1
|
Rajagopal V, Seiler J, Nasa I, Cantarella S, Theiss J, Herget F, Kaifer B, Schneider M, Helm D, König J, Zarnack K, Diederichs S, Kettenbach AN, Caudron-Herger M. An atlas of RNA-dependent proteins in cell division reveals the riboregulation of mitotic protein-protein interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614981. [PMID: 39386702 PMCID: PMC11463612 DOI: 10.1101/2024.09.25.614981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Ribonucleoprotein complexes are dynamic assemblies of RNA with RNA-binding proteins (RBPs), which can modulate the fate of the RNA molecules from transcription to degradation. Vice versa, RNA can regulate the interactions and functions of the associated proteins. Dysregulation of RBPs is linked to diseases such as cancer and neurological disorders. RNA and RBPs are present in mitotic structures like the centrosomes and spindle microtubules, but their influence on mitotic spindle integrity remains unknown. Thus, we applied the R-DeeP strategy for the proteome-wide identification of RNA-dependent proteins and complexes to cells synchronized in mitosis versus interphase. The resulting atlas of RNA-dependent proteins in cell division can be accessed through the R-DeeP 3.0 database (R-DeeP3.dkfz.de). It revealed key mitotic factors as RNA-dependent such as AURKA, KIFC1 and TPX2 that were linked to RNA despite their lack of canonical RNA-binding domains. KIFC1 was identified as a new interaction partner and phosphorylation substrate of AURKA at S349 and T359. In addition, KIFC1 interacted with both, AURKA and TPX2, in an RNA-dependent manner. Our data suggest a riboregulation of mitotic protein-protein interactions during spindle assembly, offering new perspectives on the control of cell division processes by RNA-protein complexes.
Collapse
Affiliation(s)
- Varshni Rajagopal
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeanette Seiler
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Isha Nasa
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Simona Cantarella
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jana Theiss
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Franziska Herget
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bianca Kaifer
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Schneider
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominic Helm
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julian König
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences, Frankfurt, Germany
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Sven Diederichs
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center Freiburg, Freiburg, Germany
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Maïwen Caudron-Herger
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
2
|
Remsburg CM, Konrad KD, Testa MD, Stepicheva N, Lee K, Choe LH, Polson S, Bhavsar J, Huang H, Song JL. miR-31-mediated local translation at the mitotic spindle is important for early development. Development 2024; 151:dev202619. [PMID: 39250531 PMCID: PMC11423917 DOI: 10.1242/dev.202619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/17/2024] [Indexed: 09/11/2024]
Abstract
miR-31 is a highly conserved microRNA that plays crucial roles in cell proliferation, migration and differentiation. We discovered that miR-31 and some of its validated targets are enriched on the mitotic spindle of the dividing sea urchin embryo and mammalian cells. Using the sea urchin embryo, we found that miR-31 inhibition led to developmental delay correlated with increased cytoskeletal and chromosomal defects. We identified miR-31 to directly suppress several actin remodeling transcripts, including β-actin, Gelsolin, Rab35 and Fascin. De novo translation of Fascin occurs at the mitotic spindle of sea urchin embryos and mammalian cells. Importantly, miR-31 inhibition leads to a significant a increase of newly translated Fascin at the spindle of dividing sea urchin embryos. Forced ectopic localization of Fascin transcripts to the cell membrane and translation led to significant developmental and chromosomal segregation defects, highlighting the importance of the regulation of local translation by miR-31 at the mitotic spindle to ensure proper cell division. Furthermore, miR-31-mediated post-transcriptional regulation at the mitotic spindle may be an evolutionarily conserved regulatory paradigm of mitosis.
