1
|
Cova G, Glaser J, Schöpflin R, Prada-Medina CA, Ali S, Franke M, Falcone R, Federer M, Ponzi E, Ficarella R, Novara F, Wittler L, Timmermann B, Gentile M, Zuffardi O, Spielmann M, Mundlos S. Combinatorial effects on gene expression at the Lbx1/Fgf8 locus resolve split-hand/foot malformation type 3. Nat Commun 2023; 14:1475. [PMID: 36928426 PMCID: PMC10020157 DOI: 10.1038/s41467-023-37057-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
Split-Hand/Foot Malformation type 3 (SHFM3) is a congenital limb malformation associated with tandem duplications at the LBX1/FGF8 locus. Yet, the disease patho-mechanism remains unsolved. Here we investigate the functional consequences of SHFM3-associated rearrangements on chromatin conformation and gene expression in vivo in transgenic mice. We show that the Lbx1/Fgf8 locus consists of two separate, but interacting, regulatory domains. Re-engineering of a SHFM3-associated duplication and a newly reported inversion in mice results in restructuring of the chromatin architecture. This leads to ectopic activation of the Lbx1 and Btrc genes in the apical ectodermal ridge (AER) in an Fgf8-like pattern induced by AER-specific enhancers of Fgf8. We provide evidence that the SHFM3 phenotype is the result of a combinatorial effect on gene misexpression in the developing limb. Our results reveal insights into the molecular mechanism underlying SHFM3 and provide conceptual framework for how genomic rearrangements can cause gene misexpression and disease.
Collapse
Affiliation(s)
- Giulia Cova
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, 14195, Germany.
- Institute of Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, 10117, Germany.
- Department of Pathology, New York University School of Medicine, Langone Health Medical Center, New York, NY, 10016, USA.
| | - Juliane Glaser
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, 14195, Germany
| | - Robert Schöpflin
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, 14195, Germany
- Institute of Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, 10117, Germany
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| | - Cesar Augusto Prada-Medina
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, 14195, Germany
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK
| | - Salaheddine Ali
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, 14195, Germany
- Institute of Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, 10117, Germany
| | - Martin Franke
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, 14195, Germany
- Institute of Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, 10117, Germany
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, 41013, Spain
| | - Rita Falcone
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, 14195, Germany
| | - Miriam Federer
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, 14195, Germany
- Universität Innsbruck, Innsbruck, 6020, Austria
| | - Emanuela Ponzi
- Medical Genetics Unit, Department of Reproductive Medicine, ASL Bari, Bari, 70131, Italy
| | - Romina Ficarella
- Medical Genetics Unit, Department of Reproductive Medicine, ASL Bari, Bari, 70131, Italy
| | | | - Lars Wittler
- Department of Developmental Genetics, Transgenic Unit, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| | - Bernd Timmermann
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| | - Mattia Gentile
- Medical Genetics Unit, Department of Reproductive Medicine, ASL Bari, Bari, 70131, Italy
| | - Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, 27100, Italy
| | - Malte Spielmann
- Institute of Human Genetics, Universitätsklinikum Schleswig Holstein Campus Kiel and Christian-Albrechts-Universität, Kiel, 24118, Germany
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany
- Human Molecular Genomics Group, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, 14195, Germany.
- Institute of Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, 10117, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, 13353, Germany.
| |
Collapse
|
3
|
Montero JA, Lorda-Diez CI, Sanchez-Fernandez C, Hurle JM. Cell death in the developing vertebrate limb: A locally regulated mechanism contributing to musculoskeletal tissue morphogenesis and differentiation. Dev Dyn 2020; 250:1236-1247. [PMID: 32798262 PMCID: PMC8451844 DOI: 10.1002/dvdy.237] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
Our aim is to critically review current knowledge of the function and regulation of cell death in the developing limb. We provide a detailed, but short, overview of the areas of cell death observed in the developing limb, establishing their function in morphogenesis and structural development of limb tissues. We will examine the functions of this process in the formation and growth of the limb primordia, formation of cartilaginous skeleton, formation of synovial joints, and establishment of muscle bellies, tendons, and entheses. We will analyze the plasticity of the cell death program by focusing on the developmental potential of progenitors prior to death. Considering the prolonged plasticity of progenitors to escape from the death process, we will discuss a new biological perspective that explains cell death: this process, rather than secondary to a specific genetic program, is a consequence of the tissue building strategy employed by the embryo based on the formation of scaffolds that disintegrate once their associated neighboring structures differentiate. We examine the functions of cell death in the formation and growth of the limb primordia. We analyze the plasticity of the cell death program by focusing on the developmental potential of progenitors prior to death. Considering the prolonged plasticity of progenitors to escape from the death process and the absence of defined genetic program in their regulation we propose that cell death is a consequence of the tissue building strategy employed by the embryo regulated by epigenetic factors .
