1
|
Yang G, Gu J, Wang H, Yang B, Feng S, Zhang Y, Zhang X, Chang X, Shao J, Meng X. Identification, Expression, Characteristic Analysis, and Immune Function of Two Akirin Genes in Grass Carp ( Ctenopharyngodon idella). Animals (Basel) 2024; 14:2443. [PMID: 39199975 PMCID: PMC11350764 DOI: 10.3390/ani14162443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Intensive aquaculture of grass carp often leads to decreased immunity and increased disease prevalence, resulting in economic losses. Improving grass carp immunity is therefore a critical strategy for addressing these challenges. Akirin reportedly participates in myogenesis, growth, and immune responses. However, its role in grass carp remains unclear. Herein, we isolated akirins from the spleen of grass carp and analyzed their tissue-specific expression. Akirin expression was detected following treatment with poly (I:C), LPS, and Aeromonas hydrophila (A. hydrophila). The immunological function of the akirin protein was evaluated in head kidney leukocytes (HKLs). The results revealed that the coding sequence (CDS) of akirin1 is 570 bp, encoding 189 amino acids. There was one predicted nuclear localization signal (NLS) and two predicted α- helix domains. The CDS of akirin2 is 558 bp, encoding 185 amino acids. There were two predicted NLSs and two predicted α-helix domains. Tissue-specific expression analysis showed that akirins are widely detected in grass carp tissues. akirin1 was highly detected in the brain, kidneys, heart, spleen, and gonads, while akirin2 was highly detected in the brain, liver, gonads, kidneys, spleen, and heart. The mRNA levels of akirins were promoted after treatment with poly (I:C), LPS, and A. hydrophila. Recombinant akirin proteins were produced in Escherichia coli (E. coli). il-1β, ifnγ, il-6, tnfα, il-4, iκbα, and nfκb were markedly increased in grass carp HKLs by treatment with the akirin protein. These results suggest that akirins play a role in the immunological regulation of grass carp.
Collapse
Affiliation(s)
- Guokun Yang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; (G.Y.); (J.G.); (H.W.); (B.Y.); (S.F.); (Y.Z.); (X.Z.); (X.C.)
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Jianing Gu
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; (G.Y.); (J.G.); (H.W.); (B.Y.); (S.F.); (Y.Z.); (X.Z.); (X.C.)
| | - Hao Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; (G.Y.); (J.G.); (H.W.); (B.Y.); (S.F.); (Y.Z.); (X.Z.); (X.C.)
| | - Boya Yang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; (G.Y.); (J.G.); (H.W.); (B.Y.); (S.F.); (Y.Z.); (X.Z.); (X.C.)
| | - Shikun Feng
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; (G.Y.); (J.G.); (H.W.); (B.Y.); (S.F.); (Y.Z.); (X.Z.); (X.C.)
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Yanmin Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; (G.Y.); (J.G.); (H.W.); (B.Y.); (S.F.); (Y.Z.); (X.Z.); (X.C.)
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Xindang Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; (G.Y.); (J.G.); (H.W.); (B.Y.); (S.F.); (Y.Z.); (X.Z.); (X.C.)
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Xulu Chang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; (G.Y.); (J.G.); (H.W.); (B.Y.); (S.F.); (Y.Z.); (X.Z.); (X.C.)
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Jianchun Shao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Xiaolin Meng
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; (G.Y.); (J.G.); (H.W.); (B.Y.); (S.F.); (Y.Z.); (X.Z.); (X.C.)
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
2
|
Milner H, Nowak SJ. Improved cardiac contraction imaging in live Drosophila embryos. MethodsX 2020; 7:101130. [PMID: 33240794 PMCID: PMC7674598 DOI: 10.1016/j.mex.2020.101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/02/2020] [Indexed: 11/27/2022] Open
Abstract
Drosophila melanogaster is a powerful model organism in which to address the genetics of cardiac patterning and heart development. This system allows the pairing of live imaging with the myriad available genetic and transgenic techniques to not only identify the genes that are critical for heart development, but to assess their impact on heart function in living organisms. There are several described methods to assess cardiac function in Drosophila. However, these approaches are restricted to imaging of mid- to late-instar larval and adult hearts. This technical hurdle therefore does not allow for the recording and analysis of cardiac function in embryos bearing strong mutations that do not hatch into larvae. Our technical innovation lies in transgenically labeling the cells of the Drosophila heart and using line scan-based confocal imaging to repeatedly image the walls of the heart. By plotting this line scan as a kymograph, heart contractions can be visualized and assayed, thereby allowing for quantification of physiological defects. This method can be used to obtain physiological data from known mutations that affect cardiac development yet are incapable of hatching into larvae for conventional analysis.Use transgenic methods to label heart proper walls Use high-speed line scanning to capture position of heart proper walls Create X vs. time plot to visualize and quantify contractions over imaging period.
Collapse
Affiliation(s)
- Hayley Milner
- Department of Molecular and Cellular Biology, Kennesaw State University, United States
| | - Scott J Nowak
- Department of Molecular and Cellular Biology, Kennesaw State University, United States
| |
Collapse
|