Collapse
Affiliation(s)
- Carolyn M. Remsburg
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Kalin D. Konrad
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Michael D. Testa
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Nadezda Stepicheva
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Kelvin Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
- National Institute for Innovation in Manufacturing Biopharmaceuticals, Newark, DE 19716, USA
| | - Leila H. Choe
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
- National Institute for Innovation in Manufacturing Biopharmaceuticals, Newark, DE 19716, USA
| | - Shawn Polson
- Department of Computer and Informational Sciences; Plant & Soil Sciences; Biological Sciences, CBCB Bioinformatics Core Facility; Bioinformatics, Healthcare Informatics, and Data Science Network of Delaware, University of Delaware, Newark, DE 19716, USA
| | - Jaysheel Bhavsar
- Department of Computer and Informational Sciences, University of Delaware, DE 19716, USA
| | - Hongzhan Huang
- Department of Computer and Informational Sciences, University of Delaware, DE 19716, USA
| | - Jia L. Song
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
3
|
Kunitomi C, Romero M, Daldello EM, Schindler K, Conti M. Multiple intersecting pathways are involved in CPEB1 phosphorylation and regulation of translation during mouse oocyte meiosis. Development 2024; 151:dev202712. [PMID: 38785133 PMCID: PMC11190569 DOI: 10.1242/dev.202712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024]
Abstract
The RNA-binding protein cytoplasmic polyadenylation element binding 1 (CPEB1) plays a fundamental role in regulating mRNA translation in oocytes. However, the specifics of how and which protein kinase cascades modulate CPEB1 activity are still controversial. Using genetic and pharmacological tools, and detailed time courses, we have re-evaluated the relationship between CPEB1 phosphorylation and translation activation during mouse oocyte maturation. We show that both the CDK1/MAPK and AURKA/PLK1 pathways converge on CPEB1 phosphorylation during prometaphase of meiosis I. Only inactivation of the CDK1/MAPK pathway disrupts translation, whereas inactivation of either pathway alone leads to CPEB1 stabilization. However, CPEB1 stabilization induced by inactivation of the AURKA/PLK1 pathway does not affect translation, indicating that destabilization and/or degradation is not linked to translational activation. The accumulation of endogenous CCNB1 protein closely recapitulates the translation data that use an exogenous template. These findings support the overarching hypothesis that the activation of translation during prometaphase in mouse oocytes relies on a CDK1/MAPK-dependent CPEB1 phosphorylation, and that translational activation precedes CPEB1 destabilization.
Collapse
Affiliation(s)
- Chisato Kunitomi
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Mayra Romero
- Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ 08854, USA
| | - Enrico Maria Daldello
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, LBD - IBPS, F-75005 Paris, France
| | - Karen Schindler
- Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ 08854, USA
| | - Marco Conti
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
4
|
Kunitomi C, Romero M, Daldello EM, Schindler K, Conti M. Multiple intersecting pathways are involved in the phosphorylation of CPEB1 to activate translation during mouse oocyte meiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.575938. [PMID: 38293116 PMCID: PMC10827138 DOI: 10.1101/2024.01.17.575938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The RNA-binding protein cytoplasmic polyadenylation element binding 1 (CPEB1) plays a fundamental role in the regulation of mRNA translation in oocytes. However, the nature of protein kinase cascades modulating the activity of CPEB1 is still a matter of controversy. Using genetic and pharmacological tools and detailed time courses, here we have reevaluated the relationship between CPEB1 phosphorylation and the activation of translation during mouse oocyte maturation. We show that both the CDK1/MAPK and AURKA/PLK1 pathways converge on the phosphorylation of CPEB1 during prometaphase. Only inactivation of the CDK1/MAPK pathway disrupts translation, while inactivation of either pathway leads to CPEB1 stabilization. However, stabilization of CPEB1 induced by inactivation of the AURKA/PLK1 does not affect translation, indicating that destabilization/degradation can be dissociated from translational activation. The accumulation of the endogenous CCNB1 protein closely recapitulates the translation data. These findings support the overarching hypothesis that the activation of translation in prometaphase in mouse oocytes relies on a CDK1-dependent CPEB1 phosphorylation, and this translational activation precedes CPEB1 destabilization.
