1
|
Nisa-Castro-Neto W, Wagner PGC, Kipper D, da Silveira VP, Fonseca ASK, Ikuta N, Lunge VR. Mitochondrial Genome and Phylogenetic Analysis of the Narrownose Smooth-Hound Shark Mustelus schmitti Springer, 1939. Animals (Basel) 2024; 14:3396. [PMID: 39682362 DOI: 10.3390/ani14233396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Southern Brazil is home to a large biodiversity of elasmobranchs from the Brazilian coast. Several genera and species of small sharks of the Triakidae family live in this marine environment. Studies on these shark species are scarce, with few genetic data and little information on animal population structures. The present study aimed to sequence the complete mitochondrial genome (mtDNA) of the endangered species Mustelus schmitti (narrownose smooth-hound shark) and to perform a phylogenetic analysis of the Triakidae family. The mtDNA sequenced here was 16,764 bp long and possessed the usual 13 mitochondrial protein coding genes (PCGs), 22 tRNAs, two rRNAs (12S and 16S) and a large D-loop DNA sequence, presenting an overall organization similar to other species from the genus Mustelus. Phylogenetic analyses were performed using a dataset containing this new mtDNA and 59 other mitochondrial genomes of the Carcharhiniformes species (including 14 from the Triakidae family), using the Maximum Likelihood (ML) method. All the species of the Triakidae family were clustered into a monophyletic topology group. In addition, polyphyly was observed in Galeorhinus galeus, Hemiatrakis japanica, Triakis megalopterus and Triakis semifasciata. In conclusion, this study contributes to a deeper understanding of the genetic diversity of sharks and represents an important step towards the conservation of these endangered animals.
Collapse
Affiliation(s)
- Walter Nisa-Castro-Neto
- Organização para a Pesquisa e a Conservação de Esqualos no Brasil (PRÓ-SQUALUS), Torres 905560-000, RS, Brazil
- Instituto de Biotecnologia/Programa de Pós-Graduação em Biotecnologia (PPGBIO), Universidade de Caxias do Sul (UCS), Caxias do Sul 95070-560, RS, Brazil
| | - Paulo Guilherme Carniel Wagner
- Organização para a Pesquisa e a Conservação de Esqualos no Brasil (PRÓ-SQUALUS), Torres 905560-000, RS, Brazil
- Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA/RS)/Centro de Triagem de Animais Silvestres (CETAS/RS), Porto Alegre 90160-070, RS, Brazil
| | - Diéssy Kipper
- Simbios Biotecnologia, Cachoeirinha 94950-000, RS, Brazil
| | | | | | - Nilo Ikuta
- Simbios Biotecnologia, Cachoeirinha 94950-000, RS, Brazil
| | - Vagner Ricardo Lunge
- Instituto de Biotecnologia/Programa de Pós-Graduação em Biotecnologia (PPGBIO), Universidade de Caxias do Sul (UCS), Caxias do Sul 95070-560, RS, Brazil
- Simbios Biotecnologia, Cachoeirinha 94950-000, RS, Brazil
| |
Collapse
|
2
|
Wu J, Liu F, Jiao J, Luo H, Fan S, Liu J, Wang H, Cui N, Zhao N, Qu Q, Kuraku S, Huang Z, Xu L. Comparative genomics illuminates karyotype and sex chromosome evolution of sharks. CELL GENOMICS 2024; 4:100607. [PMID: 38996479 PMCID: PMC11406177 DOI: 10.1016/j.xgen.2024.100607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/01/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
Chondrichthyes is an important lineage to reconstruct the evolutionary history of vertebrates. Here, we analyzed genome synteny for six chondrichthyan chromosome-level genomes. Our comparative analysis reveals a slow evolutionary rate of chromosomal changes, with infrequent but independent fusions observed in sharks, skates, and chimaeras. The chondrichthyan common ancestor had a proto-vertebrate-like karyotype, including the presence of 18 microchromosome pairs. The X chromosome is a conversed microchromosome shared by all sharks, suggesting a likely common origin of the sex chromosome at least 181 million years ago. We characterized the Y chromosomes of two sharks that are highly differentiated from the X except for a small young evolutionary stratum and a small pseudoautosomal region. We found that shark sex chromosomes lack global dosage compensation but that dosage-sensitive genes are locally compensated. Our study on shark chromosome evolution enhances our understanding of shark sex chromosomes and vertebrate chromosome evolution.
