1
|
Wang X, Liu W, Luo X, Zheng Q, Shi B, Liu R, Li C. Mesenchymal β-catenin signaling affects palatogenesis by regulating α-actinin-4 and F-actin. Oral Dis 2023; 29:3493-3502. [PMID: 36251469 DOI: 10.1111/odi.14408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 10/01/2022] [Accepted: 10/14/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Our previous research have found that mesenchymal β-catenin may be involved in palatal shelf (PS) elevation by regulating F-actin. Here, we further investigated the exact mechanism of β-catenin/F-actin in the PS mesenchyme to regulate palatal reorientation. MATERIALS AND METHODS (1) Firstly, Ctnnb1ex3f (β-catenin) mice were conditionally overexpressed in the palatal mesenchyme by crossing with the Sox9-creERT2 mice (induced by Tamoxifen injections); (2) Subsequently, histology and immunohistochemistry were used to characterize the variations of PS morphology and expression of key molecules associated with developmental process; (3) Finally, experiments in vivo and ex vivo were employed to identify the critical mechanisms in β-catenin silenced and overexpressed models. RESULTS We found that the Sox9CreER; Ctnnb1ex3f mice exhibited failed palatal elevation and visible cleft palate, and overexpression of β-catenin disturbed the F-actin responsible for cytoskeletal remodeling in palatal mesenchymal cells. qRT-PCR results showed mRNA levels of α-actinin4, a gene involved in F-actin cross-linking, were associated with knockdown or overexpression of β-catenin in ex vivo, respectively. Experiments in vivo revealed that mesenchymal specific inactivation or overexpression of β-catenin exhibited decreased or increased α-actinin-4 expression. CONCLUSIONS Mesenchymal β-catenin/F-actin plays an essential role in PS reorientation, which mediate α-actinin-4 to regulate F-actin cytoskeleton reorganization.
Collapse
Affiliation(s)
- Xiaoming Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Weilong Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xiao Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Qian Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Renkai Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Chenghao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Chen X, Li N, Hu P, Li L, Li D, Liu H, Zhu L, Xiao J, Liu C. Deficiency of Fam20b-Catalyzed Glycosaminoglycan Chain Synthesis in Neural Crest Leads to Cleft Palate. Int J Mol Sci 2023; 24:ijms24119634. [PMID: 37298583 DOI: 10.3390/ijms24119634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Cleft palate is one of the most common birth defects. Previous studies revealed that multiple factors, including impaired intracellular or intercellular signals, and incoordination of oral organs led to cleft palate, but were little concerned about the contribution of the extracellular matrix (ECM) during palatogenesis. Proteoglycans (PGs) are one of the important macromolecules in the ECM. They exert biological functions through one or more glycosaminoglycan (GAG) chains attached to core proteins. The family with sequence similarity 20 member b (Fam20b) are newly identified kinase-phosphorylating xylose residues that promote the correct assembly of the tetrasaccharide linkage region by creating a premise for GAG chain elongation. In this study, we explored the function of GAG chains in palate development through Wnt1-Cre; Fam20bf/f mice, which exhibited complete cleft palate, malformed tongue, and micrognathia. In contrast, Osr2-Cre; Fam20bf/f mice, in which Fam20b was deleted only in palatal mesenchyme, showed no abnormality, suggesting that failed palatal elevation in Wnt1-Cre; Fam20bf/f mice was secondary to micrognathia. In addition, the reduced GAG chains promoted the apoptosis of palatal cells, primarily resulting in reduced cell density and decreased palatal volume. The suppressed BMP signaling and reduced mineralization indicated an impaired osteogenesis of palatine, which could be rescued partially by constitutively active Bmpr1a. Together, our study highlighted the key role of GAG chains in palate morphogenesis.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Nan Li
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China
- Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Ping Hu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Leilei Li
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Danya Li
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Han Liu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China
- Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Lei Zhu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China
- Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Jing Xiao
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China
- Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Chao Liu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China
- Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
3
|
Liu W, Lu Y, Shi B, Li C. Transcriptome sequencing analysis of the role of β-catenin in F-actin reorganization in embryonic palatal mesenchymal cells. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1332. [PMID: 36660634 PMCID: PMC9843408 DOI: 10.21037/atm-22-5772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022]
Abstract
Background Palatogenesis is a highly regulated and coordinated developmental process that is coordinated by multiple transcription factors and signaling pathways. Our previous studies identified that defective palatal shelf reorientation due to aberrant mesenchymal β-catenin signaling is associated with Filamentous actin (F-actin) dysregulation. Herein, the underlying mechanism of mesenchymal β-catenin in regulating F-actin cytoskeleton reorganization is further investigated. Methods Firstly, β-catenin silenced and overexpressed mouse embryonic palatal mesenchymal (MEPM) cells were established by adenovirus-mediated transduction. Subsequently, we compared transcriptomes of negative control (NC) group, β-catenin knockdown (KD) group, or β-catenin overexpression group respectively using RNA-sequencing (RNA-seq), and differentially expressed genes (DEGs) screened were further identified by quantitative real-time polymerase chain reaction (qRT-PCR). Finally, in vivo experiments further verified the expression change of critical molecules. Results We discovered 184 and 522 DEGs in the knockdown and overexpression groups compared to the NC group, respectively (adjusted P<0.05; |fold change| >2.0). Among these, 106 DEGs were altered in both groups. Gene Ontology (GO) enrichment analysis relating to biological functions identified cytokine-cytokine receptor interaction, and positive modulation of cellular migration. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment assessment indicated that these DEGs were chiefly linked by the regulation of signaling receptor activity and chemokine signaling pathways. Quantitative real-time polymerase chain reaction (qRT-PCR) results showed that the similar expression trend of serum amyloid A3 (Saa3) and CXC-chemokine ligand 5 (Cxcl5) possibly involved in cytoskeletal rearrangement with RNA-seq data. Experiments in vivo displayed that no significant expression change of Saa3 and Cxcl5 was observed in β-catenin knockout and overexpressed mouse models. Conclusions Our study provides an expression landscape of DEGs in β-catenin silenced and overexpressed MEPM cells, which emphasizes the important role of processes such as chemotactic factor and cell migration. Our data gain deeper insight into genes associated with F-actin reorganization that is regulated by β-catenin either directly or by another route, which will contribute to further investigation of the exact mechanism of mesenchymal β-catenin/F-actin in palatal shelf reorientation.
Collapse
Affiliation(s)
- Weilong Liu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yong Lu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Chenghao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
FGF9 Promotes Expression of HAS2 in Palatal Elevation via the Wnt/β-Catenin/TCF7L2 Pathway. Biomolecules 2022; 12:biom12111639. [PMID: 36358989 PMCID: PMC9687196 DOI: 10.3390/biom12111639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Background: Fgf9 mutation was found in cleft palate patients. Our previous study indicated that Fgf9 promotes timely elevation of palate by regulating hyaluronic acid (HA) accumulation at embryonic day 13.5 (E13.5). HA is synthesized by hyaluronic acid synthases (HAS) isoforms 1, 2, or 3. However, how FGF9 regulates HA in palatogenesis is still unclear. Methods: Using Ddx4-Cre mice, we generated the Fgf9−/− mouse model (with exon 2 deletion). Immunohistochemistry was used to detect the location and expression of HAS2 in WT and the Fgf9−/− palate at E13.5. We also predicted the association between Fgf9 and Has2 within the developing palate by performing a bioinformatics analysis. The expression of β-catenin, HAS2, and TCF7L2 were verified by Western blotting after knockout of Fgf9. Rescue experiments were performed by ELISA in vitro. Results: Fgf9−/− mice exhibited 100% penetrance of the cleft palate. A knockout of Fgf9 confirmed that HAS2 and TCF7L2 expression was positively correlated with FGF9. TCF7L2 binds to the Has2 promoter, exhibiting the high specificity predicted by JASPAR. Additionally, increased HA expression by BML-284, TCF-dependent agonist, was blocked in Fgf9−/− palate because of the significant decline in TCF7L2 expression. Conclusions: FGF9 promotes HAS2 expression via Wnt/β-catenin/TCF7L2 pathway with TCF7L2 activating transcription of Has2 in the palate.
