1
|
He YY, Jin DD, Li B, Li Y, Li MY, Yan GJ, Yang ZM. Regulation and function of inosine monophosphate dehydrogenase 2 cytoophidia during mouse and human decidualization. Cell Signal 2025; 132:111795. [PMID: 40209967 DOI: 10.1016/j.cellsig.2025.111795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/24/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
Decidualization is essential for establishing pregnancy in both mice and humans. Cellular stresses, including nucleolar stress and DNA damage, are involved in this process. Inosine monophosphate dehydrogenase (IMPDH), the rate-limiting enzyme for de novo guanosine triphosphate (GTP) synthesis, forms membrane-free macromolecular structures called "cytoophidia" under specific conditions. However, whether IMPDH cytoophidia are present during decidualization remains unknown. In this study, we found that IMPDH2 cytoophidia are primarily detected in mouse decidual cells during early pregnancy. On day 5 of pregnancy, more IMPDH2 cytoophidia are observed at implantation sites than at inter-implantation sites. Physiologically, uteri activated by estrogen exhibit more IMPDH2 cytoophidia than those maintained in a delayed state by progesterone. Although GTP is required for in vitro decidualization in mice, elevated GTP level impairs this process. Furthermore, IMPDH2 cytoophidia can induce nucleolar stress and DNA damage in mice. In the human endometrium, IMPDH2 cytoophidia are observed during the menstrual cycle, particularly enriched in the secretory phase. They promote human decidualization and naturally enhance cellular senescence. Our findings highlight the physiological relevance of IMPDH2 cytoophidia during early pregnancy in mice and humans.
Collapse
Affiliation(s)
- Yu-Ying He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Dan-Dan Jin
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Bo Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yue Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Meng-Yuan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Gui-Jun Yan
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Nanjing University Medical School, Nanjing 210008, China
| | - Zeng-Ming Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
2
|
Ball STM, Hennessy MJ, Tan Y, Hoettges KF, Perkins ND, Wilkinson DJ, White MRH, Zheng Y, Turner DA. Domain-specific AI segmentation of IMPDH2 rod/ring structures in mouse embryonic stem cells. BMC Biol 2025; 23:126. [PMID: 40350411 PMCID: PMC12067766 DOI: 10.1186/s12915-025-02226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/28/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Inosine monophosphate dehydrogenase 2 (IMPDH2) is an enzyme that catalyses the rate-limiting step of guanine nucleotides. In mouse embryonic stem cells (ESCs), IMPDH2 forms large multi-protein complexes known as rod-ring (RR) structures that dissociate when ESCs differentiate. Manual analysis of RR structures from confocal microscopy images, although possible, is not feasible on a large scale due to the quantity of RR structures present in each field of view. To address this analysis bottleneck, we have created a fully automatic RR image classification pipeline to segment, characterise and measure feature distributions of these structures in ESCs. RESULTS We find that this model can automatically segment images with a Dice score of over 80% for both rods and rings for in-domain images compared to expert annotation, with a slight drop to 70% for datasets out of domain. Important feature measurements derived from these segmentations show high agreement with the measurements derived from expert annotation, achieving an R2 score of over 90% for counting the number of RRs over the dataset. CONCLUSIONS We have established for the first time a quantitative baseline for RR distribution in pluripotent ESCs and have made a pipeline available for training to be applied to other models in which RR remain an open topic of study.
