1
|
Zhao Y, Duan J, Han ID, van de Leemput J, Ray PE, Han Z. Piezo, Nephrocyte Function, and Slit Diaphragm Maintenance in Drosophila. J Am Soc Nephrol 2024:00001751-990000000-00451. [PMID: 39431457 DOI: 10.1681/asn.0000000529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
Key Points
Piezo channels, known for detecting mechanical pressure, were found to be expressed at the lacuna channel membranes of nephrocytes.Piezo loss of function caused nephrocyte dysfunction, including disrupted slit diaphragm structure and altered lacuna channel morphology.Piezo deficiency led to internalized slit diaphragm proteins, reduced autophagy, increased endoplasmic reticulum stress, and impaired calcium homeostasis.
Background
The Piezo gene encodes a highly conserved cell membrane protein responsible for sensing pressure. The glomerular kidney and the slit diaphragm filtration structure depend on pressure for filtration. However, how Piezo is involved in kidney function and in maintaining the slit diaphragm filtration structure is not clear.
Methods
We used Drosophila pericardial nephrocytes, filtration kidney cells with striking structural and functional similarities to human podocytes, in a loss-of-function model (mutant and knockdown) to study the roles of Piezo in nephrocyte filtration and function.
Results
Piezo was highly expressed at the invaginated membranes (lacuna channels) of nephrocytes. A Piezo loss-of-function mutant showed significant nephrocyte functional decline. Nephrocyte-specific silencing of Piezo showed disruption of the slit diaphragm filtration structure and significant functional defects. Electron microscopy showed that silencing Piezo in nephrocytes led to reduced slit diaphragm density and abnormal shape of lacuna channels. Moreover, the Piezo-deficient nephrocytes showed internalized slit diaphragm component proteins, reduced autophagy, increased endoplasmic reticulum stress, and reduced calcium influx.
Conclusions
Together, our findings suggest that Piezo plays an important role in the calcium homeostasis of nephrocytes and is required for maintaining nephrocyte function and the slit diaphragm filtration structure.
Collapse
Affiliation(s)
- Yunpo Zhao
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jianli Duan
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Iden D Han
- Department of Pediatrics, Child Health Research Center, School of Medicine, University of Virginia, Charlottesville, Virginia
| | - Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Patricio E Ray
- Department of Pediatrics, Child Health Research Center, School of Medicine, University of Virginia, Charlottesville, Virginia
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
2
|
Liu M, Yang S, Yang J, Feng P, Luo F, Zhang Q, Yang L, Jiang H. BubR1 controls starvation-induced lipolysis via IMD signaling pathway in Drosophila. Aging (Albany NY) 2024; 16:3257-3279. [PMID: 38334966 PMCID: PMC10929803 DOI: 10.18632/aging.205533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
Lipolysis, the key process releasing fat acids to generate energy in adipose tissues, correlates with starvation resistance. Nevertheless, its detail mechanisms remain elusive. BubR1, an essential mitotic regulator, ensures proper chromosome alignment and segregation during mitosis, but its physiological functions are largely unknown. Here, we use Drosophila adult fat body, the major lipid storage organ, to study the functions of BubR1 in lipolysis. We show that both whole body- and fat body-specific BubR1 depletions increase lipid degradation and shorten the lifespan under fasting but not feeding. Relish, the conserved regulator of IMD signaling pathway, acts as the downstream target of BubR1 to control the expression level of Bmm and modulate the lipolysis upon fasting. Thus, our study reveals new functions of BubR1 in starvation-induced lipolysis and provides new insights into the molecular mechanisms of lipolysis mediated by IMD signaling pathway.
Collapse
Affiliation(s)
- Mengyou Liu
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shengye Yang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingsi Yang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping Feng
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Feng Luo
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiaoqiao Zhang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Yang
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hao Jiang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
3
|
Zhao Y, Lindberg BG, Esfahani SS, Tang X, Piazza S, Engström Y. Stop codon readthrough alters the activity of a POU/Oct transcription factor during Drosophila development. BMC Biol 2021; 19:185. [PMID: 34479564 PMCID: PMC8417969 DOI: 10.1186/s12915-021-01106-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/19/2021] [Indexed: 11/24/2022] Open
Abstract
Background A number of cellular processes have evolved in metazoans that increase the proteome repertoire in relation to the genome, such as alternative splicing and translation recoding. Another such process, translational stop codon readthrough (SCR), generates C-terminally extended protein isoforms in many eukaryotes, including yeast, plants, insects, and humans. While comparative genome analyses have predicted the existence of programmed SCR in many species including humans, experimental proof of its functional consequences are scarce. Results We show that SCR of the Drosophila POU/Oct transcription factor Ventral veins lacking/Drifter (Vvl/Dfr) mRNA is prevalent in certain tissues in vivo, reaching a rate of 50% in the larval prothoracic gland. Phylogenetically, the C-terminal extension is conserved and harbors intrinsically disordered regions and amino acid stretches implied in transcriptional activation. Elimination of Vvl/Dfr translational readthrough by CRISPR/Cas9 mutagenesis changed the expression of a large number of downstream genes involved in processes such as chromatin regulation, neurogenesis, development, and immune response. As a proof-of-principle, we demonstrate that the C-terminal extension of Vvl/Dfr is necessary for correct timing of pupariation, by increasing the capacity to regulate its target genes. The extended Vvl/Dfr isoform acts in synergy with the transcription factor Molting defective (Mld) to increase the expression and biosynthesis of the steroid hormone ecdysone, thereby advancing pupariation. Consequently, late-stage larval development was prolonged and metamorphosis delayed in vvl/dfr readthrough mutants. Conclusions We demonstrate that translational recoding of a POU/Oct transcription factor takes place in a highly tissue-specific and temporally controlled manner. This dynamic and regulated recoding is necessary for normal expression of a large number of genes involved in many cellular and developmental processes. Loss of Vvl/Dfr translational readthrough negatively affects steroid hormone biosynthesis and delays larval development and progression into metamorphosis. Thus, this study demonstrates how SCR of a transcription factor can act as a developmental switch in a spatiotemporal manner, feeding into the timing of developmental transitions between different life-cycle stages. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01106-0.
