1
|
Saez-Carrion E, Aguilar-Aragon M, García-López L, Dominguez M, Uribe ML. Metabolic Adaptations in Cancer and the Host Using Drosophila Models and Advanced Tools. Cells 2024; 13:1977. [PMID: 39682725 DOI: 10.3390/cells13231977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/31/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer is a multifactorial process involving genetic, epigenetic, physiological, and metabolic changes. The ability of tumours to regulate new reactive pathways is essential for their survival. A key aspect of this involves the decision-making process of cancer cells as they balance the exploitation of surrounding and distant tissues for their own benefit while avoiding the rapid destruction of the host. Nutrition plays a central role in these processes but is inherently limited. Understanding how tumour cells interact with non-tumoural tissues to acquire nutrients is crucial. In this review, we emphasise the utility of Drosophila melanogaster as a model organism for dissecting the complex oncogenic networks underlying these interactions. By studying various levels-from individual tumour cells to systemic markers-we can gain new insights into how cancer adapts and thrives. Moreover, developing innovative technologies, such as high-throughput methods and metabolic interventions, enhances our ability to explore how tumours adapt to different conditions. These technological advances allow us to explore tumour adaptations and open new opportunities for potential therapeutic strategies.
Collapse
Affiliation(s)
- Ernesto Saez-Carrion
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Miguel Hernández (UMH), Campus de Sant Joan, 03550 Sant Joan d'Alacant, Spain
| | - Mario Aguilar-Aragon
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Miguel Hernández (UMH), Campus de Sant Joan, 03550 Sant Joan d'Alacant, Spain
| | - Lucia García-López
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Miguel Hernández (UMH), Campus de Sant Joan, 03550 Sant Joan d'Alacant, Spain
- Faculty of Health Sciences, Universidad Europea de Valencia, 03016 Alicante, Spain
| | - Maria Dominguez
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Miguel Hernández (UMH), Campus de Sant Joan, 03550 Sant Joan d'Alacant, Spain
| | - Mary Luz Uribe
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Miguel Hernández (UMH), Campus de Sant Joan, 03550 Sant Joan d'Alacant, Spain
| |
Collapse
|
2
|
Crouigneau R, Li YF, Auxillos J, Goncalves-Alves E, Marie R, Sandelin A, Pedersen SF. Mimicking and analyzing the tumor microenvironment. CELL REPORTS METHODS 2024; 4:100866. [PMID: 39353424 PMCID: PMC11573787 DOI: 10.1016/j.crmeth.2024.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/22/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
The tumor microenvironment (TME) is increasingly appreciated to play a decisive role in cancer development and response to therapy in all solid tumors. Hypoxia, acidosis, high interstitial pressure, nutrient-poor conditions, and high cellular heterogeneity of the TME arise from interactions between cancer cells and their environment. These properties, in turn, play key roles in the aggressiveness and therapy resistance of the disease, through complex reciprocal interactions between the cancer cell genotype and phenotype, and the physicochemical and cellular environment. Understanding this complexity requires the combination of sophisticated cancer models and high-resolution analysis tools. Models must allow both control and analysis of cellular and acellular TME properties, and analyses must be able to capture the complexity at high depth and spatial resolution. Here, we review the advantages and limitations of key models and methods in order to guide further TME research and outline future challenges.
Collapse
Affiliation(s)
- Roxane Crouigneau
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yan-Fang Li
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jamie Auxillos
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Eliana Goncalves-Alves
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rodolphe Marie
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Albin Sandelin
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
| | - Stine Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
He K, Chen M, Liu J, Du S, Ren C, Zhang J. Nanomedicine for cancer targeted therapy with autophagy regulation. Front Immunol 2024; 14:1238827. [PMID: 38239356 PMCID: PMC10794438 DOI: 10.3389/fimmu.2023.1238827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
Nanoparticles have unique physical and chemical properties and are currently widely used in disease diagnosis, drug delivery, and new drug development in biomedicine. In recent years, the role of nanomedical technology in cancer treatment has become increasingly obvious. Autophagy is a multi-step degradation process in cells and an important pathway for material and energy recovery. It is closely related to the occurrence and development of cancer. Because nanomaterials are highly targeted and biosafe, they can be used as carriers to deliver autophagy regulators; in addition to their favorable physicochemical properties, nanomaterials can be employed to carry autophagy inhibitors, reducing the breakdown of chemotherapy drugs by cancer cells and thereby enhancing the drug's efficacy. Furthermore, certain nanomaterials can induce autophagy, triggering oxidative stress-mediated autophagy enhancement and cell apoptosis, thus constraining the progression of cancer cells.There are various types of nanoparticles, including liposomes, micelles, polymers, metal-based materials, and carbon-based materials. The majority of clinically applicable drugs are liposomes, though other materials are currently undergoing continuous optimization. This review begins with the roles of autophagy in tumor treatment, and then focuses on the application of nanomaterials with autophagy-regulating functions in tumor treatment.