Collapse
Affiliation(s)
- Jiahong Wu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Fujiang Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jie Jiao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Haoran Luo
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China; Key Laboratory of Ministry of Education for the Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shiyu Fan
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jiao Liu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Hongxiang Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ning Cui
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ning Zhao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China; Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qingming Qu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shigehiro Kuraku
- Molecular Life History Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Shizuoka, Japan; Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Japan
| | - Zhen Huang
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Luohao Xu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Mayeur H, Leyhr J, Mulley J, Leurs N, Michel L, Sharma K, Lagadec R, Aury JM, Osborne OG, Mulhair P, Poulain J, Mangenot S, Mead D, Smith M, Corton C, Oliver K, Skelton J, Betteridge E, Dolucan J, Dudchenko O, Omer AD, Weisz D, Aiden EL, McCarthy S, Sims Y, Torrance J, Tracey A, Howe K, Baril T, Hayward A, Martinand-Mari C, Sanchez S, Haitina T, Martin K, Korsching SI, Mazan S, Debiais-Thibaud M. The sensory shark: high-quality morphological, genomic and transcriptomic data for the small-spotted catshark Scyliorhinus canicula reveal the molecular bases of sensory organ evolution in jawed vertebrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595469. [PMID: 39005470 PMCID: PMC11244906 DOI: 10.1101/2024.05.23.595469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Cartilaginous fishes (chimaeras and elasmobranchs -sharks, skates and rays) hold a key phylogenetic position to explore the origin and diversifications of jawed vertebrates. Here, we report and integrate reference genomic, transcriptomic and morphological data in the small-spotted catshark Scyliorhinus canicula to shed light on the evolution of sensory organs. We first characterise general aspects of the catshark genome, confirming the high conservation of genome organisation across cartilaginous fishes, and investigate population genomic signatures. Taking advantage of a dense sampling of transcriptomic data, we also identify gene signatures for all major organs, including chondrichthyan specializations, and evaluate expression diversifications between paralogs within major gene families involved in sensory functions. Finally, we combine these data with 3D synchrotron imaging and in situ gene expression analyses to explore chondrichthyan-specific traits and more general evolutionary trends of sensory systems. This approach brings to light, among others, novel markers of the ampullae of Lorenzini electro-sensory cells, a duplication hotspot for crystallin genes conserved in jawed vertebrates, and a new metazoan clade of the Transient-receptor potential (TRP) family. These resources and results, obtained in an experimentally tractable chondrichthyan model, open new avenues to integrate multiomics analyses for the study of elasmobranchs and jawed vertebrates.
Collapse
|
4
|
Kuraku S. Enigmatic Nodal and Lefty gene repertoire discrepancy: Latent evolutionary history revealed by vertebrate-wide phylogeny. Dev Dyn 2024. [PMID: 38647085 DOI: 10.1002/dvdy.710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Homology in vertebrate body plans is traditionally ascribed to the high-level conservation of regulatory components within the genetic programs governing them, particularly during the "phylotypic stage." However, advancements in embryology and molecular phylogeny have unveiled the dynamic nature of gene repertoires responsible for early development. Notably, the Nodal and Lefty genes, members of the transforming growth factor-beta superfamily producing intercellular signaling molecules and crucial for left-right (L-R) symmetry breaking, exhibit distinctive features within their gene repertoires. These features encompass among-species gene repertoire variations resulting from gene gain and loss, as well as gene conversion. Despite their significance, these features have been largely unexplored in a phylogenetic context, but accumulating genome-wide sequence information is allowing the scrutiny of these features. It has exposed hidden paralogy between Nodal1 and Nodal2 genes resulting from differential gene loss in amniotes. In parallel, the tandem cluster of Lefty1 and Lefty2 genes, which was thought to be confined to mammals, is observed in sharks and rays, with an unexpected phylogenetic pattern. This article provides a comprehensive review of the current understanding of the origins of these vertebrate gene repertoires and proposes a revised nomenclature based on the elucidated history of vertebrate genome evolution.
