1
|
Jackson EW, Romero E, Kling S, Lee Y, Tjeerdema E, Hamdoun A. Stable germline transgenesis using the Minos Tc1/mariner element in the sea urchin Lytechinus pictus. Development 2024; 151:dev202991. [PMID: 39023164 PMCID: PMC11361634 DOI: 10.1242/dev.202991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Stable transgenesis is a transformative tool in model organism biology. Although the sea urchin is one of the oldest animal models in cell and developmental biology, studies in this animal have largely relied on transient manipulation of wild animals, without a strategy for stable transgenesis. Here, we build on recent progress to develop a more genetically tractable sea urchin species, Lytechinus pictus, and establish a robust transgene integration method. Three commonly used transposons (Minos, Tol2 and piggyBac) were tested for non-autonomous transposition, using plasmids containing a polyubiquitin promoter upstream of a H2B-mCerulean nuclear marker. Minos was the only transposable element that resulted in significant expression beyond metamorphosis. F0 animals were raised to sexual maturity, and spawned to determine germline integration and transgene inheritance frequency, and to characterize expression patterns of the transgene in F1 progeny. The results demonstrate transgene transmission through the germline, the first example of a germline transgenic sea urchin and, indeed, of any echinoderm. This milestone paves the way for the generation of diverse transgenic resources that will dramatically enhance the utility, reproducibility and efficiency of sea urchin research.
Collapse
Affiliation(s)
- Elliot W. Jackson
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
| | - Emilio Romero
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
| | - Svenja Kling
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
| | - Yoon Lee
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
| | - Evan Tjeerdema
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
2
|
Schall PZ, Latham KE. Predictive modeling of oocyte maternal mRNA features for five mammalian species reveals potential shared and species-restricted regulators during maturation. Physiol Genomics 2024; 56:9-31. [PMID: 37842744 PMCID: PMC11281819 DOI: 10.1152/physiolgenomics.00048.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023] Open
Abstract
Oocyte maturation is accompanied by changes in abundances of thousands of mRNAs, many degraded and many preferentially stabilized. mRNA stability can be regulated by diverse features including GC content, codon bias, and motifs within the 3'-untranslated region (UTR) interacting with RNA binding proteins (RBPs) and miRNAs. Many studies have identified factors participating in mRNA splicing, bulk mRNA storage, and translational recruitment in mammalian oocytes, but the roles of potentially hundreds of expressed factors, how they regulate cohorts of thousands of mRNAs, and to what extent their functions are conserved across species has not been determined. We performed an extensive in silico cross-species analysis of features associated with mRNAs of different stability classes during oocyte maturation (stable, moderately degraded, and highly degraded) for five mammalian species. Using publicly available RNA sequencing data for germinal vesicle (GV) and MII oocyte transcriptomes, we determined that 3'-UTR length and synonymous codon usage are positively associated with stability, while greater GC content is negatively associated with stability. By applying machine learning and feature selection strategies, we identified RBPs and miRNAs that are predictive of mRNA stability, including some across multiple species and others more species-restricted. The results provide new insight into the mechanisms regulating maternal mRNA stabilization or degradation.NEW & NOTEWORTHY Conservation across species of mRNA features regulating maternal mRNA stability during mammalian oocyte maturation was analyzed. 3'-Untranslated region length and synonymous codon usage are positively associated with stability, while GC content is negatively associated. Just three RNA binding protein motifs were predicted to regulate mRNA stability across all five species examined, but associated pathways and functions are shared, indicating oocytes of different species arrive at comparable physiological destinations via different routes.
Collapse
Affiliation(s)
- Peter Z Schall
- Department of Animal Science, Michigan State University, East Lansing, Michigan, United States
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, United States
- Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, Michigan, United States
| | - Keith E Latham
- Department of Animal Science, Michigan State University, East Lansing, Michigan, United States
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, United States
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, Michigan, United States
| |
Collapse
|
3
|
Feuda R. The temporal dynamics of the sea urchin regulome. Biol Open 2022; 11:276353. [PMID: 36094151 PMCID: PMC9493716 DOI: 10.1242/bio.059216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/14/2022] [Indexed: 12/04/2022] Open
Abstract
In this work, we used Nanostring N-counter technology, to evaluate the mRNA expression level of more than 330 regulatory genes over 34 time points covering the first three days of development of the sea urchin larvae. The hierarchical clustering of the mRNAs expression levels has identified groups corresponding to the major developmental landmarks (e.g. maternal to zygotic transition and gastrulation). Furthermore, comparison with previous experiments indicates high reproducibility of mRNA level temporal dynamics across batches. Finally, we generated an online tool to visualise gene expression during sea urchin larval development. The site can be accessed at and https://www621.lamp.le.ac.uk/nanostring_app/nanostring/. Summary: This study uses Nanostring N-counter technology to evaluate the mRNA expression level of more than 330 regulatory genes over 34 time points covering the first three days of development of the sea urchin larvae.
