1
|
Kenny-Ganzert IW, Sherwood DR. The C. elegans anchor cell: A model to elucidate mechanisms underlying invasion through basement membrane. Semin Cell Dev Biol 2024; 154:23-34. [PMID: 37422376 PMCID: PMC10592375 DOI: 10.1016/j.semcdb.2023.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Cell invasion through basement membrane barriers is crucial during many developmental processes and in immune surveillance. Dysregulation of invasion also drives the pathology of numerous human diseases, such as metastasis and inflammatory disorders. Cell invasion involves dynamic interactions between the invading cell, basement membrane, and neighboring tissues. Owing to this complexity, cell invasion is challenging to study in vivo, which has hampered the understanding of mechanisms controlling invasion. Caenorhabditis elegans anchor cell invasion is a powerful in vivo model where subcellular imaging of cell-basement membrane interactions can be combined with genetic, genomic, and single-cell molecular perturbation studies. In this review, we outline insights gained by studying anchor cell invasion, which span transcriptional networks, translational regulation, secretory apparatus expansion, dynamic and adaptable protrusions that breach and clear basement membrane, and a complex, localized metabolic network that fuels invasion. Together, investigation of anchor cell invasion is building a comprehensive understanding of the mechanisms that underlie invasion, which we expect will ultimately facilitate better therapeutic strategies to control cell invasive activity in human disease.
Collapse
Affiliation(s)
| | - David R Sherwood
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
2
|
Spiri S, Berger S, Mereu L, DeMello A, Hajnal A. Reciprocal EGFR signaling in the anchor cell ensures precise inter-organ connection during Caenorhabditis elegans vulval morphogenesis. Development 2022; 149:dev199900. [PMID: 34982813 PMCID: PMC8783044 DOI: 10.1242/dev.199900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/30/2021] [Indexed: 01/01/2023]
Abstract
During Caenorhabditis elegans vulval development, the uterine anchor cell (AC) first secretes an epidermal growth factor (EGF) to specify the vulval cell fates and then invades the underlying vulval epithelium. By doing so, the AC establishes direct contact with the invaginating primary vulF cells and attaches the developing uterus to the vulva. The signals involved and the exact sequence of events joining these two organs are not fully understood. Using a conditional let-23 EGF receptor (EGFR) allele along with novel microfluidic short- and long-term imaging methods, we discovered a specific function of the EGFR in the AC during vulval lumen morphogenesis. Tissue-specific inactivation of let-23 in the AC resulted in imprecise alignment of the AC with the primary vulval cells, delayed AC invasion and disorganized adherens junctions at the contact site forming between the AC and the dorsal vulF toroid. We propose that EGFR signaling, activated by a reciprocal EGF cue from the primary vulval cells, positions the AC at the vulval midline, guides it during invasion and assembles a cytoskeletal scaffold organizing the adherens junctions that connect the developing uterus to the dorsal vulF toroid. Thus, EGFR signaling in the AC ensures the precise alignment of the two developing organs.