Collapse
Affiliation(s)
- Shigehiro Kuraku
- Molecular Life History Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Shizuoka, Japan
- Department of Genetics, Sokendai (Graduate University for Advanced Studies), Shizuoka, Japan
| |
Collapse
|
5
|
Torralba Sáez M, Hofreiter M, Straube N. Shark genome size evolution and its relationship with cellular, life-history, ecological, and diversity traits. Sci Rep 2024; 14:8909. [PMID: 38632352 PMCID: PMC11024215 DOI: 10.1038/s41598-024-59202-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Among vertebrates, sharks exhibit both large and heterogeneous genome sizes ranging from 2.86 to 17.05 pg. Aiming for a better understanding of the patterns and causalities of shark genome size evolution, we applied phylogenetic comparative methods to published genome-size estimates for 71 species representing the main phylogenetic lineages, life-histories and ecological traits. The sixfold range of genome size variation was strongly traceable throughout the phylogeny, with a major expansion preceding shark diversification during the late Paleozoic and an ancestral state (6.33 pg) close to the present-day average (6.72 pg). Subsequent deviations from this average occurred at higher rates in squalomorph than in galeomorph sharks and were unconnected to evolutionary changes in the karyotype architecture, which were dominated by descending disploidy events. Genome size was positively correlated with cell and nucleus sizes and negatively with metabolic rate. The metabolic constraints on increasing genome size also manifested at higher phenotypic scales, with large genomes associated with slow lifestyles and purely marine waters. Moreover, large genome sizes were also linked to non-placental reproductive modes, which may entail metabolically less demanding embryological developments. Contrary to ray-finned fishes, large genome size was associated neither with the taxonomic diversity of affected clades nor with low genetic diversity.
Collapse
Affiliation(s)
- Mario Torralba Sáez
- Ichthyology Section, Bavarian State Collection of Zoology (SNSB-ZSM), 81247, Munich, Germany
- Systematic Zoology, Department Biology II, Faculty of Biology, Ludwig Maximilian University of Munich (LMU), 82152, Munich, Germany
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Nicolas Straube
- Department of Natural History, University Museum Bergen, University of Bergen (UiB), 5007, Bergen, Norway.
| |
Collapse
|
6
|
Ermakova GV, Meyntser IV, Zaraisky AG, Bayramov AV. Loss of noggin1, a classic embryonic inducer gene, in elasmobranchs. Sci Rep 2024; 14:3805. [PMID: 38360907 PMCID: PMC10869764 DOI: 10.1038/s41598-024-54435-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/13/2024] [Indexed: 02/17/2024] Open
Abstract
Secreted proteins of the Noggin family serve as pivotal regulators of early development and cell differentiation in all multicellular animals, including vertebrates. Noggin1 was identified first among all Noggins. Moreover, it was described as the first known embryonic inducer specifically secreted by the Spemann organizer and capable of inducing a secondary body axis when expressed ectopically. In the classical default model of neural induction, Noggin1 is presented as an antagonist of BMP signalling, playing a role as a neural inducer. Additionally, Noggin1 is involved in the dorsalization of embryonic mesoderm and later controls the differentiation of various tissues, including muscles, bones, and neural crest derivatives. Hitherto, noggin1 was found in all studied vertebrates. Here, we report the loss of noggin1 in elasmobranchs (sharks, rays and skates), which is a unique case among vertebrates. noggin2 and noggin4 retained in this group and studied in the embryos of the grey bamboo shark Chiloscyllium griseum revealed similarities in expression patterns and functional properties with their orthologues described in other vertebrates. The loss of noggin1 in elasmobranchs may be associated with histological features of the formation of their unique internal cartilaginous skeleton, although additional research is required to establish functional connections between these events.
Collapse
Affiliation(s)
- Galina V Ermakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Irina V Meyntser
- Moskvarium Center for Oceanography and Marine Biology, Moscow, 129223, Russia
| | - Andrey G Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia.
| | - Andrey V Bayramov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| |
Collapse
|
7
|
Yamaguchi K, Uno Y, Kadota M, Nishimura O, Nozu R, Murakumo K, Matsumoto R, Sato K, Kuraku S. Elasmobranch genome sequencing reveals evolutionary trends of vertebrate karyotype organization. Genome Res 2023; 33:1527-1540. [PMID: 37591668 PMCID: PMC10620051 DOI: 10.1101/gr.276840.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 07/31/2023] [Indexed: 08/19/2023]
Abstract
Genomic studies of vertebrate chromosome evolution have long been hindered by the scarcity of chromosome-scale DNA sequences of some key taxa. One of those limiting taxa has been the elasmobranchs (sharks and rays), which harbor species often with numerous chromosomes and enlarged genomes. Here, we report the chromosome-scale genome assembly for the zebra shark Stegostoma tigrinum, an endangered species that has a relatively small genome among sharks (3.71 Gb), as well as for the whale shark Rhincodon typus Our analysis using a male-female comparison identified an X Chromosome, the first genomically characterized shark sex chromosome. The X Chromosome harbors the Hox C cluster whose intact linkage has not been shown for an elasmobranch fish. The sequenced shark genomes show a gradualism of chromosome length with remarkable length-dependent characteristics-shorter chromosomes tend to have higher GC content, gene density, synonymous substitution rate, and simple tandem repeat content as well as smaller gene length and lower interspersed repeat content. We challenge the traditional binary classification of karyotypes as with and without so-called microchromosomes. Even without microchromosomes, the length-dependent characteristics persist widely in nonmammalian vertebrates. Our investigation of elasmobranch karyotypes underpins their unique characteristics and provides clues for understanding how vertebrate karyotypes accommodate intragenomic heterogeneity to realize a complex readout. It also paves the way to dissecting more genomes with variable sizes to be sequenced at high quality.
