1
|
Abarrategui B, Mariani V, Rizzi M, Berta L, Scarpa P, Zauli FM, Squarza S, Banfi P, d’Orio P, Cardinale F, Del Vecchio M, Caruana F, Avanzini P, Sartori I. Language lateralization mapping (reversibly) masked by non-dominant focal epilepsy: a case report. Front Hum Neurosci 2023; 17:1254779. [PMID: 37900727 PMCID: PMC10600519 DOI: 10.3389/fnhum.2023.1254779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/15/2023] [Indexed: 10/31/2023] Open
Abstract
Language lateralization in patients with focal epilepsy frequently diverges from the left-lateralized pattern that prevails in healthy right-handed people, but the mechanistic explanations are still a matter of debate. Here, we debate the complex interaction between focal epilepsy, language lateralization, and functional neuroimaging techniques by introducing the case of a right-handed patient with unaware focal seizures preceded by aphasia, in whom video-EEG and PET examination suggested the presence of focal cortical dysplasia in the right superior temporal gyrus, despite a normal structural MRI. The functional MRI for language was inconclusive, and the neuropsychological evaluation showed mild deficits in language functions. A bilateral stereo-EEG was proposed confirming the right superior temporal gyrus origin of seizures, revealing how ictal aphasia emerged only once seizures propagated to the left superior temporal gyrus and confirming, by cortical mapping, the left lateralization of the posterior language region. Stereo-EEG-guided radiofrequency thermocoagulations of the (right) focal cortical dysplasia not only reduced seizure frequency but led to the normalization of the neuropsychological assessment and the "restoring" of a classical left-lateralized functional MRI pattern of language. This representative case demonstrates that epileptiform activity in the superior temporal gyrus can interfere with the functioning of the contralateral homologous cortex and its associated network. In the case of presurgical evaluation in patients with epilepsy, this interference effect must be carefully taken into consideration. The multimodal language lateralization assessment reported for this patient further suggests the sensitivity of different explorations to this interference effect. Finally, the neuropsychological and functional MRI changes after thermocoagulations provide unique cues on the network pathophysiology of focal cortical dysplasia and the role of diverse techniques in indexing language lateralization in complex scenarios.
Collapse
Affiliation(s)
- Belén Abarrategui
- “Claudio Munari” Epilepsy Surgery Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Neurology, Hospital Universitario Puerta de Hierro, Majadahonda, Spain
| | - Valeria Mariani
- “Claudio Munari” Epilepsy Surgery Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Neurology and Stroke Unit, ASST Santi Paolo e Carlo, Presidio San Carlo Borromeo, Milan, Italy
| | - Michele Rizzi
- “Claudio Munari” Epilepsy Surgery Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luca Berta
- Department of Medical Physics, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Pina Scarpa
- Cognitive Neuropsychology Centre, Department of Neuroscience, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Flavia Maria Zauli
- “Claudio Munari” Epilepsy Surgery Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, Italy
- Department of Philosophy “P. Martinetti”, Università degli Studi di Milano, Milan, Italy
| | - Silvia Squarza
- Department of Neuroradiology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Paola Banfi
- Neurology and Stroke Unit, ASST Sette Laghi Ospedale di Circolo, Varese, Italy
| | - Piergiorgio d’Orio
- “Claudio Munari” Epilepsy Surgery Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Unit of Neuroscience, Department of Medicine and Surgery, Università degli Studi di Parma, Parma, Italy
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Francesco Cardinale
- “Claudio Munari” Epilepsy Surgery Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Unit of Neuroscience, Department of Medicine and Surgery, Università degli Studi di Parma, Parma, Italy
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Maria Del Vecchio
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Fausto Caruana
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Pietro Avanzini
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Ivana Sartori
- “Claudio Munari” Epilepsy Surgery Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
2
|
Ramon C, Graichen U, Gargiulo P, Zanow F, Knösche TR, Haueisen J. Spatiotemporal phase slip patterns for visual evoked potentials, covert object naming tasks, and insight moments extracted from 256 channel EEG recordings. Front Integr Neurosci 2023; 17:1087976. [PMID: 37384237 PMCID: PMC10293627 DOI: 10.3389/fnint.2023.1087976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/19/2023] [Indexed: 06/30/2023] Open
Abstract
Phase slips arise from state transitions of the coordinated activity of cortical neurons which can be extracted from the EEG data. The phase slip rates (PSRs) were studied from the high-density (256 channel) EEG data, sampled at 16.384 kHz, of five adult subjects during covert visual object naming tasks. Artifact-free data from 29 trials were averaged for each subject. The analysis was performed to look for phase slips in the theta (4-7 Hz), alpha (7-12 Hz), beta (12-30 Hz), and low gamma (30-49 Hz) bands. The phase was calculated with the Hilbert transform, then unwrapped and detrended to look for phase slip rates in a 1.0 ms wide stepping window with a step size of 0.06 ms. The spatiotemporal plots of the PSRs were made by using a montage layout of 256 equidistant electrode positions. The spatiotemporal profiles of EEG and PSRs during the stimulus and the first second of the post-stimulus period were examined in detail to study the visual evoked potentials and different stages of visual object recognition in the visual, language, and memory areas. It was found that the activity areas of PSRs were different as compared with EEG activity areas during the stimulus and post-stimulus periods. Different stages of the insight moments during the covert object naming tasks were examined from PSRs and it was found to be about 512 ± 21 ms for the 'Eureka' moment. Overall, these results indicate that information about the cortical phase transitions can be derived from the measured EEG data and can be used in a complementary fashion to study the cognitive behavior of the brain.