Collapse
Affiliation(s)
- Silvan Spiri
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Molecular Life Science PhD Program, University and ETH Zürich, CH-8057 Zürich, Switzerland
| | - Simon Berger
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Institute for Chemical- and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Louisa Mereu
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Molecular Life Science PhD Program, University and ETH Zürich, CH-8057 Zürich, Switzerland
| | - Andrew DeMello
- Institute for Chemical- and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Alex Hajnal
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
3
|
Dubois C, Gupta S, Mugler A, Félix MA. Temporally regulated cell migration is sensitive to variation in body size. Development 2021; 148:dev196949. [PMID: 33593818 PMCID: PMC10683003 DOI: 10.1242/dev.196949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/14/2021] [Indexed: 12/15/2022]
Abstract
Few studies have measured the robustness to perturbations of the final position of a long-range migrating cell. In the nematode Caenorhabditis elegans, the QR neuroblast migrates anteriorly, while undergoing three division rounds. We study the final position of two of its great-granddaughters, the end of migration of which was previously shown to depend on a timing mechanism. We find that the variance in their final position is similar to that of other long-range migrating neurons. As expected from the timing mechanism, the position of QR descendants depends on body size, which we varied by changing maternal age or using body size mutants. Using a mathematical model, we show that body size variation is partially compensated for. Applying environmental perturbations, we find that the variance in final position increased following starvation at hatching. The mean position is displaced upon a temperature shift. Finally, highly significant variation was found among C. elegans wild isolates. Overall, this study reveals that the final position of these neurons is quite robust to stochastic variation, shows some sensitivity to body size and to external perturbations, and varies in the species.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Clément Dubois
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, 75005 Paris, France
| | - Shivam Gupta
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Andrew Mugler
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Marie-Anne Félix
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, 75005 Paris, France
| |
Collapse
|
4
|
Mereu L, Morf MK, Spiri S, Gutierrez P, Escobar-Restrepo JM, Daube M, Walser M, Hajnal A. Polarized epidermal growth factor secretion ensures robust vulval cell fate specification in Caenorhabditis elegans. Development 2020; 147:dev175760. [PMID: 32439759 PMCID: PMC7286359 DOI: 10.1242/dev.175760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/04/2020] [Indexed: 11/20/2022]
Abstract
The anchor cell (AC) in C. elegans secretes an epidermal growth factor (EGF) homolog that induces adjacent vulval precursor cells (VPCs) to differentiate. The EGF receptor in the nearest VPC sequesters the limiting EGF amounts released by the AC to prevent EGF from spreading to distal VPCs. Here, we show that not only EGFR localization in the VPCs but also EGF polarity in the AC is necessary for robust fate specification. The AC secretes EGF in a directional manner towards the nearest VPC. Loss of AC polarity causes signal spreading and, when combined with MAPK pathway hyperactivation, the ectopic induction of distal VPCs. In a screen for genes preventing distal VPC induction, we identified sra-9 and nlp-26 as genes specifically required for polarized EGF secretion. sra-9(lf) and nlp-26(lf) mutants exhibit errors in vulval fate specification, reduced precision in VPC to AC alignment and increased variability in MAPK activation. sra-9 encodes a seven-pass transmembrane receptor acting in the AC and nlp-26 a neuropeptide-like protein expressed in the VPCs. SRA-9 and NLP-26 may transduce a feedback signal to channel EGF secretion towards the nearest VPC.
Collapse
Affiliation(s)
- Louisa Mereu
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Molecular Life Science PhD Program, University and ETH Zürich, CH-8057 Zürich, Switzerland
| | - Matthias K Morf
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Molecular Life Science PhD Program, University and ETH Zürich, CH-8057 Zürich, Switzerland
| | - Silvan Spiri
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Molecular Life Science PhD Program, University and ETH Zürich, CH-8057 Zürich, Switzerland
| | - Peter Gutierrez
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Molecular Life Science PhD Program, University and ETH Zürich, CH-8057 Zürich, Switzerland
| | - Juan M Escobar-Restrepo
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Michael Daube
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Michael Walser
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Alex Hajnal
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
5
|
Haag A, Walser M, Henggeler A, Hajnal A. The CHORD protein CHP-1 regulates EGF receptor trafficking and signaling in C. elegans and in human cells. eLife 2020; 9:e50986. [PMID: 32053105 PMCID: PMC7062474 DOI: 10.7554/elife.50986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/12/2020] [Indexed: 11/13/2022] Open
Abstract
The intracellular trafficking of growth factor receptors determines the activity of their downstream signaling pathways. Here, we show that the putative HSP-90 co-chaperone CHP-1 acts as a regulator of EGFR trafficking in C. elegans. Loss of chp-1 causes the retention of the EGFR in the ER and decreases MAPK signaling. CHP-1 is specifically required for EGFR trafficking, as the localization of other transmembrane receptors is unaltered in chp-1(lf) mutants, and the inhibition of hsp-90 or other co-chaperones does not affect EGFR localization. The role of the CHP-1 homolog CHORDC1 during EGFR trafficking is conserved in human cells. Analogous to C. elegans, the response of CHORDC1-deficient A431 cells to EGF stimulation is attenuated, the EGFR accumulates in the ER and ERK2 activity decreases. Although CHP-1 has been proposed to act as a co-chaperone for HSP90, our data indicate that CHP-1 plays an HSP90-independent function in controlling EGFR trafficking through the ER.