Collapse
Affiliation(s)
- Kazuaki Yamaguchi
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), 650-0047, Kobe, Japan
| | - Yoshinobu Uno
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), 650-0047, Kobe, Japan
| | - Mitsutaka Kadota
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), 650-0047, Kobe, Japan
| | - Osamu Nishimura
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), 650-0047, Kobe, Japan
| | - Ryo Nozu
- Okinawa Churashima Research Center, Okinawa Churashima Foundation, 905-0206, Okinawa, Japan
| | | | | | - Keiichi Sato
- Okinawa Churashima Research Center, Okinawa Churashima Foundation, 905-0206, Okinawa, Japan
- Okinawa Churaumi Aquarium, 905-0206, Okinawa, Japan
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), 650-0047, Kobe, Japan;
- Molecular Life History Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, 411-8540, Mishima, Japan
- Department of Genetics, Sokendai (Graduate University for Advanced Studies), 411-8540, Mishima, Japan
| |
Collapse
|
8
|
Falcon F, Tanaka EM, Rodriguez-Terrones D. Transposon waves at the water-to-land transition. Curr Opin Genet Dev 2023; 81:102059. [PMID: 37343338 DOI: 10.1016/j.gde.2023.102059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023]
Abstract
The major transitions in vertebrate evolution are associated with significant genomic reorganizations. In contrast to the evolutionary processes that occurred at the origin of vertebrates or prior to the radiation of teleost fishes, no whole-genome duplication events occurred during the water-to-land transition, and it remains an open question how did genome dynamics contribute to this prominent evolutionary event. Indeed, the recent sequencing of sarcopterygian and amphibian genomes has revealed that the extant lineages immediately preceding and succeeding this transition harbor an exceptional number of transposable elements and it is tempting to speculate that these sequences might have catalyzed the adaptations that enabled vertebrates to venture into land. Here, we review the genome dynamics associated with the major transitions in vertebrate evolution and discuss how the highly repetitive genomic landscapes revealed by recent efforts to characterize the genomes of amphibians and sarcopterygians argue for turbulent genome dynamics occurring before the water-to-land transition and possibly enabling it.
Collapse
Affiliation(s)
- Francisco Falcon
- Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter, 1030, Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria. https://twitter.com/@FcoJFalcon
| | - Elly M Tanaka
- Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter, 1030, Vienna, Austria.
| | - Diego Rodriguez-Terrones
- Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter, 1030, Vienna, Austria.
| |
Collapse
|
9
|
Gayford JH, Godfrey H, Whitehead DA. Ontogenetic morphometry of the brown smoothhound shark Mustelus henlei with implications for ecology and evolution. J Morphol 2023; 284:e21608. [PMID: 37458085 DOI: 10.1002/jmor.21608] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 07/18/2023]
Abstract
The central tenet of ecomorphology links ecological and morphological variation through the process of selection. Traditionally used to rationalise morphological differences between taxa, an ecomorphological approach is increasingly being utilised to study morphological differences expressed through ontogeny. Elasmobranchii (sharks, rays and skates) is one clade in which such ontogenetic shifts in body form have been reported. Such studies are limited to a relatively small proportion of total elasmobranch ecological and morphological diversity, and questions remain regarding the extent to which ecological selection are driving observed morphometric trends. In this study, we report ontogenetic growth trajectories obtained via traditional linear morphometrics from a large data set of the brown smoothhound shark (Mustelus henlei). We consider various morphological structures including the caudal, dorsal and pectoral fins, as well as several girth measurements. We use an ecomorphological approach to infer the broad ecological characteristics of this population and refine understanding of the selective forces underlying the evolution of specific morphological structures. We suggest that observed scaling trends in M. henlei are inconsistent with migratory behaviour, but do not contradict a putative trophic niche shift. We also highlight the role of predation pressure and sex-based ecological differences in driving observed trends in morphometry, a factor which has previously been neglected when considering the evolution of body form in sharks.