Collapse
Affiliation(s)
- Ceon Ramon
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, United States
- Regional Epilepsy Center, Harborview Medical Center, University of Washington, Seattle, WA, United States
| | - Uwe Graichen
- Department of Biostatistics and Data Science, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Paolo Gargiulo
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland
- Department of Science, Landspitali University Hospital, Reykjavik, Iceland
| | | | - Thomas R. Knösche
- Max Planck Institute for Human Cognitive and Neurosciences, Leipzig, Germany
| | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| |
Collapse
|
3
|
The Optimal Dose of Amobarbital in the Wada Test for the Presurgical Evaluation of Patients With Temporal Lobe Epilepsy. Clin Neuropharmacol 2020; 43:185-190. [PMID: 32969970 DOI: 10.1097/wnf.0000000000000411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The use of amobarbital in the Wada test varied between epilepsy centers, with no unified dosing or protocols available in the literature to standardize its use. We aimed to determine the dose of amobarbital in the presurgical evaluations of patients with temporal lobe epilepsy. METHODS A retrospective study of patients with temporal lobe epilepsy seen between January 2004 and December 2018 in King Faisal Specialist Hospital and Research Centre in Jeddah, Saudi Arabia, was conducted, and those who successfully underwent a Wada test were studied. A neuropsychologist or a neurologist will assess the memory and language, using standardized testing. RESULTS A total of 90 patients were studied. The mean age was 30 years (range, 16-52 years), where 49 (57%) of them were men. All patients had a routine neurological examination, including language and memory. The average dose of amobarbital given was 10.1.1 mg (range, 65.7-150 mg). There was no statistical difference between the dosing given to patients who passed or failed the memory testing (101.4 mg vs 94.7 mg, P = 0.1). Multivariate regression analysis showed that amobarbital dose needed an adjustment to patient's weight only for those older than 30 years, (P < 0.05; 95% confidence interval, 0.1-0.5), where an increase in the dose by 0.3 mg·kg·y was required to execute Wada test successfully. CONCLUSION It was only the patient's age that could influence the modification of Amobarbital dose in the Wada test, yet establishing a universal protocol is challenging because of the lack of well-defined dose determinants.
Collapse
|
4
|
Xing X, Pei W, Wang Y, Liu Z, Chen H. Design of High-Density Electrodes For EEG Acquisition. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:1295-1298. [PMID: 30440628 DOI: 10.1109/embc.2018.8512577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In a 256-channel electrode cap for electroencephalogram (EEG) acquisition, the inter-space between adjacent electrodes is around 20mm. Theoretical and experimental evidence predict that improving the density of electrode can get more information from the added electrodes. 10mm or less center distance, corresponding to 1000 electrodes on a full head EEG cap, might be a more proper density to current EEG analysis methods. To develop high-density electrode array with center distance equal or less than 10mm, one must make sure that the adjacent electrodes are electrical isolated. It is difficult to avoid short circuit when common wet electrodes are used to build high-density electrode array. The contact area (about 28mm2 with diameter of 6mm) and gelling method make short circuit easily happen. To provide more isolation space between adjacent electrodes, the contact area of the proposed electrode should be less than 8mm2. To restrict the diffusion of the electrolyte, a customized hydrogel is used to replace the conventional gel. Compared with common wet electrode and gel, preliminary tests indicate that the high-density hydrogel-Ag/AgCl electrodes perform well at the impedance, isolation, as well as data quality in EEG acquisition.