Collapse
Affiliation(s)
- Roberto Feuda
- Division of Biology and Biological Engineering, MC156-29, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
4
|
Zhang J, Ibrahim F, Najmulski E, Katholos G, Altarawy D, Heath LS, Tulin SL. Developmental gene regulatory network connections predicted by machine learning from gene expression data alone. PLoS One 2021; 16:e0261926. [PMID: 34962963 PMCID: PMC8714117 DOI: 10.1371/journal.pone.0261926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
Gene regulatory network (GRN) inference can now take advantage of powerful machine learning algorithms to complement traditional experimental methods in building gene networks. However, the dynamical nature of embryonic development-representing the time-dependent interactions between thousands of transcription factors, signaling molecules, and effector genes-is one of the most challenging arenas for GRN prediction. In this work, we show that successful GRN predictions for a developmental network from gene expression data alone can be obtained with the Priors Enriched Absent Knowledge (PEAK) network inference algorithm. PEAK is a noise-robust method that models gene expression dynamics via ordinary differential equations and selects the best network based on information-theoretic criteria coupled with the machine learning algorithm Elastic Net. We test our GRN prediction methodology using two gene expression datasets for the purple sea urchin, Stronglyocentrotus purpuratus, and cross-check our results against existing GRN models that have been constructed and validated by over 30 years of experimental results. Our results find a remarkably high degree of sensitivity in identifying known gene interactions in the network (maximum 81.58%). We also generate novel predictions for interactions that have not yet been described, which provide a resource for researchers to use to further complete the sea urchin GRN. Published ChIPseq data and spatial co-expression analysis further support a subset of the top novel predictions. We conclude that GRN predictions that match known gene interactions can be produced using gene expression data alone from developmental time series experiments.
Collapse
Affiliation(s)
- Jingyi Zhang
- Department of Computer Science, Virginia Tech, Blacksburg, VA, United States of America
| | - Farhan Ibrahim
- Department of Computer Science, Virginia Tech, Blacksburg, VA, United States of America
| | - Emily Najmulski
- Department of Biology, Canisius College, Buffalo, NY, United States of America
| | - George Katholos
- Department of Biology, Canisius College, Buffalo, NY, United States of America
| | - Doaa Altarawy
- Department of Computer Science, Virginia Tech, Blacksburg, VA, United States of America
- Computer and Systems Engineering Department, Alexandria University, Alexandria, Egypt
| | - Lenwood S. Heath
- Department of Computer Science, Virginia Tech, Blacksburg, VA, United States of America
| | - Sarah L. Tulin
- Department of Biology, Canisius College, Buffalo, NY, United States of America
| |
Collapse
|
5
|
Kipryushina YO, Yakovlev KV. Maternal control of early patterning in sea urchin embryos. Differentiation 2020; 113:28-37. [PMID: 32371341 DOI: 10.1016/j.diff.2020.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023]
Abstract
Sea urchin development has been studied extensively for more than a century and considered regulative since the first experimental evidence. Further investigations have repeatedly supported this standpoint by revealing the presence of inductive mechanisms that alter cell fate decisions at early cleavage stages and flexibility of development in response to environmental conditions. Some features indicate that sea urchin development is not completely regulative, but actually includes determinative events. In 16-cell embryos, mesomeres and macromeres represent multipotency, while the cell fate of most vegetal micromeres is restricted. It is known that the mature sea urchin eggs are polarized by the asymmetrical distribution of some maternal mRNAs and proteins. Spatially-distributed maternal factors are necessary for the orientation of the primary animal-vegetal axis, which is established by both maternal and zygotic mechanisms later in development. The secondary dorsal-ventral axis is conditionally specified later in development. Dorsal-ventral polarity is very liable during the early cleavages, though more recent data argue that its direction may be oriented by maternal asymmetry. In this review, we focus on the role of maternal factors in initial embryonic patterning during the first cleavages of sea urchin embryos before activation of the embryonic genome.