Collapse
Affiliation(s)
- Chisato Kunitomi
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Mayra Romero
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Human Genetics Institute of New Jersey
| | - Enrico Maria Daldello
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, LBD - IBPS, F-75005 Paris, France
| | - Karen Schindler
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Human Genetics Institute of New Jersey
| | - Marco Conti
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
5
|
Prozzillo Y, Santopietro MV, Messina G, Dimitri P. Unconventional roles of chromatin remodelers and long non-coding RNAs in cell division. Cell Mol Life Sci 2023; 80:365. [PMID: 37982870 PMCID: PMC10661750 DOI: 10.1007/s00018-023-04949-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 11/21/2023]
Abstract
The aim of this review article is to focus on the unconventional roles of epigenetic players (chromatin remodelers and long non-coding RNAs) in cell division, beyond their well-characterized functions in chromatin regulation during cell differentiation and development. In the last two decades, diverse experimental evidence has shown that subunits of SRCAP and p400/TIP60 chromatin remodeling complexes in humans relocate from interphase nuclei to centrosomes, spindle or midbody, with their depletion yielding an array of aberrant outcomes of mitosis and cytokinesis. Remarkably, this behavior is shared by orthologous subunits of the Drosophila melanogaster DOM/TIP60 complex, despite fruit flies and humans diverged over 700 million years ago. In short, the available data support the view that subunits of these complexes are a new class of moonlighting proteins, in that they lead a "double life": during the interphase, they function in chromatin regulation within the nucleus, but as the cell progresses through mitosis, they interact with established mitotic factors, thus becoming integral components of the cell division apparatus. By doing so, they contribute to ensuring the correct distribution of chromosomes in the two daughter cells and, when dysfunctional, can cause genomic instability, a condition that can trigger tumorigenesis and developmental diseases. Research over the past few years has unveiled a major contribution of long non-coding RNAs (lncRNAs) in the epigenetics regulation of gene expression which also impacts on cell division control. Here, we focus on possible structural roles of lncRNAs in the execution of cytokinesis: in particular, we suggest that specific classes of lncRNAs relocate to the midbody to form an architectural scaffold ensuring its proper assembly and function during abscission. Drawing attention to experimental evidence for non-canonical extranuclear roles of chromatin factors and lncRNAs has direct implications on important and novel aspects concerning both the epigenetic regulation and the evolutionary dynamics of cell division with a significant impact on differentiation, development, and diseases.
Collapse
Affiliation(s)
- Yuri Prozzillo
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | | | - Giovanni Messina
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy.
- Universita degli Studi di Milano-Bicocca, Piazza dell' Ateneo Nuovo, 1, 20126, Milano, Italy.
| | - Patrizio Dimitri
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy.
| |
Collapse
|
6
|
Sundaram P, Rao K, Yajima M. Vasa, a regulator of localized mRNA translation on the spindle. Bioessays 2023; 45:e2300004. [PMID: 36825672 PMCID: PMC10023503 DOI: 10.1002/bies.202300004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/25/2023]
Abstract
Localized mRNA translation is a biological process that allows mRNA to be translated on-site, which is proposed to provide fine control in protein regulation, both spatially and temporally within a cell. We recently reported that Vasa, an RNA-helicase, is a promising factor that appears to regulate this process on the spindle during the embryonic development of the sea urchin, yet the detailed roles and functional mechanisms of Vasa in this process are still largely unknown. In this review article, to elucidate these remaining questions, we first summarize the prior knowledge and our recent findings in the area of Vasa research and further discuss how Vasa may function in localized mRNA translation, contributing to efficient protein regulation during rapid embryogenesis and cancer cell regulation.