Collapse
Affiliation(s)
- Samuel T M Ball
- Institute of Life-Course and Medical Sciences, Faculty of Health and Life Sciences, William Henry Duncan Building, University of Liverpool, Liverpool, UK
| | - Meagan J Hennessy
- Institute of Life-Course and Medical Sciences, Faculty of Health and Life Sciences, William Henry Duncan Building, University of Liverpool, Liverpool, UK
| | - Yuhan Tan
- Institute of Life-Course and Medical Sciences, Faculty of Health and Life Sciences, William Henry Duncan Building, University of Liverpool, Liverpool, UK
- Department of Electrical and Electronic Engineering, Faculty of Science and Engineering, University of Liverpool, Liverpool, UK
| | - Kai F Hoettges
- Department of Electrical and Electronic Engineering, Faculty of Science and Engineering, University of Liverpool, Liverpool, UK
| | - Neil D Perkins
- Faculty of Medical Sciences, Biosciences Institute, University of Newcastle, Newcastle, UK
| | - David J Wilkinson
- Institute of Life-Course and Medical Sciences, Faculty of Health and Life Sciences, William Henry Duncan Building, University of Liverpool, Liverpool, UK
| | - Michael R H White
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Yalin Zheng
- Institute of Life-Course and Medical Sciences, Faculty of Health and Life Sciences, William Henry Duncan Building, University of Liverpool, Liverpool, UK
| | - David A Turner
- Institute of Life-Course and Medical Sciences, Faculty of Health and Life Sciences, William Henry Duncan Building, University of Liverpool, Liverpool, UK.
| |
Collapse
|
3
|
Chang CC, Peng M, Keppeke GD, Tsai LK, Zhang Z, Pai LM, Sung LY, Liu JL. Y12C mutation disrupts IMPDH cytoophidia and alters cancer metabolism. FEBS J 2025. [PMID: 40186514 DOI: 10.1111/febs.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 12/17/2024] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Guanosine triphosphate (GTP) is a building block for DNA and RNA, and plays a pivotal role in various cellular functions, serving as an energy source, enzyme cofactor and a key component of signal transduction. The activity of the rate-limiting enzyme in de novo GTP synthesis, inosine monophosphate dehydrogenase (IMPDH), is regulated by nucleotide binding. Recent studies have illuminated that IMPDH octamers can assemble into linear polymers, adding another dimension to its enzymatic regulation. This polymerisation reduces IMPDH's sensitivity to the inhibitory effects of GTP binding, thereby augmenting its activity under conditions with elevated GTP levels. Within cells, IMPDH polymers may cluster to form the distinctive structure known as the cytoophidium, which is postulated to reflect the cellular demand for increased GTP concentrations. Nevertheless, the functional significance of IMPDH polymerisation in in vivo metabolic regulation remains unclear. In this study, we report the widespread presence of IMPDH cytoophidia in various human cancer tissues. Utilising the ABEmax base editor, we introduced a Y12C point mutation into IMPDH2 across multiple cancer cell lines. This mutation disrupts the polymerisation interface of IMPDH and prevents cytoophidium assembly. In some cancer xenografts, the absence of IMPDH polymers led to a downregulation of IMPDH, as well as the glycolytic and pentose phosphate pathways. Furthermore, mutant HeLa-cell-derived xenografts were notably smaller than their wild-type counterparts. Our data suggest that IMPDH polymerisation and cytoophidium assembly could be instrumental in modulating metabolic homeostasis in certain cancers, offering insights into the clinical relevance of IMPDH cytoophidium.
Collapse
Affiliation(s)
- Chia-Chun Chang
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Min Peng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Gerson Dierley Keppeke
- School of Life Science and Technology, ShanghaiTech University, China
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Li-Kuang Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Ziheng Zhang
- School of Life Science and Technology, ShanghaiTech University, China
| | - Li-Mei Pai
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, China
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK
| |
Collapse
|
4
|
Li YL, Liu JL. Cytoophidium complexes resonate with cell fates. Cell Mol Life Sci 2025; 82:54. [PMID: 39836171 PMCID: PMC11751279 DOI: 10.1007/s00018-025-05578-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/23/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
Metabolism is a fundamental characteristic of life. In 2010, we discovered that the metabolic enzyme CTP synthase (CTPS) can assemble a snake like structure inside cells, which we call the cytoophidium. Including CTPS, an increasing number of metabolic enzymes have been found to form cytoophidia in cells. However, the distribution and relationship among cytoophidia formed by different metabolic enzymes remain elusive. Here we investigate five metabolic enzymes that can form cytoophidia, namely Asn1, Bna5, CTPS (i.e. Ura7), Glt1, and Prs5 in Saccharomyces cerevisiae. We find that multiple cytoophidia can be assembled into cytoophidium complexes by docking one after another. Glt1 cytoophidia tend to assemble in non-quiescent cells, while CTPS cytoophidia are more abundant in quiescent cells and form complexes with Prs5 and Asn1 cytoophidia. Blocking CTPS cytoophidium assembly can lead to a non-quiescent phenotype and increase the assembly of Glt1 cytoophidia, Bna5 cytoophidia, and a cytoophidium complex of them. Blocking CTPS cytoophidium assembly also inhibits the NAD biosynthesis pathway, which includes Bna5 and Sir2. Consistent with this result, the non-quiescent phenotype caused by blocking CTPS cytoophidium assembly can be rescued by blocking Glt1 cytoophidium assembly, supplementing nicotinic acid, or overexpressing Sir2. Our results indicate that the assembly of cytoophidium complexes with different compositions resonates with distinct cell fates.