Collapse
|
5
|
Hammond NL, Dixon MJ. Revisiting the embryogenesis of lip and palate development. Oral Dis 2022; 28:1306-1326. [PMID: 35226783 PMCID: PMC10234451 DOI: 10.1111/odi.14174] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022]
Abstract
Clefts of the lip and palate (CLP), the major causes of congenital facial malformation globally, result from failure of fusion of the facial processes during embryogenesis. With a prevalence of 1 in 500-2500 live births, CLP causes major morbidity throughout life as a result of problems with facial appearance, feeding, speaking, obstructive apnoea, hearing and social adjustment and requires complex, multi-disciplinary care at considerable cost to healthcare systems worldwide. Long-term outcomes for affected individuals include increased mortality compared with their unaffected siblings. The frequent occurrence and major healthcare burden imposed by CLP highlight the importance of dissecting the molecular mechanisms driving facial development. Identification of the genetic mutations underlying syndromic forms of CLP, where CLP occurs in association with non-cleft clinical features, allied to developmental studies using appropriate animal models is central to our understanding of the molecular events underlying development of the lip and palate and, ultimately, how these are disturbed in CLP.
Collapse
Affiliation(s)
- Nigel L. Hammond
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Michael J. Dixon
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
6
|
Sun J, Ha N, Liu Z, Bian Q, Wang X. A Neural Crest-specific Overexpression Mouse Model Reveals the Transcriptional Regulatory Effects of Dlx2 During Maxillary Process Development. Front Physiol 2022; 13:855959. [PMID: 35514355 PMCID: PMC9070692 DOI: 10.3389/fphys.2022.855959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Craniofacial morphogenesis is a complex process that requires precise regulation of cell proliferation, migration, and differentiation. Perturbations of this process cause a series of craniofacial deformities. Dlx2 is a critical transcription factor that regulates the development of the first branchial arch. However, the transcriptional regulatory functions of Dlx2 during craniofacial development have been poorly understood due to the lack of animal models in which the Dlx2 level can be precisely modulated. In this study, we constructed a Rosa26 site-directed Dlx2 gene knock-in mouse model Rosa26 CAG-LSL-Dlx2-3xFlag for conditionally overexpressing Dlx2. By breeding with wnt1 cre mice, we obtained wnt1 cre ; Rosa26 Dlx2/- mice, in which Dlx2 is overexpressed in neural crest lineage at approximately three times the endogenous level. The wnt1 cre ; Rosa26 Dlx2/- mice exhibited consistent phenotypes that include cleft palate across generations and individual animals. Using this model, we demonstrated that Dlx2 caused cleft palate by affecting maxillary growth and uplift in the early-stage development of maxillary prominences. By performing bulk RNA-sequencing, we demonstrated that Dlx2 overexpression induced significant changes in many genes associated with critical developmental pathways. In summary, our novel mouse model provides a reliable and consistent system for investigating Dlx2 functions during development and for elucidating the gene regulatory networks underlying craniofacial development.
Collapse
Affiliation(s)
- Jian Sun
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - NaYoung Ha
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhixu Liu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Qian Bian
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Xudong Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
7
|
Fasham J, Lin S, Ghosh P, Radio FC, Farrow EG, Thiffault I, Kussman J, Zhou D, Hemming R, Zahka K, Chioza BA, Rawlins LE, Wenger OK, Gunning AC, Pizzi S, Onesimo R, Zampino G, Barker E, Osawa N, Rodriguez MC, Neuhann TM, Zackai EH, Keena B, Capasso J, Levin AV, Bhoj E, Li D, Hakonarson H, Wentzensen IM, Jackson A, Chandler KE, Coban-Akdemir ZH, Posey JE, Banka S, Lupski JR, Sheppard SE, Tartaglia M, Triggs-Raine B, Crosby AH, Baple EL. Elucidating the clinical spectrum and molecular basis of HYAL2 deficiency. Genet Med 2022; 24:631-644. [PMID: 34906488 PMCID: PMC9933146 DOI: 10.1016/j.gim.2021.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/03/2021] [Accepted: 10/21/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE We previously defined biallelic HYAL2 variants causing a novel disorder in 2 families, involving orofacial clefting, facial dysmorphism, congenital heart disease, and ocular abnormalities, with Hyal2 knockout mice displaying similar phenotypes. In this study, we better define the phenotype and pathologic disease mechanism. METHODS Clinical and genomic investigations were undertaken alongside molecular studies, including immunoblotting and immunofluorescence analyses of variant/wild-type human HYAL2 expressed in mouse fibroblasts, and in silico modeling of putative pathogenic variants. RESULTS Ten newly identified individuals with this condition were investigated, and they were associated with 9 novel pathogenic variants. Clinical studies defined genotype-phenotype correlations and confirmed a recognizable craniofacial phenotype in addition to myopia, cleft lip/palate, and congenital cardiac anomalies as the most consistent manifestations of the condition. In silico modeling of missense variants identified likely deleterious effects on protein folding. Consistent with this, functional studies indicated that these variants cause protein instability and a concomitant cell surface absence of HYAL2 protein. CONCLUSION These studies confirm an association between HYAL2 alterations and syndromic cleft lip/palate, provide experimental evidence for the pathogenicity of missense alleles, enable further insights into the pathomolecular basis of the disease, and delineate the core and variable clinical outcomes of the condition.
