1
|
Xia CH, Lin W, Li R, Xing X, Shang GJ, Zhang H, Gong X. Altered Cell Clusters and Upregulated Aqp1 in Connexin 50 Knockout Lens Epithelium. Invest Ophthalmol Vis Sci 2024; 65:27. [PMID: 39287589 PMCID: PMC11412383 DOI: 10.1167/iovs.65.11.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Purpose To characterize the heterogeneity and cell clusters of postnatal lens epithelial cells (LECs) and to investigate the downstream targets of connexin 50 (Cx50) in the regulation of lens homeostasis and lens growth. To determine differentially expressed genes (DEGs) in the connexin 50 knockout (Cx50KO) lens epithelial cells that shed light on novel mechanism underlying the cataract and small size of the Cx50KO lenses. Methods Single-cell RNA sequencing (scRNA-seq) of lens epithelial cells isolated from one-month-old Cx50KO and wild-type (WT) mice were performed. Differentially expressed genes were identified, and selected DEGs were further studied by quantitative real-time PCR (RT-qPCR) analysis and Western blot analysis. Results The expression profiles of several thousand genes were identified by scRNA-seq data analysis. In comparison to the WT control, many DEGs were identified in the Cx50KO lens epithelial cells, including growth regulating transcriptional factors and genes encoding water channels. Significantly upregulated aquaporin 1 (Aqp1) gene expression was confirmed by RT-qPCR, and upregulated AQP1 protein expression was confirmed by Western blot analysis and immunostaining both in vivo and in vitro. Conclusions Lens epithelial cells exhibit an intrinsic heterogeneity of different cell clusters in regulating lens homeostasis and lens growth. Upregulated Aqp1 in Cx50KO lens epithelial cells suggests that both connexin 50 and AQP1 likely play important roles in regulating water homeostasis in lens epithelial cells.
Collapse
Affiliation(s)
- Chun-Hong Xia
- Herbert Wertheim School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, California, United States
| | - William Lin
- Herbert Wertheim School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, California, United States
| | - Rachel Li
- Herbert Wertheim School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, California, United States
| | - Xinfang Xing
- Herbert Wertheim School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, California, United States
| | - Guangdu Jack Shang
- Herbert Wertheim School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, California, United States
| | - Haiwei Zhang
- Herbert Wertheim School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, California, United States
| | - Xiaohua Gong
- Herbert Wertheim School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, California, United States
| |
Collapse
|
2
|
Maddala R, Allen A, Skiba NP, Rao PV. Ankyrin-B is required for the establishment and maintenance of lens cytoarchitecture, mechanics, and clarity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598702. [PMID: 38952798 PMCID: PMC11216410 DOI: 10.1101/2024.06.12.598702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
This study illustrates a vital role for ankyrin-B in lens architecture, growth and function through its involvement in membrane protein and spectrin-actin cytoskeletal organization and stability The transparent ocular lens is essential for vision by focusing light onto the retina. Despite recognizing the importance of its unique cellular architecture and mechanical properties, the molecular mechanisms governing these attributes remain elusive. This study aims to elucidate the role of ankyrin-B (AnkB), a membrane scaffolding protein, in lens cytoarchitecture, growth and function using a conditional knockout (cKO) mouse model. AnkB cKO mouse has no defects in lens morphogenesis, but exhibited changes that supported a global role for AnkB in maintenance of lens clarity, size, cytoarchitecture, and stiffness. Notably, absence of AnkB led to nuclear cataract formation, evident from P16. AnkB cKO lens fibers exhibit progressive disruption in membrane organization of the spectrin-actin cytoskeleton, channel proteins, cell-cell adhesion, shape change, loss and degradation of several membrane proteins (e.g., NrCAM. N-cadherin and aquaporin-0) along with a disorganized plasma membrane and impaired ball-and-socket membrane interdigitations. Furthermore, absence of AnkB led to decreased lens stiffness. Collectively, these results illustrate the essential role for AnkB in lens architecture, growth and function through its involvement in membrane protein and cytoskeletal organization.