Collapse
Affiliation(s)
- Yi-Lan Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
| |
Collapse
|
5
|
Peng M, Keppeke GD, Tsai LK, Chang CC, Liu JL, Sung LY. The IMPDH cytoophidium couples metabolism and fetal development in mice. Cell Mol Life Sci 2024; 81:210. [PMID: 38717553 PMCID: PMC11078715 DOI: 10.1007/s00018-024-05233-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024]
Abstract
The cytoophidium is an evolutionarily conserved subcellular structure formed by filamentous polymers of metabolic enzymes. In vertebrates, inosine monophosphate dehydrogenase (IMPDH), which catalyses the rate-limiting step in guanosine triphosphate (GTP) biosynthesis, is one of the best-known cytoophidium-forming enzymes. Formation of the cytoophidium has been proposed to alleviate the inhibition of IMPDH, thereby facilitating GTP production to support the rapid proliferation of certain cell types such as lymphocytes, cancer cells and pluripotent stem cells (PSCs). However, past studies lacked appropriate models to elucidate the significance of IMPDH cytoophidium under normal physiological conditions. In this study, we demonstrate that the presence of IMPDH cytoophidium in mouse PSCs correlates with their metabolic status rather than pluripotency. By introducing IMPDH2 Y12C point mutation through genome editing, we established mouse embryonic stem cell (ESC) lines incapable of forming IMPDH polymers and the cytoophidium. Our data indicate an important role of IMPDH cytoophidium in sustaining a positive feedback loop that couples nucleotide biosynthesis with upstream metabolic pathways. Additionally, we find that IMPDH2 Y12C mutation leads to decreased cell proliferation and increased DNA damage in teratomas, as well as impaired embryo development following blastocoel injection. Further analysis shows that IMPDH cytoophidium assembly in mouse embryonic development begins after implantation and gradually increases throughout fetal development. These findings provide insights into the regulation of IMPDH polymerisation in embryogenesis and its significance in coordinating cell metabolism and development.
Collapse
Affiliation(s)
- Min Peng
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Gerson D Keppeke
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Li-Kuang Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Chia-Chun Chang
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
- Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 106, Taiwan.