Collapse
Affiliation(s)
- Ketai He
- Department of Neurology, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- West China School of Stomatology, Sichuan University, Sichuan, China
| | - Mingkun Chen
- West China School of Stomatology, Sichuan University, Sichuan, China
| | - Jiao Liu
- Department of Pharmacy, Chengdu Fifth People’s Hospital, Sichuan, China
| | - Shufang Du
- West China School of Stomatology, Sichuan University, Sichuan, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People’s Hospital, Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Kong R, Li J, Liu F, Ma Y, Zhao H, Zhao H, Ma M, Li Z. A feedforward loop between JAK/STAT downstream target p115 and STAT in germline stem cells. Stem Cell Reports 2023; 18:1940-1953. [PMID: 37683644 PMCID: PMC10656303 DOI: 10.1016/j.stemcr.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
The maintenance of germline stem cells (GSCs) is essential for tissue homeostasis. JAK/STAT signaling maintains GSC fate in Drosophila testis. However, how JAK/STAT signaling maintains male GSC fate through its downstream targets remains poorly understood. Here, we identify p115, a tER/cis-Golgi golgin protein, as a putative downstream target of JAK/STAT signaling. p115 maintains GSC fate independent of GM130 and GRASP65. p115 localizes in cytosol, the ER and Golgi apparatus in germline cells and is required for the morphology of the ER and Golgi apparatus. Furthermore, depletion of p115 in GSCs results in aberrant spindle orientation. Mechanistically, p115 associates with and stabilizes STAT. Finally, ectopic expression of STAT completely restores GSC loss caused by p115 depletion. Collectively, JAK/STAT signaling and p115 form a feedforward loop to maintain male GSC fate. Our work provides new insights into the regulatory mechanism of how stem cell maintenance is properly controlled by JAK/STAT signaling.
Collapse
Affiliation(s)
- Ruiyan Kong
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Juan Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Fuli Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yankun Ma
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hang Zhao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hanfei Zhao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Meifang Ma
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhouhua Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
5
|
Jiang H, Kimura T, Hai H, Yamamura R, Sonoshita M. Drosophila as a toolkit to tackle cancer and its metabolism. Front Oncol 2022; 12:982751. [PMID: 36091180 PMCID: PMC9458318 DOI: 10.3389/fonc.2022.982751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is one of the most severe health problems worldwide accounting for the second leading cause of death. Studies have indicated that cancers utilize different metabolic systems as compared with normal cells to produce extra energy and substances required for their survival, which contributes to tumor formation and progression. Recently, the fruit fly Drosophila has been attracting significant attention as a whole-body model for elucidating the cancer mechanisms including metabolism. This tiny organism offers a valuable toolkit with various advantages such as high genetic conservation and similar drug response to mammals. In this review, we introduce flies modeling for cancer patient genotypes which have pinpointed novel therapeutic targets and drug candidates in the salivary gland, thyroid, colon, lung, and brain. Furthermore, we introduce fly models for metabolic diseases such as diabetes mellitus, obesity, and cachexia. Diabetes mellitus and obesity are widely acknowledged risk factors for cancer, while cachexia is a cancer-related metabolic condition. In addition, we specifically focus on two cancer metabolic alterations: the Warburg effect and redox metabolism. Indeed, flies proved useful to reveal the relationship between these metabolic changes and cancer. Such accumulating achievements indicate that Drosophila offers an efficient platform to clarify the mechanisms of cancer as a systemic disease.
Collapse
Affiliation(s)
- Hui Jiang
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Taku Kimura
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Department of Oral Diagnosis and Medicine, Graduate school of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Han Hai
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Ryodai Yamamura
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
- *Correspondence: Ryodai Yamamura, ; Masahiro Sonoshita,
| | - Masahiro Sonoshita
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
- *Correspondence: Ryodai Yamamura, ; Masahiro Sonoshita,
| |
Collapse
|
6
|
Ren X, Zhao H, Shi L, Li Z, Kong R, Ma R, Jia L, Lu S, Wang J, Dong M, Wang Y, Li Z. Phosphorylation of Yun is required for stem cell proliferation and tumorigenesis. Cell Prolif 2022; 55:e13230. [PMID: 35437864 PMCID: PMC9136491 DOI: 10.1111/cpr.13230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 12/26/2022] Open
Abstract
Stem cells maintain adult tissue homeostasis under physiological conditions. Uncontrolled stem cell proliferation will lead to tumorigenesis. How stem cell proliferation is precisely controlled is still not fully understood. Phosphorylation of Yun is essential for ISC proliferation. Yun is essential for the proliferation of normal and transformed intestinal stem cells. Our mass spectrometry and biochemical data suggest that Yun can be phosphorylated at multiple residues in vivo. Interestingly, we show that the phosphorylation among these residues is likely interdependent. Furthermore, phosphorylation of each residue in Yun is important for its function in ISC proliferation regulation. Thus, our study unveils the important role of post-translational modification of Yun in stem cell proliferation.