Collapse
Affiliation(s)
- James Fasham
- Medical Research, Research, Innovation, Learning and Development (RILD) Wellcome Wolfson Centre, College of Medicine and Health, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom; Peninsula Clinical Genetics Service, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Siying Lin
- Medical Research, Research, Innovation, Learning and Development (RILD) Wellcome Wolfson Centre, College of Medicine and Health, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Promita Ghosh
- Department of Biochemistry and Medical Genetics, Rax Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Francesca Clementina Radio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù (Bambino Gesù Pediatric Hospital), IRCCS, Rome, Italy
| | - Emily G Farrow
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO
| | | | - Jennifer Kussman
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO
| | - Dihong Zhou
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO
| | - Rick Hemming
- Department of Biochemistry and Medical Genetics, Rax Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kenneth Zahka
- Pediatric Cardiology, Cleveland Clinic, Cleveland, OH
| | - Barry A Chioza
- Medical Research, Research, Innovation, Learning and Development (RILD) Wellcome Wolfson Centre, College of Medicine and Health, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Lettie E Rawlins
- Medical Research, Research, Innovation, Learning and Development (RILD) Wellcome Wolfson Centre, College of Medicine and Health, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom; Peninsula Clinical Genetics Service, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Olivia K Wenger
- New Leaf Center, Clinic for Special Children, Mount Eaton, OH
| | - Adam C Gunning
- Medical Research, Research, Innovation, Learning and Development (RILD) Wellcome Wolfson Centre, College of Medicine and Health, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Simone Pizzi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù (Bambino Gesù Pediatric Hospital), IRCCS, Rome, Italy
| | - Roberta Onesimo
- Center for Rare Disease and Congenital Defects, Fondazione Policlinico Universitario A. Gemelli (Gemelli University Hospital), IRCCS, Rome, Italy
| | - Giuseppe Zampino
- Center for Rare Disease and Congenital Defects, Fondazione Policlinico Universitario A. Gemelli (Gemelli University Hospital), IRCCS, Rome, Italy
| | - Emily Barker
- Department of Biochemistry and Medical Genetics, Rax Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Natasha Osawa
- Department of Biochemistry and Medical Genetics, Rax Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Megan Christine Rodriguez
- Department of Biochemistry and Medical Genetics, Rax Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Elaine H Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Beth Keena
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jenina Capasso
- Golisano Children's Hospital and Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY
| | - Alex V Levin
- Golisano Children's Hospital and Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY
| | - Elizabeth Bhoj
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Dong Li
- Golisano Children's Hospital and Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY
| | - Hakon Hakonarson
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Adam Jackson
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom; Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kate E Chandler
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom; Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | | | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom; Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX; Department of Pediatrics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX
| | - Sarah E Sheppard
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù (Bambino Gesù Pediatric Hospital), IRCCS, Rome, Italy.
| | - Barbara Triggs-Raine
- Department of Biochemistry and Medical Genetics, Rax Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Andrew H Crosby
- Medical Research, Research, Innovation, Learning and Development (RILD) Wellcome Wolfson Centre, College of Medicine and Health, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom.
| | - Emma L Baple
- Medical Research, Research, Innovation, Learning and Development (RILD) Wellcome Wolfson Centre, College of Medicine and Health, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom; Peninsula Clinical Genetics Service, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom.
| |
Collapse
|
8
|
Abstract
The extracellular matrix (ECM) is a highly dynamic amalgamation of structural and signaling molecules whose quantitative and qualitative modifications drive the distinct programmed morphologic changes required for tissues to mature into their functional forms. The craniofacial complex houses a diverse array of tissues, including sensory organs, glands, and components of the musculoskeletal, neural, and vascular systems, alongside several other highly specialized tissues to form the most complex part of the vertebrate body. Through cell-ECM interactions, the ECM coordinates the cell movements, shape changes, differentiation, gene expression changes, and other behaviors that sculpt developing organs. In this review, we focus on several common key roles of the ECM to shape developing craniofacial organs and tissues. We summarize recent advances in our understanding of the ability of the ECM to biochemically and biomechanically orchestrate major events of craniofacial development, and we discuss how dysregulated ECM dynamics contributes to disease and disorders. As we expand our understanding of organ-specific matrix functionality and composition, we will improve our ability to rationally modify matrices to promote regeneration and/or prevent degenerative outcomes in vitro and in vivo.