Collapse
Affiliation(s)
- Joel H Gayford
- Department of Life Sciences, Imperial College London, Ascot, UK
- Marine Research and Conservation Department, Investigación Tiburones México A.C, La Paz, Mexico
- Shark Measurements, London, UK
| | - Hana Godfrey
- Marine Research and Conservation Department, Investigación Tiburones México A.C, La Paz, Mexico
| | - Darren A Whitehead
- Marine Research and Conservation Department, Investigación Tiburones México A.C, La Paz, Mexico
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, México
| |
Collapse
|
10
|
Jeanne F, Bernay B, Sourdaine P. Comparative Proteome Analysis of Four Stages of Spermatogenesis in the Small-Spotted Catshark ( Scyliorhinus canicula), Using High-Resolution NanoLC-ESI-MS/MS. J Proteome Res 2023. [PMID: 37290099 DOI: 10.1021/acs.jproteome.3c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Spermatogenesis is a highly specialized process of cell proliferation and differentiation leading to the production of spermatozoa from spermatogonial stem cells. Due to its testicular anatomy, Scyliorhinus canicula is an interesting model to explore stage-based changes in proteins during spermatogenesis. The proteomes of four testicular zones corresponding to the germinative niche and to spermatocysts (cysts) with spermatogonia (zone A), cysts with spermatocytes (zone B), cysts with young spermatids (zone C), and cysts with late spermatids (zone D) have been analyzed by nanoLC-ESI-MS/MS. Gene ontology and KEGG annotations were also performed. A total of 3346 multiple protein groups were identified. Zone-specific protein analyses highlighted RNA-processing, chromosome-related processes, cilium organization, and cilium activity in zones A, D, C, and D, respectively. Analyses of proteins with zone-dependent abundance revealed processes related to cellular stress, ubiquitin-dependent degradation by the proteasome, post-transcriptional regulation, and regulation of cellular homeostasis. Our results also suggest that the roles of some proteins, such as ceruloplasmin, optineurin, the pregnancy zone protein, PA28β or the Culling-RING ligase 5 complex, as well as some uncharacterized proteins, during spermatogenesis could be further explored. Finally, the study of this shark species allows one to integrate these data in an evolutionary context of the regulation of spermatogenesis. Mass spectrometry data are freely accessible via iProX-integrated Proteome resources (https://www.iprox.cn/) for reuse purposes.
Collapse
Affiliation(s)
- Fabian Jeanne
- Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 8067, 14032 Caen cedex 5, France
| | - Benoît Bernay
- Université de Caen Normandie - Plateforme PROTEOGEN, US EMerode, 14032 Caen cedex 5, France
| | - Pascal Sourdaine
- Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 8067, 14032 Caen cedex 5, France
| |
Collapse
|
11
|
López-Romero FA, Stumpf S, Kamminga P, Böhmer C, Pradel A, Brazeau MD, Kriwet J. Shark mandible evolution reveals patterns of trophic and habitat-mediated diversification. Commun Biol 2023; 6:496. [PMID: 37156994 PMCID: PMC10167336 DOI: 10.1038/s42003-023-04882-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 04/27/2023] [Indexed: 05/10/2023] Open
Abstract
Environmental controls of species diversity represent a central research focus in evolutionary biology. In the marine realm, sharks are widely distributed, occupying mainly higher trophic levels and varied dietary preferences, mirrored by several morphological traits and behaviours. Recent comparative phylogenetic studies revealed that sharks present a fairly uneven diversification across habitats, from reefs to deep-water. We show preliminary evidence that morphological diversification (disparity) in the feeding system (mandibles) follows these patterns, and we tested hypotheses linking these patterns to morphological specialisation. We conducted a 3D geometric morphometric analysis and phylogenetic comparative methods on 145 specimens representing 90 extant shark species using computed tomography models. We explored how rates of morphological evolution in the jaw correlate with habitat, size, diet, trophic level, and taxonomic order. Our findings show a relationship between disparity and environment, with higher rates of morphological evolution in reef and deep-water habitats. Deep-water species display highly divergent morphologies compared to other sharks. Strikingly, evolutionary rates of jaw disparity are associated with diversification in deep water, but not in reefs. The environmental heterogeneity of the offshore water column exposes the importance of this parameter as a driver of diversification at least in the early part of clade history.