Collapse
Affiliation(s)
- Paola Sundaram
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI 02912, USA
| | - Kavya Rao
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI 02912, USA
| | - Mamiko Yajima
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI 02912, USA
| |
Collapse
|
7
|
Remsburg CM, Konrad KD, Song JL. RNA localization to the mitotic spindle is essential for early development and is regulated by kinesin-1 and dynein. J Cell Sci 2023; 136:jcs260528. [PMID: 36751992 PMCID: PMC10038151 DOI: 10.1242/jcs.260528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/27/2023] [Indexed: 02/09/2023] Open
Abstract
Mitosis is a fundamental and highly regulated process that acts to faithfully segregate chromosomes into two identical daughter cells. Localization of gene transcripts involved in mitosis to the mitotic spindle might be an evolutionarily conserved mechanism to ensure that mitosis occurs in a timely manner. We identified many RNA transcripts that encode proteins involved in mitosis localized at the mitotic spindles in dividing sea urchin embryos and mammalian cells. Disruption of microtubule polymerization, kinesin-1 or dynein results in lack of spindle localization of these transcripts in the sea urchin embryo. Furthermore, results indicate that the cytoplasmic polyadenylation element (CPE) within the 3'UTR of the Aurora B transcript, a recognition sequence for CPEB, is essential for RNA localization to the mitotic spindle in the sea urchin embryo. Blocking this sequence results in arrested development during early cleavage stages, suggesting that RNA localization to the mitotic spindle might be a regulatory mechanism of cell division that is important for early development.
Collapse
Affiliation(s)
- Carolyn M. Remsburg
- University of Delaware, Department of Biological Sciences, Newark, DE 19716, USA
| | - Kalin D. Konrad
- University of Delaware, Department of Biological Sciences, Newark, DE 19716, USA
| | - Jia L. Song
- University of Delaware, Department of Biological Sciences, Newark, DE 19716, USA
| |
Collapse
|
8
|
Kalous J, Aleshkina D. Multiple Roles of PLK1 in Mitosis and Meiosis. Cells 2023; 12:cells12010187. [PMID: 36611980 PMCID: PMC9818836 DOI: 10.3390/cells12010187] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
Cells are equipped with a diverse network of signaling and regulatory proteins that function as cell cycle regulators and checkpoint proteins to ensure the proper progression of cell division. A key regulator of cell division is polo-like kinase 1 (PLK1), a member of the serine/threonine kinase family that plays an important role in regulating the mitotic and meiotic cell cycle. The phosphorylation of specific substrates mediated by PLK1 controls nuclear envelope breakdown (NEBD), centrosome maturation, proper spindle assembly, chromosome segregation, and cytokinesis. In mammalian oogenesis, PLK1 is essential for resuming meiosis before ovulation and for establishing the meiotic spindle. Among other potential roles, PLK1 regulates the localized translation of spindle-enriched mRNAs by phosphorylating and thereby inhibiting the translational repressor 4E-BP1, a downstream target of the mTOR (mammalian target of rapamycin) pathway. In this review, we summarize the functions of PLK1 in mitosis, meiosis, and cytokinesis and focus on the role of PLK1 in regulating mRNA translation. However, knowledge of the role of PLK1 in the regulation of meiosis remains limited.