Collapse
|
3
|
Bellamy KKL, Lingaas F. Cataracts in Havanese: genome wide association study reveals two loci associated with posterior polar cataract. Canine Med Genet 2023; 10:5. [PMID: 37118843 PMCID: PMC10142750 DOI: 10.1186/s40575-023-00127-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/11/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Cataract is considered an important health issue in Havanese, and studies indicate a breed predisposition. Possible consequences of cataracts include lens induced uveitis, reduced eyesight, and blindness in severe cases. Reducing the prevalence of cataracts could therefore improve health and welfare significantly. The most frequently diagnosed forms of cataract in Havanese are cortical- and anterior suture line cataract, but cases of posterior polar cataract are also regularly reported. Out of the three, posterior polar- and cortical cataracts are considered the most clinically relevant. RESULTS We performed a genome wide association study that included 57 controls and 27 + 23 + 7 cases of cortical-, anterior suture line- and posterior polar cataract, respectively. An association analysis using a mixed linear model, revealed two SNPs on CFA20 (BICF2S23632983, p = 7.2e-09) and CFA21 (BICF2G630640490, p = 3.3e-09), that were significantly associated with posterior polar cataract, both of which are linked to relevant candidate genes. The results suggest that the two variants are linked to alleles with large effects on posterior polar cataract formation, possibly in a dominant fashion, and identifies regions that should be subject to further sequencing. Promising regions on CFA4 and CF30 were also identified in the association analysis of cortical cataract. The top SNPs on each chromosome, chr4_12164500 (p = 4.3e-06) and chr30_28836339 (p = 5.6e-06), are located within, or in immediate proximity to, potential cataract candidate genes. The study shows that age at examination is strongly associated with sensitivity of cataract screening. Havanese in Norway are on average 3.4 years old when eye examinations are performed: an age where most dogs that are genetically at risk have not yet developed clinically observable changes. Increasing the average age of breeding animals could increase accuracy of selection, leading to improved health. CONCLUSIONS The study identified two loci, on CFA20 and CFA21, that were significantly associated with posterior polar cataract in Havanese. SNPs that showed putative association with cortical cataracts, were observed on CFA4 and CFA30. All the top SNPs are located in close proximity to cataract candidate genes. The study also show that sensitivity of cataract screening is highly dependent on age at examination.
Collapse
Affiliation(s)
- Kim K L Bellamy
- The Norwegian Kennel Club, Oslo, Norway.
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| | - Frode Lingaas
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
4
|
Karnam S, Maddala R, Stiber JA, Rao PV. Drebrin, an actin-binding protein, is required for lens morphogenesis and growth. Dev Dyn 2021; 250:1600-1617. [PMID: 33896079 PMCID: PMC8542647 DOI: 10.1002/dvdy.353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Lens morphogenesis, architecture, and clarity are known to be critically dependent on actin cytoskeleton organization and cell adhesive interactions. There is limited knowledge, however regarding the identity and role of key proteins regulating actin cytoskeletal organization in the lens. This study investigated the role of drebrin, a developmentally regulated actin-binding protein, in mouse lens development by generating and characterizing a conditional knockout (cKO) mouse model using the Cre-LoxP recombination approach. RESULTS Drebrin E, a splice variant of DBN1 is a predominant isoform expressed in the mouse lens and exhibits a maturation-dependent downregulation. Drebrin co-distributes with actin in both epithelium and fibers. Conditional deficiency (both haploinsufficiency and complete absence) of drebrin results in disrupted lens morphogenesis leading to cataract and microphthalmia. The drebrin cKO lens reveals a dramatic decrease in epithelial height and width, E-cadherin, and proliferation, and increased apoptotic cell death and expression of α-smooth muscle actin, together with severely impaired fiber cell organization, polarity, and cell-cell adhesion. CONCLUSIONS This study demonstrates the requirement of drebrin in lens development and growth, with drebrin deficiency leading to impaired lens morphogenesis and microphthalmia.