- Center for Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
6
|
Keppeke GD, Chang CC, Zhang Z, Liu JL. Effect on cell survival and cytoophidium assembly of the adRP-10-related IMPDH1 missense mutation Asp226Asn. Front Cell Dev Biol 2023; 11:1234592. [PMID: 37731818 PMCID: PMC10507268 DOI: 10.3389/fcell.2023.1234592] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/17/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction: Inosine monophosphate dehydrogenase 1 (IMPDH1) is a critical enzyme in the retina, essential for the correct functioning of photoreceptor cells. Mutations in IMPDH1 have been linked to autosomal dominant retinitis pigmentosa subtype 10 (adRP-10), a genetic eye disorder. Some of these mutations such as the Asp226Asn (D226N) lead to the assembly of large filamentous structures termed cytoophidia. D226N also gives IMPDH1 resistance to feedback inhibition by GDP/GTP. This study aims to emulate the adRP-10 condition with a long-term expression of IMPDH1-D226N in vitro and explore cytoophidium assembly and cell survival. We also assessed whether the introduction of an additional mutation (Y12C) to disrupt the cytoophidium has an attenuating effect on the toxicity caused by the D226N mutation. Results: Expression of IMPDH1-D226N in HEp-2 cells resulted in cytoophidium assembly in ∼70% of the cells, but the presence of the Y12C mutation disrupted the filaments. Long-term cell survival was significantly affected by the presence of the D226N mutation, with a decrease of ∼40% in the cells expressing IMPDH1-D226N when compared to IMPDH1-WT; however, survival was significantly recovered in IMPDH1-Y12C/D226N, with only a ∼10% decrease when compared to IMPDH1-WT. On the other hand, the IMPDH1 expression level in the D226N-positive cells was <30% of that of the IMPDH1-WT-positive cells and only slightly higher in the Y12C/D226N, suggesting that although cell survival in Y12C/D226N was recovered, higher expression levels of the mutated IMPDH1 were not tolerated by the cells in the long term. Conclusion: The IMPDH1-D226N effect on photoreceptor cell survival may be the result of a sum of problems: nucleotide unbalance plus a toxic long-life cytoophidium, supported by the observation that by introducing Y12C in IMPDH1 the cytoophidium was disrupted and cell survival significantly recovered, but not the sensibility to GDP/GTP regulation since higher expression levels of IMPDH1-D226N were not tolerated.
Collapse
Affiliation(s)
- Gerson Dierley Keppeke
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
- Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Chia-Chun Chang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Ziheng Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Chang CC, Peng M, Zhong J, Zhang Z, Keppeke GD, Sung LY, Liu JL. Molecular crowding facilitates bundling of IMPDH polymers and cytoophidium formation. Cell Mol Life Sci 2022; 79:420. [PMID: 35833994 PMCID: PMC11072341 DOI: 10.1007/s00018-022-04448-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022]
Abstract
The cytoophidium is a unique type of membraneless compartment comprising of filamentous protein polymers. Inosine monophosphate dehydrogenase (IMPDH) catalyzes the rate-limiting step of de novo GTP biosynthesis and plays critical roles in active cell metabolism. However, the molecular regulation of cytoophidium formation is poorly understood. Here we show that human IMPDH2 polymers bundle up to form cytoophidium-like aggregates in vitro when macromolecular crowders are present. The self-association of IMPDH polymers is suggested to rely on electrostatic interactions. In cells, the increase of molecular crowding with hyperosmotic medium induces cytoophidia, while the decrease of that by the inhibition of RNA synthesis perturbs cytoophidium assembly. In addition to IMPDH, CTPS and PRPS cytoophidium could be also induced by hyperosmolality, suggesting a universal phenomenon of cytoophidium-forming proteins. Finally, our results indicate that the cytoophidium can prolong the half-life of IMPDH, which is proposed to be one of conserved functions of this subcellular compartment.
Collapse
Affiliation(s)
- Chia-Chun Chang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Min Peng
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Jiale Zhong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ziheng Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Gerson Dierley Keppeke
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, SP, 04023-062, Brazil
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
| |
Collapse
|
8
|
Sun Z, Zhang Z, Wang QQ, Liu JL. Combined Inactivation of CTPS1 and ATR Is Synthetically Lethal to MYC-Overexpressing Cancer Cells. Cancer Res 2022; 82:1013-1024. [PMID: 35022212 PMCID: PMC9359733 DOI: 10.1158/0008-5472.can-21-1707] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/30/2021] [Accepted: 12/28/2021] [Indexed: 01/07/2023]
Abstract
The "undruggable" oncogene MYC supports cancer cell proliferation and survival through parallel induction of multiple anabolic processes. Here we find that inhibiting CTP synthase (CTPS) selectively decreases cell viability and induces DNA replication stress in MYC-overexpressing cells. MYC-driven rRNA synthesis caused the selective DNA replication stress upon CTPS inhibition. Combined inhibition of CTPS and ataxia telangiectasia and Rad3-related protein (ATR) is synthetically lethal in MYC-overexpressing cells, promoting cell death in vitro and decreasing tumor growth in vivo. Unexpectedly, interfering with CTPS1 but not CTPS2 is required to induce replication stress in MYC-deregulated cancer cells and consequent cell death in the presence of an ATR inhibitor. These results highlight a specific and key role of CTPS1 in MYC-driven cancer, suggesting that selectively inhibiting CTPS1 in combination with ATR could be a promising strategy to combat disease progression. SIGNIFICANCE Inhibition of CTPS in MYC-overexpressing cells blocks pyrimidine synthesis while maintaining ribosome synthesis activity to create an anabolic imbalance that induces replication stress, providing a new approach to selectively target MYC-driven cancer. See related commentary by Chabanon and Postel-Vinay, p. 969.
