1
|
Leyria J. Endocrine factors modulating vitellogenesis and oogenesis in insects: An update. Mol Cell Endocrinol 2024; 587:112211. [PMID: 38494046 DOI: 10.1016/j.mce.2024.112211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/26/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The endocrine system plays a pivotal role in shaping the mechanisms that ensure successful reproduction. With over a million known insect species, understanding the endocrine control of reproduction has become increasingly complex. Some of the key players include the classic insect lipid hormones juvenile hormone (JH) and ecdysteroids, and neuropeptides such as insulin-like peptides (ILPs). Individual endocrine factors not only modulate their own target tissue but also play crucial roles in crosstalk among themselves, ensuring successful vitellogenesis and oogenesis. Recent advances in omics, gene silencing, and genome editing approaches have accelerated research, offering both fundamental insights and practical applications for studying in-depth endocrine signaling pathways. This review provides an updated and integrated view of endocrine factors modulating vitellogenesis and oogenesis in insect females.
Collapse
Affiliation(s)
- Jimena Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| |
Collapse
|
2
|
Tong C, Zhang K, Rong Z, Mo W, Peng Y, Zheng S, Feng QL, Deng H. Alternative splicing of POUM2 regulates embryonic cuticular formation and tanning in Bombyx mori. INSECT SCIENCE 2023; 30:1267-1281. [PMID: 36562105 DOI: 10.1111/1744-7917.13164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Insect cuticle is an apical extracellular matrix produced by the epidermis, tracheal, hind- and foregut epithelia during embryogenesis and renewed during molting and metamorphosis. However, the underlying regulatory mechanism for embryonic cuticle formation remains largely unclear. Here, we investigate the function of the transcription factor POUM2 in the embryonic cuticular formation in Bombyx mori, a model lepidopteran insect. Clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein-9-mediated knockout of POUM2 resulted in the defect of cuticular deposition, pigmentation, and sclerotization in the embryos. Differentially expressed transcripts analysis of 7-d-old embryos identified 174 up- or downregulated cuticular protein transcripts, 8 upregulated chitin degradation transcripts, 2 downregulated chitin synthesis transcripts and 48 up- or downregulated transcription factor transcripts in the POUM2-/- embryos. The expression levels of the key factors of the tyrosine metabolic pathway, such as tyrosine hydroxylase (Th), Dopa decarboxylase (DDC), and arylalkylamine N-acetyltransferase (aaNAT), were significantly decreased in the POUM2-/- embryos. POUM2 isoform POUM2-L specifically bound the POU cis-regulatory element (CRE) in the Th promoter and increased the transcription of Th, whereas POUM2-S could not bind the POU CRE, although it also increased the transcription of Th. Heterogeneous nuclear ribonucleoprotein Squid-1 directly bound the POUM2 pre-mRNA (messenger RNA) and inhibited the alternative splicing of POUM2-L to POUM2-S mRNA. These results suggest that POUM2 participates in the cuticular formation by regulating the chitin and cuticular protein synthesis and metabolism, and the cuticular pigmentation and sclerotization by regulating tyrosine metabolism during embryogenesis. This study provides new insights into novel function of POUM2 in embryogenesis.
Collapse
Affiliation(s)
- Chunmei Tong
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Kang Zhang
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Zixia Rong
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wanyu Mo
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yuling Peng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Sichun Zheng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qi-Li Feng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Huimin Deng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
3
|
Cai R, Tao G, Zhao P, Xia Q, He H, Wang Y. POU-M2 promotes juvenile hormone biosynthesis by directly activating the transcription of juvenile hormone synthetic enzyme genes in Bombyx mori. Open Biol 2022; 12:220031. [PMID: 35382568 PMCID: PMC8984382 DOI: 10.1098/rsob.220031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Juvenile hormone (JH) plays a key role in preventing larval precocious metamorphosis, maintaining larval state, controlling adult sexual development and promoting insect egg maturation. Genetic studies have shown that POU factor ventral veins lacking regulates JH synthesis to control the timing of insect metamorphosis. However, how POU factor regulates JH synthesis is largely unknown. Here, we found POU-M2 was highly expressed in corpora allata (CA) and specifically localized in the nucleus of CA. The overexpression of POU-M2 promoted the expression of JH synthase genes and kr-h1 and enhanced the activity of JH synthase genes promoter. Further, POU-M2 promoted the transcription of JH acid O-methyltransferase (JHAMT) by directly binding to the key cis-regulatory elements -207, -249 and -453 within the proximal regions of JHAMT promoter. Both the POU domain and homeodomain were vital for the activation of POU-M2 on JHAMT transcription. Our study reveals the mechanism by which POU-M2 regulates JHAMT transcription.
Collapse
Affiliation(s)
- Rui Cai
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, People's Republic of China
| | - Gang Tao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, People's Republic of China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, People's Republic of China,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, People's Republic of China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, People's Republic of China,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, People's Republic of China
| | - Huawei He
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, People's Republic of China,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, People's Republic of China,Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, People's Republic of China
| | - Yejing Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, People's Republic of China,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, People's Republic of China
| |
Collapse
|
4
|
Kamiyama T, Niwa R. Transcriptional Regulators of Ecdysteroid Biosynthetic Enzymes and Their Roles in Insect Development. Front Physiol 2022; 13:823418. [PMID: 35211033 PMCID: PMC8863297 DOI: 10.3389/fphys.2022.823418] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/12/2022] [Indexed: 12/23/2022] Open
Abstract
Steroid hormones are responsible for coordinating many aspects of biological processes in most multicellular organisms, including insects. Ecdysteroid, the principal insect steroid hormone, is biosynthesized from dietary cholesterol or plant sterols. In the last 20 years, a number of ecdysteroidogenic enzymes, including Noppera-bo, Neverland, Shroud, Spook/Spookier, Cyp6t3, Phantom, Disembodied, Shadow, and Shade, have been identified and characterized in molecular genetic studies using the fruit fly Drosophila melanogaster. These enzymes are encoded by genes collectively called the Halloween genes. The transcriptional regulatory network, governed by multiple regulators of transcription, chromatin remodeling, and endoreplication, has been shown to be essential for the spatiotemporal expression control of Halloween genes in D. melanogaster. In this review, we summarize the latest information on transcriptional regulators that are crucial for controlling the expression of ecdysteroid biosynthetic enzymes and their roles in insect development.
Collapse
Affiliation(s)
- Takumi Kamiyama
- College of Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|