Collapse
Affiliation(s)
- Andrea Haag
- Institute of Molecular Life Sciences, University of ZürichWinterthurerstrasseSwitzerland
- Molecular Life Science Zürich PhD ProgramZürichSwitzerland
| | - Michael Walser
- Institute of Molecular Life Sciences, University of ZürichWinterthurerstrasseSwitzerland
| | - Adrian Henggeler
- Institute of Molecular Life Sciences, University of ZürichWinterthurerstrasseSwitzerland
| | - Alex Hajnal
- Institute of Molecular Life Sciences, University of ZürichWinterthurerstrasseSwitzerland
| |
Collapse
|
6
|
Necessity and Contingency in Developmental Genetic Screens: EGF, Wnt, and Semaphorin Pathways in Vulval Induction of the Nematode Oscheius tipulae. Genetics 2019; 211:1315-1330. [PMID: 30700527 PMCID: PMC6456316 DOI: 10.1534/genetics.119.301970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/27/2019] [Indexed: 02/06/2023] Open
Abstract
Genetic screens in the nematode Caenorhabditis elegans have identified EGF and Notch pathways as key for vulval precursor cell fate patterning. Here, Vargas-Velazquez, Besnard, and Félix report on the molecular identification of... Genetic screens in the nematode Caenorhabditis elegans identified the EGF/Ras and Notch pathways as central for vulval precursor cell fate patterning. Schematically, the anchor cell secretes EGF, inducing the P6.p cell to a primary (1°) vulval fate; P6.p in turn induces its neighbors to a secondary (2°) fate through Delta-Notch signaling and represses Ras signaling. In the nematode Oscheius tipulae, the anchor cell successively induces 2° then 1° vulval fates. Here, we report on the molecular identification of mutations affecting vulval induction in O. tipulae. A single Induction Vulvaless mutation was found, which we identify as a cis-regulatory deletion in a tissue-specific enhancer of the O. tipulae lin-3 homolog, confirmed by clustered regularly interspaced short palindromic repeats/Cas9 mutation. In contrast to this predictable Vulvaless mutation, mutations resulting in an excess of 2° fates unexpectedly correspond to the plexin/semaphorin pathway. Hyperinduction of P4.p and P8.p in these mutants likely results from mispositioning of these cells due to a lack of contact inhibition. The third signaling pathway found by forward genetics in O. tipulae is the Wnt pathway; a decrease in Wnt pathway activity results in loss of vulval precursor competence and induction, and 1° fate miscentering on P5.p. Our results suggest that the EGF and Wnt pathways have qualitatively similar activities in vulval induction in C. elegans and O. tipulae, albeit with quantitative differences in the effects of mutation. Thus, the derived induction process in C. elegans with an early induction of the 1° fate appeared during evolution, after the recruitment of the EGF pathway for vulval induction.
Collapse
|
7
|
Shin H, Reiner DJ. The Signaling Network Controlling C. elegans Vulval Cell Fate Patterning. J Dev Biol 2018; 6:E30. [PMID: 30544993 PMCID: PMC6316802 DOI: 10.3390/jdb6040030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022] Open
Abstract
EGF, emitted by the Anchor Cell, patterns six equipotent C. elegans vulval precursor cells to assume a precise array of three cell fates with high fidelity. A group of core and modulatory signaling cascades forms a signaling network that demonstrates plasticity during the transition from naïve to terminally differentiated cells. In this review, we summarize the history of classical developmental manipulations and molecular genetics experiments that led to our understanding of the signals governing this process, and discuss principles of signal transduction and developmental biology that have emerged from these studies.