Collapse
Affiliation(s)
- D A Cruz Walma
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - K M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Li R, Sun Y, Chen Z, Zheng M, Shan Y, Ying X, Weng M, Chen Z. The Fibroblast Growth Factor 9 (Fgf9) Participates in Palatogenesis by Promoting Palatal Growth and Elevation. Front Physiol 2021; 12:653040. [PMID: 33959039 PMCID: PMC8093392 DOI: 10.3389/fphys.2021.653040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/11/2021] [Indexed: 11/28/2022] Open
Abstract
Cleft palate, a common global congenital malformation, occurs due to disturbances in palatal growth, elevation, contact, and fusion during palatogenesis. The Fibroblast growth factor 9 (FGF9) mutation has been discovered in humans with cleft lip and palate. Fgf9 is expressed in both the epithelium and mesenchyme, with temporospatial diversity during palatogenesis. However, the specific role of Fgf9 in palatogenesis has not been extensively discussed. Herein, we used Ddx4-Cre mice to generate an Fgf9–/– mouse model (with an Fgf9 exon 2 deletion) that exhibited a craniofacial syndrome involving a cleft palate and deficient mandibular size with 100% penetrance. A smaller palatal shelf size, delayed palatal elevation, and contact failure were investigated to be the intrinsic causes for cleft palate. Hyaluronic acid accumulation in the extracellular matrix (ECM) sharply decreased, while the cell density correspondingly increased in Fgf9–/– mice. Additionally, significant decreases in cell proliferation were discovered in not only the palatal epithelium and mesenchyme but also among cells in Meckel’s cartilage and around the mandibular bone in Fgf9–/– mice. Serial sections of embryonic heads dissected at embryonic day 14.5 (E14.5) were subjected to craniofacial morphometric measurement. This highlighted the reduced oral volume owing to abnormal tongue size and descent, and insufficient mandibular size, which disturbed palatal elevation in Fgf9–/– mice. These results indicate that Fgf9 facilitates palatal growth and timely elevation by regulating cell proliferation and hyaluronic acid accumulation. Moreover, Fgf9 ensures that the palatal elevation process has adequate space by influencing tongue descent, tongue morphology, and mandibular growth.
Collapse
Affiliation(s)
- Ruomei Li
- Department of Orthodontics, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yidan Sun
- Department of Orthodontics, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengxi Chen
- Department of Orthodontics, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Resident, Department of General Dentistry, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, United States
| | - Mengting Zheng
- Department of Orthodontics, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhua Shan
- Department of Orthodontics, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiyu Ying
- Department of Orthodontics, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengjia Weng
- Department of Orthodontics, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenqi Chen
- Department of Orthodontics, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Goering JP, Isai DG, Czirok A, Saadi I. Isolation and Time-Lapse Imaging of Primary Mouse Embryonic Palatal Mesenchyme Cells to Analyze Collective Movement Attributes. J Vis Exp 2021. [PMID: 33645552 DOI: 10.3791/62151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Development of the palate is a dynamic process, which involves vertical growth of bilateral palatal shelves next to the tongue followed by elevation and fusion above the tongue. Defects in this process lead to cleft palate, a common birth defect. Recent studies have shown that palatal shelf elevation involves a remodeling process that transforms the orientation of the shelf from a vertical to a horizontal one. The role of the palatal shelf mesenchymal cells in this dynamic remodeling has been difficult to study. Time-lapse-imaging-based quantitative analysis has been recently used to show that primary mouse embryonic palatal mesenchymal (MEPM) cells can self-organize into a collective movement. Quantitative analyses could identify differences in mutant MEPM cells from a mouse model with palate elevation defects. This paper describes methods to isolate and culture MEPM cells from E13.5 embryos-specifically for time-lapse imaging-and to determine various cellular attributes of collective movement, including measures for stream formation, shape alignment, and persistence of direction. It posits that MEPM cells can serve as a proxy model for studying the role of palatal shelf mesenchyme during the dynamic process of elevation. These quantitative methods will allow investigators in the craniofacial field to assess and compare collective movement attributes in control and mutant cells, which will augment the understanding of mesenchymal remodeling during palatal shelf elevation. Furthermore, MEPM cells provide a rare mesenchymal cell model for investigation of collective cell movement in general.