Collapse
Affiliation(s)
- Faviel A López-Romero
- University of Vienna, Faculty of Earth Sciences, Geography and Astronomy, Department of Palaeontology, Evolutionary Morphology Research Group, Josef-Holaubek-Platz 2, 1190, Vienna, Austria.
- University of Vienna, Vienna Doctoral School of Ecology and Evolution (VDSEE), Djerassiplatz 1, 1030, Vienna, Austria.
| | - Sebastian Stumpf
- University of Vienna, Faculty of Earth Sciences, Geography and Astronomy, Department of Palaeontology, Evolutionary Morphology Research Group, Josef-Holaubek-Platz 2, 1190, Vienna, Austria
| | - Pepijn Kamminga
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands
| | - Christine Böhmer
- MECADEV UMR 7179 CNRS/MNHN, Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, CP 55, 57 rue Cuvier, 75231, Paris, France
- Department für Geo- und Umweltwissenschaften und GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Straße 10, 80333, München, Germany
- Zoologisches Institut, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Alan Pradel
- CR2P, Centre de Recherche en Paléontologie - Paris, Muséum National d'Histoire Naturelle-Sorbonne Université-CNRS, CP 38, 57 rue Cuvier, F75231, Paris, Cedex 05, France
| | - Martin D Brazeau
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, London, UK
- The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Jürgen Kriwet
- University of Vienna, Faculty of Earth Sciences, Geography and Astronomy, Department of Palaeontology, Evolutionary Morphology Research Group, Josef-Holaubek-Platz 2, 1190, Vienna, Austria
- University of Vienna, Vienna Doctoral School of Ecology and Evolution (VDSEE), Djerassiplatz 1, 1030, Vienna, Austria
| |
Collapse
|
12
|
Marlétaz F, de la Calle-Mustienes E, Acemel RD, Paliou C, Naranjo S, Martínez-García PM, Cases I, Sleight VA, Hirschberger C, Marcet-Houben M, Navon D, Andrescavage A, Skvortsova K, Duckett PE, González-Rajal Á, Bogdanovic O, Gibcus JH, Yang L, Gallardo-Fuentes L, Sospedra I, Lopez-Rios J, Darbellay F, Visel A, Dekker J, Shubin N, Gabaldón T, Nakamura T, Tena JJ, Lupiáñez DG, Rokhsar DS, Gómez-Skarmeta JL. The little skate genome and the evolutionary emergence of wing-like fins. Nature 2023; 616:495-503. [PMID: 37046085 PMCID: PMC10115646 DOI: 10.1038/s41586-023-05868-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 02/21/2023] [Indexed: 04/14/2023]
Abstract
Skates are cartilaginous fish whose body plan features enlarged wing-like pectoral fins, enabling them to thrive in benthic environments1,2. However, the molecular underpinnings of this unique trait remain unclear. Here we investigate the origin of this phenotypic innovation by developing the little skate Leucoraja erinacea as a genomically enabled model. Analysis of a high-quality chromosome-scale genome sequence for the little skate shows that it preserves many ancestral jawed vertebrate features compared with other sequenced genomes, including numerous ancient microchromosomes. Combining genome comparisons with extensive regulatory datasets in developing fins-including gene expression, chromatin occupancy and three-dimensional conformation-we find skate-specific genomic rearrangements that alter the three-dimensional regulatory landscape of genes that are involved in the planar cell polarity pathway. Functional inhibition of planar cell polarity signalling resulted in a reduction in anterior fin size, confirming that this pathway is a major contributor to batoid fin morphology. We also identified a fin-specific enhancer that interacts with several hoxa genes, consistent with the redeployment of hox gene expression in anterior pectoral fins, and confirmed its potential to activate transcription in the anterior fin using zebrafish reporter assays. Our findings underscore the central role of genome reorganization and regulatory variation in the evolution of phenotypes, shedding light on the molecular origin of an enigmatic trait.
Collapse
Affiliation(s)
- Ferdinand Marlétaz
- Centre for Life's Origin and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK.