Collapse
|
9
|
Kipryushina YO, Maiorova MA, Yakovlev KV. An approach to quantitate maternal transcripts localized in sea urchin egg cortex using RT-qPCR with accurate normalization. PLoS One 2022; 17:e0260831. [PMID: 35709154 PMCID: PMC9202947 DOI: 10.1371/journal.pone.0260831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/13/2022] [Indexed: 11/19/2022] Open
Abstract
The sea urchin egg cortex is a peripheral region of eggs comprising a cell membrane and adjacent cytoplasm, which contains actin and tubulin cytoskeleton, cortical granules and some proteins required for early development. Method for isolation of cortices from sea urchin eggs and early embryos was developed in 1970s. Since then, this method has been reliable tool to study protein localization and cytoskeletal organization in cortex of unfertilized eggs and embryos during first cleavages. This study was aimed to estimate the reliability of RT-qPCR to analyze levels of maternal transcripts that are localized in egg cortex. Firstly, we selected seven potential reference genes, 28S, Cycb, Ebr1, GAPDH, Hmg1, Smtnl1 and Ubb, the transcripts of which are maternally deposited in sea urchin eggs. The candidate reference genes were ranked by five different algorithms (BestKeeper, CV, ΔCt, geNorm and NormFinder) based on calculated level of stability in both eggs as well as isolated cortices. Our results showed that gene ranking differs in total RNA and mRNA samples, though Ubb is most suitable reference gene in both cases. To validate feasibility of comparative analysis of eggs and isolated egg cortices, we selected Daglb-2 as a gene of interest, which transcripts are potentially localized in cortex according to transcriptome analysis, and observed increased level of Daglb-2 in egg cortices by RT-qPCR. This suggests that proposed RNA isolation method with subsequent quantitative RT-qPCR analysis can be used to determine cortical association of transcripts in sea urchin eggs.
Collapse
Affiliation(s)
- Yulia O. Kipryushina
- Laboratory of Cytotechnology, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Mariia A. Maiorova
- Laboratory of Cytotechnology, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Konstantin V. Yakovlev
- Laboratory of Cytotechnology, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- * E-mail:
| |
Collapse
|
10
|
Vasa nucleates asymmetric translation along the mitotic spindle during unequal cell divisions. Nat Commun 2022; 13:2145. [PMID: 35444184 PMCID: PMC9021227 DOI: 10.1038/s41467-022-29855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
mRNA translation on the spindle is hypothesized to be an essential strategy for the localized production of cell regulators. This mechanism may be important particularly in early embryonic cells, which have a large diffusion volume and that undergo rapid cell divisions. Evidence to test such a hypothesis has been, however, limited. Here, we use an embryo with both symmetric and asymmetric cell divisions and manipulate Vasa protein, an RNA-helicase, on the spindle in live sea urchin embryos. We learned that the spindle serves as a major site of translation and that protein synthesis within a single spindle can be unequal and help drive asymmetric cell divisions during embryogenesis. Recruiting Vasa to the ectopic sub-cellular region induced a new site of translation, disturbed asymmetric translation on the spindle, and changed the cell fate. Based on these observations, we conclude that Vasa functions in localized translation, which provides a spatiotemporal control in protein synthesis and is essential for rapidly developing embryonic cells. Association of mRNA translation with the mitotic spindle is thought to be involved in localized production of cell fate determinants. Here, the authors show Vasa facilitates asymmetric translation, which contributes to differential regulation during sea urchin embryogenesis.
Collapse
|
11
|
Emura N, Yajima M. Micromere formation and its evolutionary implications in the sea urchin. Curr Top Dev Biol 2021; 146:211-238. [PMID: 35152984 PMCID: PMC8868499 DOI: 10.1016/bs.ctdb.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The micromeres of the sea urchin embryo are distinct from other blastomeres. After they arise through an asymmetric cell division at the 8- to 16-cell stage, micromeres immediately function as organizers. They also commit themselves to specific cell fates such as larval skeletogenic cells and primordial germ cells, while other blastomeres remain plastic and uncommitted at the 16-cell stage. In the phylum Echinodermata, only the sea urchin (class Echinoidea) embryo forms micromeres that serve as apparent organizers during early embryogenesis. Therefore, it is considered that micromeres are the derived features and that modification(s) of the developmental system allowed evolutionary introduction of this unique cell lineage. In this chapter, we summarize the both historic and recent observations that demonstrate unique properties of micromeres and discuss how this lineage of micromeres may have arisen during echinoderm evolution.
Collapse
Affiliation(s)
- Natsuko Emura
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, Providence, RI, United States
| | - Mamiko Yajima
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, Providence, RI, United States.
| |
Collapse
|