Collapse
Affiliation(s)
- Xuejing Ren
- College of Life SciencesCapital Normal UniversityBeijingChina
| | - Hang Zhao
- College of Life SciencesCapital Normal UniversityBeijingChina
| | - Lin Shi
- College of Life SciencesCapital Normal UniversityBeijingChina
| | - Zhengran Li
- College of Life SciencesCapital Normal UniversityBeijingChina
| | - Ruiyan Kong
- College of Life SciencesCapital Normal UniversityBeijingChina
| | - Rui Ma
- Department of NeurologyCapital Medical UniversityBeijingChina
| | - Lemei Jia
- National Institute of Biological SciencesBeijingChina
| | - Shan Lu
- National Institute of Biological SciencesBeijingChina
| | - Jian‐Hua Wang
- National Institute of Biological SciencesBeijingChina
| | - Meng‐qiu Dong
- National Institute of Biological SciencesBeijingChina
| | - Yingchun Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Zhouhua Li
- College of Life SciencesCapital Normal UniversityBeijingChina
| |
Collapse
|
7
|
Zhao H, Ren X, Kong R, Shi L, Li Z, Wang R, Ma R, Zhao H, Liu F, Chang HC, Chen CH, Li Z. Auxilin regulates intestinal stem cell proliferation through EGFR. Stem Cell Reports 2022; 17:1120-1137. [PMID: 35427486 PMCID: PMC9133653 DOI: 10.1016/j.stemcr.2022.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/11/2022] Open
Abstract
Adult tissue homeostasis is maintained by residential stem cells. The proliferation and differentiation of adult stem cells must be tightly balanced to avoid excessive proliferation or premature differentiation. However, how stem cell proliferation is properly controlled remains elusive. Here, we find that auxilin (Aux) restricts intestinal stem cell (ISC) proliferation mainly through EGFR signaling. aux depletion leads to excessive ISC proliferation and midgut homeostasis disruption, which is unlikely caused by defective Notch signaling. Aux is expressed in multiple types of intestinal cells. Interestingly, aux depletion causes a dramatic increase in EGFR signaling, with a strong accumulation of EGFR at the plasma membrane and an increased expression of EGFR ligands in response to tissue stress. Furthermore, Aux co-localizes and associates with EGFR. Finally, blocking EGFR signaling completely suppresses the defects caused by aux depletion. Together, these data demonstrate that Aux mainly safeguards EGFR activation to keep a proper ISC proliferation rate to maintain midgut homeostasis.
Collapse
Affiliation(s)
- Hang Zhao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xuejing Ren
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ruiyan Kong
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Lin Shi
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhengran Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Runqi Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Rui Ma
- Department of Neurology, Capital Medical University, Beijing 100053, China
| | - Huiqing Zhao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Fuli Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Henry C Chang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Chun-Hong Chen
- Division of Molecular and Genomic Medicine, National Health Research Institute, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Zhouhua Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
8
|
Tzou FY, Wen JK, Yeh JY, Huang SY, Chen GC, Chan CC. Drosophila as a model to study autophagy in neurodegenerative diseases and digestive tract. IUBMB Life 2021; 74:339-360. [PMID: 34874101 DOI: 10.1002/iub.2583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022]
Abstract
Autophagy regulates cellular homeostasis by degrading and recycling cytosolic components and damaged organelles. Disruption of autophagic flux has been shown to induce or facilitate neurodegeneration and accumulation of autophagic vesicles is overt in neurodegenerative diseases. The fruit fly Drosophila has been used as a model system to identify new factors that regulate physiology and disease. Here we provide a historical perspective of how the fly models have offered mechanistic evidence to understand the role of autophagy in neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Charcot-Marie-Tooth neuropathy, and polyglutamine disorders. Autophagy also plays a pivotal role in maintaining tissue homeostasis and protecting organism health. The gastrointestinal tract regulates organism health by modulating food intake, energy balance, and immunity. Growing evidence is strengthening the link between autophagy and digestive tract health in recent years. Here, we also discuss how the fly models have advanced the understanding of digestive physiology regulated by autophagy.