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan.
| | - Elisa de la Calle-Mustienes
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Rafael D Acemel
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
- Epigenetics and Sex Development Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Christina Paliou
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Silvia Naranjo
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Pedro Manuel Martínez-García
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Ildefonso Cases
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Victoria A Sleight
- Department of Zoology, University of Cambridge, Cambridge, UK
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Marina Marcet-Houben
- Barcelona Supercomputing Centre (BCS-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Dina Navon
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, USA
| | - Ali Andrescavage
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, USA
| | - Ksenia Skvortsova
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Paul Edward Duckett
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Álvaro González-Rajal
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Ozren Bogdanovic
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Johan H Gibcus
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Liyan Yang
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lourdes Gallardo-Fuentes
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Ismael Sospedra
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Javier Lopez-Rios
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Fabrice Darbellay
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
- School of Natural Sciences, University of California, Merced, CA, USA
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Neil Shubin
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BCS-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Tetsuya Nakamura
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, USA.
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain.
| | - Darío G Lupiáñez
- Epigenetics and Sex Development Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany.
| | - Daniel S Rokhsar
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| |
Collapse
|
13
|
Kuraku S, Kaiya H, Tanaka T, Hyodo S. Evolution of Vertebrate Hormones and Their Receptors: Insights from Non-Osteichthyan Genomes. Annu Rev Anim Biosci 2023; 11:163-182. [PMID: 36400012 DOI: 10.1146/annurev-animal-050922-071351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Homeostatic control and reproductive functions of humans are regulated at the molecular levels largely by peptide hormones secreted from endocrine and/or neuroendocrine cells in the central nervous system and peripheral organs. Homologs of those hormones and their receptors function similarly in many vertebrate species distantly related to humans, but the evolutionary history of the endocrine system involving those factors has been obscured by the scarcity of genome DNA sequence information of some taxa that potentially contain their orthologs. Focusing on non-osteichthyan vertebrates, namely jawless and cartilaginous fishes, this article illustrates how investigating genome sequence information assists our understanding of the diversification of vertebrate gene repertoires in four broad themes: (a) the presence or absence of genes, (b) multiplication and maintenance of paralogs, (c) differential fates of duplicated paralogs, and (d) the evolutionary timing of gene origins.
Collapse
Affiliation(s)
- Shigehiro Kuraku
- Molecular Life History Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan; .,Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Japan.,Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Hiroyuki Kaiya
- Grandsoul Research Institute of Immunology, Inc., Uda, Japan
| | - Tomohiro Tanaka
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
14
|
Fujimori C, Umatani C, Chimura M, Ijiri S, Bando H, Hyodo S, Kanda S. In vitro and in vivo gene transfer in the cloudy catshark Scyliorhinus torazame. Dev Growth Differ 2022; 64:558-565. [PMID: 36376176 PMCID: PMC10099843 DOI: 10.1111/dgd.12824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022]
Abstract
Cartilaginous fishes have various unique physiological features such as a cartilaginous skeleton and a urea-based osmoregulation strategy for adaptation to their marine environment. Also, because they are a sister group of bony vertebrates, understanding their unique features is important from an evolutionary perspective. However, genetic engineering based on gene functions as well as cellular behavior has not been effectively utilized in cartilaginous fishes. This is partly because their reproductive strategy involves internal fertilization, which results in difficulty in microinjection into fertilized eggs at the early developmental stage. Here, to identify efficient gene transfer methods in cartilaginous fishes, we examined the effects of various methods both in vitro and in vivo using the cloudy catshark, a candidate model cartilaginous fish species. In all methods, green fluorescent protein (GFP) expression was used to evaluate exogenous gene transfer. First, we examined gene transfer into primary cultured cells from cloudy catshark embryos by lipofection, polyethylenimine (PEI) transfection, adenovirus infection, baculovirus infection, and electroporation. Among the methods tested, lipofection, electroporation, and baculovirus infection enabled the successful transfer of exogenous genes into primary cultured cells. We then attempted in vivo transfection into cloudy catshark embryos by electroporation and baculovirus infection. Although baculovirus-injected groups did not show GFP fluorescence, electroporation successfully introduced GFP into muscle cells. Furthermore, we succeeded in GFP transfer into adult tissues by electroporation. The in vitro and in vivo gene transfer methods that worked in this study may open ways for genetic manipulation including knockout experiments and cellular lineage analysis in cartilaginous fishes.
