted: 02/06/2017] [Indexed: 12/11/2022]
Abstract
The increase in complexity in an embryo over developmental time is perhaps one of the most intuitive processes of animal development. It is also intuitive that the embryo becomes progressively compartmentalized over time and space. In spite of this intuitiveness, there are no systematic attempts to quantify how this occurs. Here, we present a quantitative analysis of the compartmentalization and spatial complexity of Ciona intestinalis over developmental time by analyzing thousands of gene expression spatial patterns from the ANISEED database. We measure compartmentalization in two ways: as the relative volume of expression of genes and as the disparity in gene expression between body parts. We also use a measure of the curvature of each gene expression pattern in 3D space. These measures show a similar increase over time, with the most dramatic change occurring from the 112-cell stage to the early tailbud stage. Combined, these measures point to a global pattern of increase in complexity in the Ciona embryo. Finally, we cluster the different regions of the embryo depending on their gene expression similarity, within and between stages. Results from this clustering analysis, which partially correspond to known fate maps, provide a global quantitative overview about differentiation and compartmentalization between body parts at each developmental stage.
Collapse
Affiliation(s)
- Irepan Salvador-Martínez
- Evo-devo Helsinki community, Center of Excellence in Experimental Computational Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Isaac Salazar-Ciudad
- Evo-devo Helsinki community, Center of Excellence in Experimental Computational Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland; Genomics, Bioinformatics and Evolution, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|