Collapse
Affiliation(s)
- Zhe Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ziheng Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qiao-Qi Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Corresponding Author: Ji-Long Liu, School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China. Phone: 8618-2176-28315; E-mail:
| |
Collapse
|
9
|
Cleghorn WM, Burrell AL, Giarmarco MM, Brock DC, Wang Y, Chambers ZS, Du J, Kollman JM, Brockerhoff SE. A highly conserved zebrafish IMPDH retinal isoform produces the majority of guanine and forms dynamic protein filaments in photoreceptor cells. J Biol Chem 2022; 298:101441. [PMID: 34813793 PMCID: PMC8688572 DOI: 10.1016/j.jbc.2021.101441] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 12/18/2022] Open
Abstract
Inosine monophosphate dehydrogenase (IMPDH) is a key regulatory enzyme in the de novo synthesis of the purine base guanine. Dominant mutations in human IMPDH1 cause photoreceptor degeneration for reasons that are unknown. Here, we sought to provide some foundational information on Impdh1a in the zebrafish retina. We found that in zebrafish, gene subfunctionalization due to ancestral duplication resulted in a predominant retinal variant expressed exclusively in rod and cone photoreceptors. This variant is structurally and functionally similar to the human IMPDH1 retinal variant and shares a reduced sensitivity to GTP-mediated inhibition. We also demonstrated that Impdh1a forms prominent protein filaments in vitro and in vivo in both rod and cone photoreceptor cell bodies, synapses, and to a lesser degree, in outer segments. These filaments changed length and cellular distribution throughout the day consistent with diurnal changes in both mRNA and protein levels. The loss of Impdh1a resulted in a substantial reduction of guanine levels, although cellular morphology and cGMP levels remained normal. Our findings demonstrate a significant role for IMPDH1 in photoreceptor guanine production and provide fundamental new information on the details of this protein in the zebrafish retina.
Collapse
Affiliation(s)
- Whitney M Cleghorn
- Department of Biochemistry, University of Washington, Seattle, Washington, USA; Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| | - Anika L Burrell
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | | | - Daniel C Brock
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Yekai Wang
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Department of Biochemistry, West Virginia University, Morgantown, West Virginia, USA
| | - Zachary S Chambers
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Department of Biochemistry, West Virginia University, Morgantown, West Virginia, USA
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Susan E Brockerhoff
- Department of Biochemistry, University of Washington, Seattle, Washington, USA; Department of Ophthalmology, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
10
|
Drosophila intestinal homeostasis requires CTP synthase. Exp Cell Res 2021; 408:112838. [PMID: 34560103 DOI: 10.1016/j.yexcr.2021.112838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022]
Abstract
CTP synthase (CTPS) senses all four nucleotides and forms filamentous structures termed cytoophidia in all three domains of life. How CTPS and cytoophidia function in a developmental context, however, remains underexplored. We report that CTPS forms cytoophidia in a subset of cells in the Drosophila midgut. We found that cytoophidia exist in intestinal stem cells (ISC) and enteroblasts in similar proportions. Both refeeding after starvation and feeding with dextran sulfate sodium (DSS) induce ISC proliferation and elongate cytoophidia. Knockdown of CTPS inhibits ISC proliferation. Remarkably, disruption of CTPS cytoophidia inhibits DSS-induced ISC proliferation. Taken together, these data suggest that both the expression level and the filament-form property of CTPS are crucial for intestinal homeostasis in Drosophila.
Collapse
|