Collapse
Affiliation(s)
- Fei-Yang Tzou
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Jung-Kun Wen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jui-Yu Yeh
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Guang-Chao Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
9
|
Mathematical Analysis for the Effects of Medicine Supplies to a Solid Tumor. Symmetry (Basel) 2021. [DOI: 10.3390/sym13111988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective: 1. Interpretation of the variations of solute medicine amount in blood vessels and TAF concentration with respect to the flow rates of injected drugs into liver and heart. 2. Description of the alteration of tumor cell density versus the time and radius variations. Methodology: Step 1. Compartmental analysis is adopted for the concentration of chemotaxis caused by injected substances L and H based on the assumption: two different medicines I1 and I2 are injected into heart and liver to recover the functions of each organ, respectively, without any side effects. Step 2. A partial differential equation is derived for the growth of TAF considering the diffusion of TAF and the rate of decay of TAF according to the disturbance of medicine M in blood vessels. Step 3. A partial differential equation is derived for the motion of tumor cells in the lights of random motility and chemotaxis in response to TAF gradients. Step 4. Exact solutions are obtained for the concentration of chemotaxis caused by injected substances L and H under the assumption that the loss of mass is proportional to mass itself. Step 5. Exact solution is obtained for the partial differential equation describing the growth of TAF using the separation of variables. Step 6. A finite volume approach is executed to search approximated solutions due to the complexity of the partial differential equation describing the motion of tumor cells. Results: 1. The concentration of medicine (M) decreases as the ratio of flow rate from heart into vessel to flow rate from liver into heart (k1k2) increases. 2. TAF concentration increases with the growth of the value of ratio k1k2 and TAF shows the smallest concentration when the flow rate of each injected medicine is similar. 3. Tumor cells react highly sensitive as soon as medicine supplies and tumor cell’s density is decreased drastically at the moment of medicine injection. 4. Tumor cell density decreases exponentially at an early stage and the density decrease is developed in a fluctuating manner along the radius. Conclusions: 1. The presented mathematical approach has the potential for the profound analysis of the variations of solute medicine amount in blood vessels, TAF concentration, and the alteration of tumor cell density according to the functional recoveries of liver and heart. 2. The mathematical approach may be applicable in the investigation of tumor cell’s behavior on the basis of complex interaction among five represented organs: kidney, liver, heart, spleen, and lung. A mathematical approach is developed to describe the variation of a solid tumor cell density in response to drug supply. The investigation is progressed based on the assumption that two different medicines, I1 and I2, are injected into heart and liver with flow rates k1 and k2 to recover the functions of each organ, respectively. A medicine function system for the reactions of tumor angiogenic factors (TAF) to medicine injection is obtained using a compartmental analysis. The mathematical governing equations for tumor cells motion are derived taking into account random motility and chemotaxis in response to TAF gradients and a finite volume method with time-changing is adopted to obtain numerical solutions due to the complexity of the governing equations. The variation of the flow rates k1 and k2 exerts profound influences on the concentration of medicine, and similar flow rate of k1 and k2 produces the greatest amount of medicine in blood vessels and suppresses strong inhibition in TAF movement. Tumor cells react very sensitively to drug injection and the tumor cell density decreases to less than 20% at an early stage of administration. However, the density of tumor cell diminishes slowly after the early stage of sudden change and the duration for complete therapy of tumor cells requires a long time.
Collapse
|
10
|
Liu F, Zhao H, Kong R, Shi L, Li Z, Ma R, Zhao H, Li Z. Derlin-1 and TER94/VCP/p97 are required for intestinal homeostasis. J Genet Genomics 2021; 49:195-207. [PMID: 34547438 DOI: 10.1016/j.jgg.2021.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 12/30/2022]
Abstract
Adult stem cells are critical for the maintenance of residential tissue homeostasis and functions. However, the roles of cellular protein homeostasis maintenance in stem cell proliferation and tissue homeostasis are not fully understood. Here, we find that Derlin-1 and TER94/VCP/p97, components of the ER-associated degradation (ERAD) pathway, restrain intestinal stem cell proliferation to maintain intestinal homeostasis in adult Drosophila. Depleting any of them results in increased stem cell proliferation and midgut homeostasis disruption. Derlin-1 is specifically expressed in the ER of progenitors and its C-terminus is required for its function. Interestingly, we find that increased stem cell proliferation is resulted from elevated ROS levels and activated JNK signaling in Derlin-1- or TER94-deficient progenitors. Further removal of ROS or inhibition of JNK signaling almost completely suppressed increased stem cell proliferation. Together, these data demonstrate that the ERAD pathway is critical for stem cell proliferation and tissue homeostasis. Thus we provide insights into our understanding of the mechanisms underlying cellular protein homeostasis maintenance (ER protein quality control) in tissue homeostasis and tumor development.
Collapse
Affiliation(s)
- Fuli Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hang Zhao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ruiyan Kong
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Lin Shi
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhengran Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Rui Ma
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Huiqing Zhao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhouhua Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|