Collapse
Affiliation(s)
- Chika Fujimori
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Chie Umatani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Misaki Chimura
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Shigeho Ijiri
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Hisanori Bando
- Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Susumu Hyodo
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Shinji Kanda
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
15
|
Nishimura O, Rozewicki J, Yamaguchi K, Tatsumi K, Ohishi Y, Ohta T, Yagura M, Niwa T, Tanegashima C, Teramura A, Hirase S, Kawaguchi A, Tan M, D'Aniello S, Castro F, Machado A, Koyanagi M, Terakita A, Misawa R, Horie M, Kawasaki J, Asahida T, Yamaguchi A, Murakumo K, Matsumoto R, Irisarri I, Miyamoto N, Toyoda A, Tanaka S, Sakamoto T, Semba Y, Yamauchi S, Yamada K, Nishida K, Kiyatake I, Sato K, Hyodo S, Kadota M, Uno Y, Kuraku S. Squalomix: shark and ray genome analysis consortium and its data sharing platform. F1000Res 2022; 11:1077. [PMID: 36262334 PMCID: PMC9561540 DOI: 10.12688/f1000research.123591.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/31/2022] [Indexed: 01/13/2023] Open
Abstract
The taxon Elasmobranchii (sharks and rays) contains one of the long-established evolutionary lineages of vertebrates with a tantalizing collection of species occupying critical aquatic habitats. To overcome the current limitation in molecular resources, we launched the Squalomix Consortium in 2020 to promote a genome-wide array of molecular approaches, specifically targeting shark and ray species. Among the various bottlenecks in working with elasmobranchs are their elusiveness and low fecundity as well as the large and highly repetitive genomes. Their peculiar body fluid composition has also hindered the establishment of methods to perform routine cell culturing required for their karyotyping. In the Squalomix consortium, these obstacles are expected to be solved through a combination of in-house cytological techniques including karyotyping of cultured cells, chromatin preparation for Hi-C data acquisition, and high fidelity long-read sequencing. The resources and products obtained in this consortium, including genome and transcriptome sequences, a genome browser powered by JBrowse2 to visualize sequence alignments, and comprehensive matrices of gene expression profiles for selected species are accessible through https://github.com/Squalomix/info.
Collapse
Affiliation(s)
- Osamu Nishimura
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 657-0024, Japan
| | - John Rozewicki
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 657-0024, Japan
| | - Kazuaki Yamaguchi
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 657-0024, Japan
| | - Kaori Tatsumi
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 657-0024, Japan
| | - Yuta Ohishi
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 657-0024, Japan
| | - Tazro Ohta
- Joint Support-Center for Data Science Research, Database Center for Life Science, Mishima, Shizuoka, 411-8540, Japan
| | - Masaru Yagura
- Molecular Life History Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Taiki Niwa
- Molecular Life History Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan,Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka, Japan
| | - Chiharu Tanegashima
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 657-0024, Japan
| | - Akinori Teramura
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, University of Tokyo, Hamamatsu, Shizuoka, 431-0214, Japan
| | - Shotaro Hirase
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, University of Tokyo, Hamamatsu, Shizuoka, 431-0214, Japan
| | - Akane Kawaguchi
- Molecular Life History Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Milton Tan
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Salvatore D'Aniello
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | - Filipe Castro
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal,Faculty of Sciences, University of Porto, Porto, Portugal
| | - André Machado
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Mitsumasa Koyanagi
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, Osaka, Osaka, Japan
| | - Akihisa Terakita
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, Osaka, Osaka, Japan
| | - Ryo Misawa
- Japan Fisheries Research and Education Agency, Hachinohe, Aomori, Japan
| | - Masayuki Horie
- Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka, Japan
| | - Junna Kawasaki
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| | - Takashi Asahida
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Atsuko Yamaguchi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Nagasaki, Japan
| | | | | | - Iker Irisarri
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature-Zoology, Hamburg, 20146, Germany
| | - Norio Miyamoto
- X-STAR, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Sho Tanaka
- School of Marine Science and Technology, Tokai University, Shizuoka, Shizuoka, Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute, Graduate School of Natural Science and Technology, Okayama University, Setouchi, Japan., Okayama, Japan
| | - Yasuko Semba
- Highly Migratory Resources Division, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Shizuoka, Shizuoka, Japan
| | | | - Kazuyuki Yamada
- Marine Science Museum, Tokai University, Shizuoka, Shizuoka, Japan
| | | | | | - Keiichi Sato
- Okinawa Churaumi Aquarium, Motobu, Okinawa, Japan
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo,, Kashiwa, Chiba, Japan
| | - Mitsutaka Kadota
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 657-0024, Japan
| | - Yoshinobu Uno
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Tokyo, Japan
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 657-0024, Japan,Molecular Life History Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan,Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka, Japan,
| |
Collapse
|