Collapse
Affiliation(s)
- Juan A Montero
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Carlos I Lorda-Diez
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| | | | - Juan M Hurle
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
4
|
Rutledge EA, Lindström NO, Michos O, McMahon AP. Genetic manipulation of ureteric bud tip progenitors in the mammalian kidney through an Adamts18 enhancer driven tet-on inducible system. Dev Biol 2020; 458:164-176. [PMID: 31734175 PMCID: PMC6995766 DOI: 10.1016/j.ydbio.2019.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 11/22/2022]
Abstract
The ureteric epithelial progenitor (UEP) population within the embryonic kidney generates the arborized epithelial network of the kidney's collecting system and plays a critical role in the expansion and induction of the surrounding nephron progenitor pool. Adamts18 shows UEP- restricted expression in the kidney and progenitor tip-restricted expression in several other organs undergoing branching epithelial growth. Adamts18 is encoded by 23 exons. Genetic removal of genomic sequence spanning exons 1 to 3 led to a specific loss of Adamts18 expression in UEPs, suggesting this region may encode a UEP-specific enhancer. Intron 2 (3 kb) was shown to have enhancer activity driving expression of the doxycycline inducible tet-on transcriptional regulator (rtTA) in an Adamts18en-rtTA transgenic mouse strain. Crossing Adamts18en-rtTA mice to a doxycycline dependent GFP reporter mouse enabled the live imaging of embryonic kidney explants. This facilitated the analysis of ureteric epithelial branching events at the cellular level. Ablation of UEPs at the initiation of ureteric bud outgrowth through the doxycycline-mediated induction of Diphtheria Toxin A (DTA) generated a range of phenotypes from complete kidneys agenesis, to duplex kidneys with double ureters. The latter outcome points to the potential of regulative processes to restore UEPs. In contrast, overexpression of YAP prior to ureteric bud outgrowth led to a complete failure of kidney development. Elevating YAP levels at later stages retarded branching growth. A similar phenotype was observed with the overexpression of MYC within the branch-tip localized UEP population. These experiments showcase the utility of the Adamts18en-rtTA transgenic model to the investigation of cellular and molecular events specific to branch tip progenitors within the mammalian kidney complementing existing CRE-dependent genetic tools. Further, the illustrative examples point to areas where new insight may be gained into the regulation of UEP programs.
Collapse
Affiliation(s)
- Elisabeth A Rutledge
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, CA, 90089, USA
| | - Nils O Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, CA, 90089, USA
| | - Odysse Michos
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Basel, 4058, Switzerland
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, CA, 90089, USA.
| |
Collapse
|
5
|
Bordoni B, Morabito B. Reflections on the Development of Fascial Tissue: Starting from Embryology. ADVANCES IN MEDICAL EDUCATION AND PRACTICE 2020; 11:37-39. [PMID: 32021541 PMCID: PMC6970272 DOI: 10.2147/amep.s232947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/23/2019] [Indexed: 05/05/2023]
Abstract
A great many articles discuss the histological aspects of fascial tissue in detail, but at the same time, there are many contradictions within the literature. In addition, there is a paucity of scientific data that allow straightforward classification of what tissue the fascia truly is. More precise classification of fascial tissue is essential in improving clinical care and effectively framing patient needs. Embryology is an indispensable starting point for understanding the many functions of the fascial tissue. This scientific discipline allows us to observe the relationships and adaptability of fascia both at local and systemic levels. This article reflects on modern scientific knowledge concerning the classification of fascia from an embryological standpoint with the aim of improving our understanding of connective tissue.
Collapse
Affiliation(s)
- Bruno Bordoni
- Foundation Don Carlo Gnocchi IRCCS, Department of Cardiology, Institute of Hospitalization and Care with Scientific Address, S Maria Nascente, Milan20100, Italy
- Department of Osteopathy, Asomi, Torino, Italy
| | - Bruno Morabito
- Foundation Polyclinic University A. Gemelli University Cattolica Del Sacro Cuore, Rome, Italy
| |
Collapse
|