Collapse
Affiliation(s)
- Jeremy P Goering
- Department of Anatomy and Cell Biology, University of Kansas Medical Center
| | - Dona Greta Isai
- Department of Anatomy and Cell Biology, University of Kansas Medical Center
| | - Andras Czirok
- Department of Anatomy and Cell Biology, University of Kansas Medical Center; Department of Biological Physics, Eotvos University;
| | - Irfan Saadi
- Department of Anatomy and Cell Biology, University of Kansas Medical Center;
| |
Collapse
|
11
|
Du W, Bhojwani A, Hu JK. FACEts of mechanical regulation in the morphogenesis of craniofacial structures. Int J Oral Sci 2021; 13:4. [PMID: 33547271 PMCID: PMC7865003 DOI: 10.1038/s41368-020-00110-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
During embryonic development, organs undergo distinct and programmed morphological changes as they develop into their functional forms. While genetics and biochemical signals are well recognized regulators of morphogenesis, mechanical forces and the physical properties of tissues are now emerging as integral parts of this process as well. These physical factors drive coordinated cell movements and reorganizations, shape and size changes, proliferation and differentiation, as well as gene expression changes, and ultimately sculpt any developing structure by guiding correct cellular architectures and compositions. In this review we focus on several craniofacial structures, including the tooth, the mandible, the palate, and the cranium. We discuss the spatiotemporal regulation of different mechanical cues at both the cellular and tissue scales during craniofacial development and examine how tissue mechanics control various aspects of cell biology and signaling to shape a developing craniofacial organ.
Collapse
Affiliation(s)
- Wei Du
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Arshia Bhojwani
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Jimmy K Hu
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Goodwin AF, Chen CP, Vo NT, Bush JO, Klein OD. YAP/TAZ Regulate Elevation and Bone Formation of the Mouse Secondary Palate. J Dent Res 2020; 99:1387-1396. [PMID: 32623954 DOI: 10.1177/0022034520935372] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Clefting of the secondary palate is one of the most common congenital anomalies, and the multiple corrective surgeries that individuals with isolated cleft palate undergo are associated with major costs and morbidities. Secondary palate development is a complex, multistep process that includes the elevation of the palatal shelves from a vertical to horizontal position, a process that is not well understood. The Hippo signaling cascade is a mechanosensory pathway that regulates morphogenesis, homeostasis, and regeneration by controlling cell proliferation, apoptosis, and differentiation, primarily via negative regulation of the downstream effectors, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). We deleted Yap/Taz throughout the palatal shelf mesenchyme as well as specifically in the posterior palatal shelf mesenchyme, using the Osr2Cre and Col2Cre drivers, respectively, which resulted in palatal shelf elevation delay and clefting of the secondary palate. In addition, the deletion resulted in undersized bones of the secondary palate. We next determined downstream targets of YAP/TAZ in the posterior palatal shelves, which included Ibsp and Phex, genes involved in mineralization, and Loxl4, which encodes a lysyl oxidase that catalyzes collagen crosslinking. Ibsp, Phex, and Loxl4 were expressed at decreased levels in the ossification region in the posterior palatal shelf mesenchyme upon deletion of Yap/Taz. Furthermore, collagen levels were decreased specifically in the same region prior to elevation. Thus, our data suggest that YAP/TAZ may regulate collagen crosslinking in the palatal shelf mesenchyme, thus controlling palatal shelf elevation, as well as mineralization of the bones of the secondary palate.
Collapse
Affiliation(s)
- A F Goodwin
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA.,Program in Craniofacial Biology, University of California, San Francisco, CA, USA
| | - C P Chen
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA.,Program in Craniofacial Biology, University of California, San Francisco, CA, USA
| | - N T Vo
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA.,Program in Craniofacial Biology, University of California, San Francisco, CA, USA
| | - J O Bush
- Program in Craniofacial Biology, University of California, San Francisco, CA, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA.,Institute of Human Genetics, University of California, San Francisco, CA, USA
| | - O D Klein
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA.,Program in Craniofacial Biology, University of California, San Francisco, CA, USA.,Institute of Human Genetics, University of California, San Francisco, CA, USA.,Department of Pediatrics, University of California, San Francisco, CA, USA
| |
Collapse
|