Collapse
|
6
|
Ramon C, Holmes MD. Stochastic Behavior of Phase Synchronization Index and Cross-Frequency Couplings in Epileptogenic Zones during Interictal Periods Measured with Scalp dEEG. Front Neurol 2013; 4:57. [PMID: 23720651 PMCID: PMC3655632 DOI: 10.3389/fneur.2013.00057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/30/2013] [Indexed: 11/29/2022] Open
Abstract
The stochastic behavior of the phase synchronization index (SI) and cross-frequency couplings on different days during a hospital stay of three epileptic patients was studied for non-invasive localization of the epileptogenic areas from high density, 256-channel, scalp EEG (dEEG) recordings. The study was performed with short-duration (0–180 s), seizure-free, epileptiform-free, and spike-free interictal dEEG data on different days of three subjects. The seizure areas were localized with subdural recordings with an 8 × 8 macro-electrode grid array and strip electrodes. The study was performed in theta (3–7 Hz), alpha (7–12 Hz), beta (12–30 Hz), and low gamma (30–50 Hz) bands. A detrended fluctuation analysis was used to find the long range temporal correlations in the SI that reveals the stochastic behavior of the SI in a given time period. The phase synchronization was computed after taking Hilbert transform of the EEG data. Contour plots were constructed with 20 s time-frames using a montage of the layout of 256 electrode positions. It was found that the stochastic behavior of the SI was higher in epileptogenic areas and in nearby areas on different days for each subject. The low gamma band was found to be the best to localize the epileptic sites. Also, a stable higher pattern of SI emerged after 60–120 s in the epileptogenic areas. The cross-frequency couplings of SI in theta–gamma, beta–gamma, and alpha–gamma bands were decreased and spatial patterns were fragmented in epileptogenic areas. Combinations of an increase in the stochastic behavior of the SI and decrease in cross-frequency couplings are potential markers to assist in localizing epileptogenic areas. These findings suggest that it is possible to localize the epileptogenic areas non-invasively from a short-duration (∼180 s), seizure-free and spike-free interictal scalp dEEG recordings.
Collapse
Affiliation(s)
- Ceon Ramon
- Department of Electrical Engineering, University of Washington Seattle, WA, USA ; Department of Bioengineering, Reykjavik University Reykjavik, Iceland
| | | |
Collapse
|
7
|
Bembich S, Demarini S, Clarici A, Massaccesi S, Grasso DL. Non-invasive assessment of hemispheric language dominance by optical topography during a brief passive listening test: a pilot study. Med Sci Monit 2012; 17:CR692-7. [PMID: 22129900 PMCID: PMC3628146 DOI: 10.12659/msm.882128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background The Wada test is usually used for pre-surgical assessment of language lateralization. Considering its invasiveness and risk of complications, alternative methods have been proposed but they are not always applicable to non-cooperative patients. In this study we explored the possibility of using optical topography (OT) – a multichannel near-infrared system – for non-invasive assessment of hemispheric language dominance during passive listening. Material/Methods Cortical activity was monitored in a sample of healthy, adult Italian native speakers, all right-handed. We assessed changes in oxy-haemoglobin concentration in temporal, parietal and posterior frontal lobes during a passive listening of bi-syllabic words and vowel-consonant-vowel syllables lasting less then 3 minutes. Activated channels were identified by t tests. Results Left hemisphere showed significant activity only during the passive listening of bi-syllabic words. Specifically, the superior temporal gyrus, the supramarginal gyrus and the posterior inferior parietal lobe were activated. Conclusions During passive listening of bi-syllabic words, right handed healthy adults showed a significant activation in areas already known to be involved in speech comprehension. Although more research is needed, OT proved to be a promising alternative to the Wada test for non-invasive assessment of hemispheric language lateralization, even if using a particularly brief trial, which has been designed for future applications with non-cooperative subjects.
Collapse
Affiliation(s)
- Stefano Bembich
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy.
| | | | | | | | | |
Collapse
|