Collapse
Affiliation(s)
- Hanna Shin
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
| | - David J Reiner
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
- College of Medicine, Texas A & M University, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Physiological Starvation Promotes Caenorhabditis elegans Vulval Induction. G3-GENES GENOMES GENETICS 2018; 8:3069-3081. [PMID: 30037804 PMCID: PMC6118308 DOI: 10.1534/g3.118.200449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Studying how molecular pathways respond to ecologically relevant environmental variation is fundamental to understand organismal development and its evolution. Here we characterize how starvation modulates Caenorhabditis elegans vulval cell fate patterning – an environmentally sensitive process, with a nevertheless robust output. Past research has shown many vulval mutants affecting EGF-Ras-MAPK, Delta-Notch and Wnt pathways to be suppressed by environmental factors, such as starvation. Here we aimed to resolve previous, seemingly contradictory, observations on how starvation modulates levels of vulval induction. Using the strong starvation suppression of the Vulvaless phenotype of lin-3/egf reduction-of-function mutations as an experimental paradigm, we first tested for a possible involvement of the sensory system in relaying starvation signals to affect vulval induction: mutation of various sensory inputs, DAF-2/Insulin or DAF-7/TGF-β signaling did not abolish lin-3(rf) starvation suppression. In contrast, nutrient deprivation induced by mutation of the intestinal peptide transporter gene pept-1 or the TOR pathway component rsks-1 (the ortholog of mammalian P70S6K) very strongly suppressed lin-3(rf) mutant phenotypes. Therefore, physiologically starved animals induced by these mutations tightly recapitulated the effects of external starvation on vulval induction. While both starvation and pept-1 RNAi were sufficient to increase Ras and Notch pathway activities in vulval cells, the highly penetrant Vulvaless phenotype of a tissue-specific null allele of lin-3 was not suppressed by either condition. This and additional results indicate that partial lin-3 expression is required for starvation to affect vulval induction. These results suggest a cross-talk between nutrient deprivation, TOR-S6K and EGF-Ras-MAPK signaling during C. elegans vulval induction.
Collapse
|
9
|
Abstract
The extracellular signal-regulated kinase (ERK) pathway leads to activation of the effector molecule ERK, which controls downstream responses by phosphorylating a variety of substrates, including transcription factors. Crucial insights into the regulation and function of this pathway came from studying embryos in which specific phenotypes arise from aberrant ERK activation. Despite decades of research, several important questions remain to be addressed for deeper understanding of this highly conserved signaling system and its function. Answering these questions will require quantifying the first steps of pathway activation, elucidating the mechanisms of transcriptional interpretation and measuring the quantitative limits of ERK signaling within which the system must operate to avoid developmental defects.
Collapse
Affiliation(s)
- Aleena L Patel
- Lewis Sigler Institute for Integrative Genomics, Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Stanislav Y Shvartsman
- Lewis Sigler Institute for Integrative Genomics, Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
10
|
Sjöqvist M, Andersson ER. Do as I say, Not(ch) as I do: Lateral control of cell fate. Dev Biol 2017; 447:58-70. [PMID: 28969930 DOI: 10.1016/j.ydbio.2017.09.032] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/15/2017] [Accepted: 09/26/2017] [Indexed: 01/19/2023]
Abstract
Breaking symmetry in populations of uniform cells, to induce adoption of an alternative cell fate, is an essential developmental mechanism. Similarly, domain and boundary establishment are crucial steps to forming organs during development. Notch signaling is a pathway ideally suited to mediating precise patterning cues, as both receptors and ligands are membrane-bound and can thus act as a precise switch to toggle cell fates on or off. Fine-tuning of signaling by positive or negative feedback mechanisms dictate whether signaling results in lateral induction or lateral inhibition, respectively, allowing Notch to either induce entire regions of cell specification, or dictate binary fate choices. Furthermore, pathway activity is modulated by Fringe modification of receptors or ligands, co-expression of receptors with ligands, mode of ligand presentation, and cell surface area in contact. In this review, we describe how Notch signaling is fine-tuned to mediate lateral induction or lateral inhibition cues, and discuss examples from C.elegans, D. melanogaster and M. musculus. Identifying the cellular machinery dictating the choice between lateral induction and lateral inhibition highlights the versatility of the Notch signaling pathway in development.
