1
|
Onuma TA, Nishida H. Developmental biology of the larvacean Oikopleura dioica: Genome resources, functional screening, and imaging. Dev Growth Differ 2021; 64:67-82. [PMID: 34964127 DOI: 10.1111/dgd.12769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/01/2022]
Abstract
The larvacean Oikopleura dioica is a cosmopolitan planktonic chordate and is closely related to vertebrates. It is characterized by a tadpole-shaped morphology with notochord flanked by muscle in the tail and brain on the dorsal side, a short life cycle of five days, a compact genome of approximately 56 Mb, a simple and transparent body with a small number of cells (~4000 in functional juveniles), invariant embryonic cell lineages, and fast development that ensures complete morphogenesis and organ formation 10 h after fertilization. With these features, this marine chordate is a promising and advantageous animal model in which genetic manipulation is feasible. In this review, we introduce relevant resources and modern techniques that have been developed: (1) Genome and transcriptomes. Oikopleura dioica has the smallest genome among non-parasitic metazoans. Its genome databases have been generated using three geographically distant O. dioica populations, and several intra-species sequence differences are becoming evident; (2) Functional genetic knockdown techniques. Comprehensive screening of genes is feasible using ovarian microinjection and double-strand DNA-induced gene knockdown; and (3) Live imaging of embryos and larvae. Application of these techniques has uncovered novel aspects of development, including meiotic cell arrest, left-right patterning, epidermal cell patterning, and mouth formation involving the connection of ectoderm and endoderm sheets. Oikopleura dioca has become very useful for developmental and evolutionary studies in chordates.
Collapse
Affiliation(s)
- Takeshi A Onuma
- Graduate School of Science and Engineering, Faculty of Science, Kagoshima University, Kagoshima, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
2
|
Onuma TA, Nakanishi R, Sasakura Y, Ogasawara M. Nkx2-1 and FoxE regionalize glandular (mucus-producing) and thyroid-equivalent traits in the endostyle of the chordate Oikopleura dioica. Dev Biol 2021; 477:219-231. [PMID: 34107272 DOI: 10.1016/j.ydbio.2021.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 11/19/2022]
Abstract
The endostyle is a ventral pharyngeal organ used for internal filter feeding of basal chordates and is considered homologous to the follicular thyroid of vertebrates. It contains mucus-producing (glandular) and thyroid-equivalent regions organized along the dorsoventral (DV) axis. Although thyroid-related genes (Nkx2-1, FoxE, and thyroid peroxidase (TPO)) are known to be expressed in the endostyle, their roles in establishing regionalization within the organ have not been demonstrated. We report that Nkx2-1 and FoxE are essential for establishing DV axial identity in the endostyle of Oikopleura dioica. Genome and expression analyses showed von Willebrand factor-like (vWFL) and TPO/dual oxidase (Duox)/Nkx2-1/FoxE as orthologs of glandular and thyroid-related genes, respectively. Knockdown experiments showed that Nkx2-1 is necessary for the expression of glandular and thyroid-related genes, whereas FoxE is necessary only for thyroid-related genes. Moreover, Nkx2-1 expression is necessary for FoxE expression in larvae during organogenesis. The results demonstrate the essential roles of Nkx2-1 and FoxE in establishing regionalization in the endostyle, including (1) the Nkx2-1-dependent glandular region, and (2) the Nkx2-1/FoxE-dependent thyroid-equivalent region. DV axial regionalization may be responsible for organizing glandular and thyroid-equivalent traits of the pharynx along the DV axis.
Collapse
Affiliation(s)
- Takeshi A Onuma
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
| | - Rina Nakanishi
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Michio Ogasawara
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| |
Collapse
|
3
|
Wang P, Yang F, Ma Z, Zhang R. Chromosome Unipolar Division and Low Expression of Tws May Cause Parthenogenesis of Rice Water Weevil ( Lissorhoptrus oryzophilus Kuschel). INSECTS 2021; 12:278. [PMID: 33805047 PMCID: PMC8064085 DOI: 10.3390/insects12040278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 11/28/2022]
Abstract
Rice water weevil (RWW) is divided into two types of population, triploid parthenogenesis and diploid bisexual reproduction. In this study, we explored the meiosis of triploid parthenogenesis RWW (Shangzhuang Town, Haidian District, Beijing, China) by marking the chromosomes and microtubules of parthenogenetic RWW oocytes via immunostaining. The immunostaining results show that there is a canonical meiotic spindle formed in the triploid parthenogenetic RWW oocytes, but chromosomes segregate at only one pole, which means that there is a chromosomal unipolar division during the oogenesis of the parthenogenetic RWW. Furthermore, we cloned the conserved sequences of parthenogenetic RWW REC8 and Tws, and designed primers based on the parthenogenetic RWW sequence to detect expression patterns by quantitative PCR (Q-PCR). Q-PCR results indicate that the expression of REC8 and Tws in ovarian tissue of bisexual Drosophila melanogaster is 0.98 and 10,000.00 times parthenogenetic RWW, respectively (p < 0.01). The results show that Tws had low expression in parthenogenetic RWW ovarian tissue, and REC8 was expressed normally. Our study suggests that the chromosomal unipolar division and deletion of Tws may cause parthenogenesis in RWW.
Collapse
Affiliation(s)
- Pengcheng Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (P.W.); (F.Y.); (Z.M.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangyuan Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (P.W.); (F.Y.); (Z.M.)