Collapse
Affiliation(s)
- Yulia O Kipryushina
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky St. 17, 690041, Vladivostok, Russia
| | - Konstantin V Yakovlev
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky St. 17, 690041, Vladivostok, Russia; Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
6
|
Duan M, Xiong D, Yang M, Xiong Y, Ding G. Parental exposure to heavy fuel oil induces developmental toxicity in offspring of the sea urchin Strongylocentrotus intermedius. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 159:109-119. [PMID: 29730404 DOI: 10.1016/j.ecoenv.2018.04.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
The present study investigated the toxic effects of parental (maternal/paternal) exposure to heavy fuel oil (HFO) on the adult reproductive state, gamete quality and development of the offspring of the sea urchin Strongylocentrotus intermedius. Adult sea urchins were exposed to effluents from HFO-oiled gravel columns for 7 days to simulate an oil-contaminated gravel shore, and then gametes of adult sea urchins were used to produce embryos to determine developmental toxicity. For adult sea urchins, no significant difference in the somatic size and weight was found between the various oil loadings tested, while the gonad weight and gonad index were significantly decreased at higher oil loadings. The spawning ability of adults and fecundity of females significantly decreased. For gametes, no effect was observed on the egg size and fertilization success in any of the groups. However, a significant increase in the percentage of anomalies in the offspring was observed and then quantified by an integrative toxicity index (ITI) at 24 and 48 h post fertilization. The offspring from exposed parents showed higher ITI values with more malformed embryos. The results confirmed that parental exposure to HFO can cause adverse effects on the offspring and consequently affect the recruitment and population maintenance of sea urchins.
Collapse
Affiliation(s)
- Meina Duan
- School of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, Liaoning, China
| | - Deqi Xiong
- School of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, Liaoning, China.
| | - Mengye Yang
- School of Life Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Yijun Xiong
- School of Biology and Chemistry, Grinnell College, 1115 8th Ave, Grinnell, IA 50112, USA
| | - Guanghui Ding
- School of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, Liaoning, China
| |
Collapse
|
7
|
Chassé H, Aubert J, Boulben S, Le Corguillé G, Corre E, Cormier P, Morales J. Translatome analysis at the egg-to-embryo transition in sea urchin. Nucleic Acids Res 2018; 46:4607-4621. [PMID: 29660001 PMCID: PMC5961321 DOI: 10.1093/nar/gky258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 03/09/2018] [Accepted: 03/28/2018] [Indexed: 11/12/2022] Open
Abstract
Early embryogenesis relies on the translational regulation of maternally stored mRNAs. In sea urchin, fertilization triggers a dramatic rise in translation activity, necessary for the onset of cell division. Here, the full spectrum of the mRNAs translated upon fertilization was investigated by polysome profiling and sequencing. The translatome of the early sea urchin embryo gave a complete picture of the polysomal recruitment dynamics following fertilization. Our results indicate that only a subset of maternal mRNAs were selectively recruited onto polysomes, with over-represented functional categories in the translated set. The increase in translation upon fertilization depends on the formation of translation initiation complexes following mTOR pathway activation. Surprisingly, mTOR pathway inhibition differentially affected polysomal recruitment of the newly translated mRNAs, which thus appeared either mTOR-dependent or mTOR-independent. Therefore, our data argue for an alternative to the classical cap-dependent model of translation in early development. The identification of the mRNAs translated following fertilization helped assign translational activation events to specific mRNAs. This translatome is the first step to a comprehensive analysis of the molecular mechanisms governing translation upon fertilization and the translational regulatory networks that control the egg-to-embryo transition as well as the early steps of embryogenesis.
Collapse
Affiliation(s)
- Héloïse Chassé
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
- Sorbonne Université, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
| | - Julie Aubert
- UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France
| | - Sandrine Boulben
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
- Sorbonne Université, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
| | - Gildas Le Corguillé
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique, 29680 Roscoff, France
| | - Erwan Corre
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique, 29680 Roscoff, France
| | - Patrick Cormier
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
- Sorbonne Université, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
| | - Julia Morales
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
- Sorbonne Université, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
| |
Collapse
|