Collapse
Affiliation(s)
- Marika Sjöqvist
- Department of Biosciences and Nutrition, Karolinska Institutet, Sweden
| | - Emma R Andersson
- Department of Biosciences and Nutrition, Karolinska Institutet, Sweden.
| |
Collapse
|
11
|
Besnard F, Koutsovoulos G, Dieudonné S, Blaxter M, Félix MA. Toward Universal Forward Genetics: Using a Draft Genome Sequence of the Nematode Oscheius tipulae To Identify Mutations Affecting Vulva Development. Genetics 2017; 206:1747-1761. [PMID: 28630114 PMCID: PMC5560785 DOI: 10.1534/genetics.117.203521] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/15/2017] [Indexed: 12/30/2022] Open
Abstract
Mapping-by-sequencing has become a standard method to map and identify phenotype-causing mutations in model species. Here, we show that a fragmented draft assembly is sufficient to perform mapping-by-sequencing in nonmodel species. We generated a draft assembly and annotation of the genome of the free-living nematode Oscheius tipulae, a distant relative of the model Caenorhabditis elegans We used this draft to identify the likely causative mutations at the O. tipulae cov-3 locus, which affect vulval development. The cov-3 locus encodes the O. tipulae ortholog of C. elegans mig-13, and we further show that Cel-mig-13 mutants also have an unsuspected vulval-development phenotype. In a virtuous circle, we were able to use the linkage information collected during mutant mapping to improve the genome assembly. These results showcase the promise of genome-enabled forward genetics in nonmodel species.
Collapse
Affiliation(s)
- Fabrice Besnard
- École Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Biologie de l'École Normale Supérieure, Paris Sciences et Lettres Research University, 75005, France
| | | | - Sana Dieudonné
- École Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Biologie de l'École Normale Supérieure, Paris Sciences et Lettres Research University, 75005, France
| | - Mark Blaxter
- Institute of Evolutionary Biology, University of Edinburgh, EH8 9YL, United Kingdom
| | - Marie-Anne Félix
- École Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Biologie de l'École Normale Supérieure, Paris Sciences et Lettres Research University, 75005, France
| |
Collapse
|
12
|
Huelsz-Prince G, van Zon JS. Canalization of C. elegans Vulva Induction against Anatomical Variability. Cell Syst 2017; 4:219-230.e6. [PMID: 28215526 PMCID: PMC5330807 DOI: 10.1016/j.cels.2017.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 09/29/2016] [Accepted: 01/11/2017] [Indexed: 11/24/2022]
Abstract
It is a fundamental open question as to how embryos develop into complex adult organisms with astounding reproducibility, particularly because cells are inherently variable on the molecular level. During C. elegans vulva induction, the anchor cell induces cell fate in the vulva precursor cells in a distance-dependent manner. Surprisingly, we found that initial anchor cell position was highly variable and caused variability in cell fate induction. However, we observed that vulva induction was "canalized," i.e., the variability in anchor cell position and cell fate was progressively reduced, resulting in an invariant spatial pattern of cell fates at the end of induction. To understand the mechanism of canalization, we quantified induction dynamics as a function of anchor cell position during the canalization process. Our experiments, combined with mathematical modeling, showed that canalization required a specific combination of long-range induction, lateral inhibition, and cell migration that is also found in other developmental systems.
Collapse
|