- Department of Entomology, Guizhou University, Guiyang 550025, Guizhou, China
| | - Zhuo Ma
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (P.W.); (F.Y.); (Z.M.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runzhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (P.W.); (F.Y.); (Z.M.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Lei WL, Qian WP, Sun QY. Critical Functions of PP2A-Like Protein Phosphotases in Regulating Meiotic Progression. Front Cell Dev Biol 2021; 9:638559. [PMID: 33718377 PMCID: PMC7947259 DOI: 10.3389/fcell.2021.638559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/08/2021] [Indexed: 01/31/2023] Open
Abstract
Meiosis is essential to the continuity of life in sexually-reproducing organisms through the formation of haploid gametes. Unlike somatic cells, the germ cells undergo two successive rounds of meiotic divisions after a single cycle of DNA replication, resulting in the decrease in ploidy. In humans, errors in meiotic progression can cause infertility and birth defects. Post-translational modifications, such as phosphorylation, ubiquitylation and sumoylation have emerged as important regulatory events in meiosis. There are dynamic equilibrium of protein phosphorylation and protein dephosphorylation in meiotic cell cycle process, regulated by a conservative series of protein kinases and protein phosphatases. Among these protein phosphatases, PP2A, PP4, and PP6 constitute the PP2A-like subfamily within the serine/threonine protein phosphatase family. Herein, we review recent discoveries and explore the role of PP2A-like protein phosphatases during meiotic progression.
Collapse
Affiliation(s)
- Wen-Long Lei
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wei-Ping Qian
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
5
|
Wang K, Tomura R, Chen W, Kiyooka M, Ishizaki H, Aizu T, Minakuchi Y, Seki M, Suzuki Y, Omotezako T, Suyama R, Masunaga A, Plessy C, Luscombe NM, Dantec C, Lemaire P, Itoh T, Toyoda A, Nishida H, Onuma TA. A genome database for a Japanese population of the larvacean Oikopleura dioica. Dev Growth Differ 2020; 62:450-461. [PMID: 32677034 DOI: 10.1111/dgd.12689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 01/01/2023]
Abstract
The larvacean Oikopleura dioica is a planktonic chordate and is a tunicate that belongs to the closest relatives to vertebrates. Its simple and transparent body, invariant embryonic cell lineages, and short life cycle of 5 days make it a promising model organism for the study of developmental biology. The genome browser OikoBase was established in 2013 using Norwegian O. dioica. However, genome information for other populations is not available, even though many researchers have studied local populations. In the present study, we sequenced using Illumina and PacBio RSII technologies the genome of O. dioica from a southwestern Japanese population that was cultured in our laboratory for 3 years. The genome of Japanese O. dioica was assembled into 576 scaffold sequences with a total length and N50 length of 56.6 and 1.5 Mb, respectively. A total of 18,743 gene models (transcript models) were predicted in the genome assembly, named OSKA2016. In addition, 19,277 non-redundant transcripts were assembled using RNA-seq data. The OSKA2016 has global sequence similarity of only 86.5% when compared with the OikoBase, highlighting the sequence difference between the two far distant O. dioica populations on the globe. The genome assembly, transcript assembly, and transcript models were incorporated into ANISEED (https://www.aniseed.cnrs.fr/) for genome browsing and BLAST searches. Mapping of reads obtained from male- or female-specific genome libraries yielded male-specific scaffolds in the OSKA2016 and revealed that over 2.6 Mb of sequence were included in the male-specific Y-region. The genome and transcriptome resources from two distinct populations will be useful datasets for developmental biology, evolutionary biology, and molecular ecology using this model organism.
Collapse
Affiliation(s)
- Kai Wang
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Ryo Tomura
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Wei Chen
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Miho Kiyooka
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Hinako Ishizaki
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Tomoyuki Aizu
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yohei Minakuchi
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Masahide Seki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Tatsuya Omotezako
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Ritsuko Suyama
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan
| | - Aki Masunaga
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan
| | - Charles Plessy
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan
| | - Nicholas M Luscombe
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan
| | - Christelle Dantec
- Centre de Recherches de Biochimie Macromoleculaire (CRBM), UMR5237, CNRS-Universite de Montpellier, Montpellier, France
| | - Patrick Lemaire
- Centre de Recherches de Biochimie Macromoleculaire (CRBM), UMR5237, CNRS-Universite de Montpellier, Montpellier, France
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Takeshi A Onuma
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
6
|
A chordate species lacking Nodal utilizes calcium oscillation and Bmp for left-right patterning. Proc Natl Acad Sci U S A 2020; 117:4188-4198. [PMID: 32029598 DOI: 10.1073/pnas.1916858117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Larvaceans are chordates with a tadpole-like morphology. In contrast to most chordates of which early embryonic morphology is bilaterally symmetric and the left-right (L-R) axis is specified by the Nodal pathway later on, invariant L-R asymmetry emerges in four-cell embryos of larvaceans. The asymmetric cell arrangements exist through development of the tailbud. The tail thus twists 90° in a counterclockwise direction relative to the trunk, and the tail nerve cord localizes on the left side. Here, we demonstrate that larvacean embryos have nonconventional L-R asymmetries: 1) L- and R-cells of the two-cell embryo had remarkably asymmetric cell fates; 2) Ca2+ oscillation occurred through embryogenesis; 3) Nodal, an evolutionarily conserved left-determining gene, was absent in the genome; and 4) bone morphogenetic protein gene (Bmp) homolog Bmp.a showed right-sided expression in the tailbud and larvae. We also showed that Ca2+ oscillation is required for Bmp.a expression, and that BMP signaling suppresses ectopic expression of neural genes. These results indicate that there is a chordate species lacking Nodal that utilizes Ca2+ oscillation and Bmp.a for embryonic L-R patterning. The right-side Bmp.a expression may have arisen via cooption of conventional BMP signaling in order to restrict neural gene expression on the left side.
Collapse
|