Collapse
Affiliation(s)
- Shruthi Karnam
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC. USA
| | - Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC. USA
| | - Jonathan A Stiber
- Department of Medicine, Duke University School of Medicine, Durham, NC. USA
| | - Ponugoti V Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC. USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC. USA
| |
Collapse
|
5
|
Liu J, Liao X, Zhou J, Li B, Xu L, Liu S, Li Y, Yuan D, Hu C, Jiang W, Yan J. A Rare Variant of ANK3 Is Associated With Intracranial Aneurysm. Front Neurol 2021; 12:672570. [PMID: 34248821 PMCID: PMC8267376 DOI: 10.3389/fneur.2021.672570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/01/2021] [Indexed: 12/04/2022] Open
Abstract
Intracranial aneurysm (IA) is a cerebrovascular disorder in which abnormal dilation of a blood vessel results from weakening of the blood vessel wall. The aneurysm may rupture, leading to subarachnoid hemorrhage with severe outcomes. This study was conducted to identify the genetic factors involved in the etiology of IA. Whole-exome sequencing was performed in three IA-aggregate families to identify candidate variants. Further association studies of candidate variants were performed among sporadic cases and controls. Bioinformatic analysis was used to predict the functions of candidate genes and variants. Twenty variants were identified after whole-exome sequencing, among which eight were selected for replicative association studies. ANK3 c.4403G>A (p.R1468H) was significantly associated with IA (odds ratio 4.77; 95% confidence interval 1.94–11.67; p-value = 0.00019). Amino acid R1468 in ANK3 was predicted to be located in the spectrin-binding domain of ankyrin-G and may regulate the migration of vascular endothelial cells and affect cell–cell junctions. Therefore, the variation p.R1468H may cause weakening of the artery walls, thereby accelerating the formation of IA. Thus, ANK3 is a candidate gene highly related to IA.
Collapse
Affiliation(s)
- Junyu Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Liao
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.,The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jilin Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Bingyang Li
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Lu Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Songlin Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yifeng Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Dun Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Chongyu Hu
- Department of Neurology, Hunan People's Hospital, Changsha, China
| | - Weixi Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Junxia Yan
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.,Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
6
|
Maddala R, Mongan M, Xia Y, Rao PV. Calponin-3 deficiency augments contractile activity, plasticity, fibrogenic response and Yap/Taz transcriptional activation in lens epithelial cells and explants. Sci Rep 2020; 10:1295. [PMID: 31992794 PMCID: PMC6987178 DOI: 10.1038/s41598-020-58189-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 01/09/2020] [Indexed: 01/19/2023] Open
Abstract
The transparent ocular lens plays a crucial role in vision by focusing light on to the retina with loss of lens transparency leading to impairment of vision. While maintenance of epithelial phenotype is recognized to be essential for lens development and function, knowledge of the identity of different molecular mechanisms regulating lens epithelial characteristics remains incomplete. This study reports that CNN-3, the acidic isoform of calponin, an actin binding contractile protein, is expressed preferentially and abundantly relative to the basic and neutral isoforms of calponin in the ocular lens, and distributes predominantly to the epithelium in both mouse and human lenses. Expression and MEKK1-mediated threonine 288 phosphorylation of CNN-3 is induced by extracellular cues including TGF-β2 and lysophosphatidic acid. Importantly, siRNA-induced deficiency of CNN3 in lens epithelial cell cultures and explants results in actin stress fiber reorganization, stimulation of focal adhesion formation, Yap activation, increases in the levels of α-smooth muscle actin, connective tissue growth factor and fibronectin, and decreases in E-cadherin expression. These results reveal that CNN3 plays a crucial role in regulating lens epithelial contractile activity and provide supporting evidence that CNN-3 deficiency is associated with the induction of epithelial plasticity, fibrogenic activity and mechanosensitive Yap/Taz transcriptional activation.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Maureen Mongan
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Ying Xia
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Ponugoti Vasantha Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, 27710, USA. .,Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|