Pharmacologically induced absence seizures
versus kindling in Wistar rats.
North Clin Istanb 2020;
7:25-34. [PMID:
32232200 PMCID:
PMC7103736 DOI:
10.14744/nci.2019.80664]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 01/03/2019] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE:
This study aimed to investigate the effects of γ-butyrolactone (GBL), a prodrug of gamma-Hydroxybutyric acid -induced absence seizures on the development of kindling in Wistar rats.
METHODS:
Three groups of adult male Wistar rats under anesthesia were implanted with bilateral cortical recording electrodes for the GBL group (GBL) and/or bipolar stimulation electrodes into the right basolateral amygdala for the Kindling group (KI) alone and Kindling plus GBL group (GBL+KI). Rats in the KI and GBL+KI groups were stimulated twice daily at the afterdischarge threshold until they reached Racine’s stage 5 seizure state. The animals in the GBL + group had an i.p injection of GBL 20 minutes before each electrical stimulation, and the effects of GBL-induced seizures on the development of kindling were investigated. The animals in the GBL group were injected GBL twice daily i.p. for 15 days without receiving any electrical stimulation.
RESULTS:
The KI animals reached stage 5 seizure stage at 12th stimulations, whereas the GBL+KI rats reached at 27th stimulations. The mean numbers of stimulations needed for the development of the first stage 3, 4, or 5 generalized seizures were significantly higher in the GBL+KI group than the KI group.
CONCLUSION:
The resistance to amygdala kindling in the GBL model can be modulated by the absence seizure mechanism alone, without the intervention of an abnormal genetic background.
Collapse