Collapse
Affiliation(s)
- Yunpo Zhao
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden.,Present address: Department of Molecular Biology, Umeå University, SE-901 87, Umeå, SE, Sweden
| | - Bo Gustav Lindberg
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Shiva Seyedoleslami Esfahani
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Xiongzhuo Tang
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden.,Present address: Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, 06520, USA
| | - Stefano Piazza
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden.,Present address: Research and Innovation Centre, Fondazione Edmund Mach, via E Mach 1, 38010, San Michele a/Adige, Italy
| | - Ylva Engström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
4
|
Duan J, Zhao Y, Li H, Habernig L, Gordon MD, Miao X, Engström Y, Büttner S. Bab2 Functions as an Ecdysone-Responsive Transcriptional Repressor during Drosophila Development. Cell Rep 2020; 32:107972. [PMID: 32726635 DOI: 10.1016/j.celrep.2020.107972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/30/2020] [Accepted: 07/08/2020] [Indexed: 12/01/2022] Open
Abstract
Drosophila development is governed by distinct ecdysone steroid pulses that initiate spatially and temporally defined gene expression programs. The translation of these signals into tissue-specific responses is crucial for metamorphosis, but the mechanisms that confer specificity to systemic ecdysone pulses are far from understood. Here, we identify Bric-à-brac 2 (Bab2) as an ecdysone-responsive transcriptional repressor that controls temporal gene expression during larval to pupal transition. Bab2 is necessary to terminate Salivary gland secretion (Sgs) gene expression, while premature Bab2 expression blocks Sgs genes and causes precocious salivary gland histolysis. The timely expression of bab2 is controlled by the ecdysone-responsive transcription factor Broad, and manipulation of EcR/USP/Broad signaling induces inappropriate Bab2 expression and termination of Sgs gene expression. Bab2 directly binds to Sgs loci in vitro and represses all Sgs genes in vivo. Our work characterizes Bab2 as a temporal regulator of somatic gene expression in response to systemic ecdysone signaling.
Collapse
Affiliation(s)
- Jianli Duan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden; CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yunpo Zhao
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden; CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; Department of Zoology, Life Science Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Haichao Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Lukas Habernig
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Michael D Gordon
- Department of Zoology, Life Science Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Xuexia Miao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ylva Engström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden; Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria.
| |
Collapse
|
5
|
Zhai Z, Huang X, Yin Y. Beyond immunity: The Imd pathway as a coordinator of host defense, organismal physiology and behavior. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:51-59. [PMID: 29146454 DOI: 10.1016/j.dci.2017.11.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
The humoral arm of host defense in Drosophila relies on two evolutionarily conserved NFκB signaling cascades, the Toll and the immune deficiency (Imd) pathways. The Imd signaling pathway senses and neutralizes Gram-negative bacteria. Its activity is tightly adjusted, allowing the host to simultaneously prevent infection by pathogenic bacteria and tolerate beneficial gut microbiota. Over-activation of Imd signaling is detrimental at least in part by causing gut dysbiosis that further exacerbates intestinal pathologies. Furthermore, it is increasingly recognized that the Imd pathway or its components also play non-immune roles. In this review, we summarize recent advances in Imd signal transduction, discuss the gut-microbiota interactions mediated by Imd signaling, and finally elaborate on its diverse physiological functions beyond immunity. Understanding the multifaceted physiological outputs of Imd activation will help integrate its immune role into the regulation of whole organismal physiology.
Collapse
Affiliation(s)
- Zongzhao Zhai
- Changsha Medical University, 410125 Changsha, China; Animal Nutrition and Human Health Laboratory, School of Life Sciences, Hunan Normal University, 410081 Changsha, Hunan, China.
| | | | - Yulong Yin
- Changsha Medical University, 410125 Changsha, China; Animal Nutrition and Human Health Laboratory, School of Life Sciences, Hunan Normal University, 410081 Changsha, Hunan, China
| |
Collapse
|