1
|
Connolly MJ, Jiang S, Samuel LC, Gutekunst CA, Gross RE, Devergnas A. Seizure onset and offset pattern determine the entrainment of the cortex and substantia nigra in the nonhuman primate model of focal temporal lobe seizures. PLoS One 2024; 19:e0307906. [PMID: 39197026 PMCID: PMC11356443 DOI: 10.1371/journal.pone.0307906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/13/2024] [Indexed: 08/30/2024] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common form of drug-resistant epilepsy. A major focus of human and animal studies on TLE network has been the limbic circuit. However, there is also evidence suggesting an active role of the basal ganglia in the propagation and control of temporal lobe seizures. Here, we characterize the involvement of the substantia nigra (SN) and somatosensory cortex (SI) during temporal lobe (TL) seizures induced by penicillin injection in the hippocampus (HPC) of two nonhuman primates. The seizure onset and offset patterns were manually classified and spectral power and coherence were calculated. We then compared the 3-second segments recorded in pre-ictal, onset, offset and post-ictal periods based on the seizure onset and offset patterns. Our results demonstrated an involvement of the SN and SI dependent on the seizure onset and offset pattern. We found that low amplitude fast activity (LAF) and high amplitude slow activity (HAS) onset patterns were associated with an increase in activity of the SN while the change in activity was limited to LAF seizures in the SI. However, the increase in HPC/SN coherence was specific to the farther-spreading LAF onset pattern. As for the role of the SN in seizure cessation, we observed that the coherence between the HPC/SN was reduced during burst suppression (BS) compared to other termination phases. Additionally, we found that this coherence returned to normal levels after the seizure ended, with no significant difference in post-ictal periods among the three types of seizure offsets. This study constitutes the first demonstration of TL seizures entraining the SN in the primate brain. Moreover, these findings provide evidence that this entrainment is dependent on the onset and offset pattern and support the hypothesis that the SN might play a role in the maintenance and termination of some specific temporal lobe seizure.
Collapse
Affiliation(s)
- Mark J. Connolly
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States of America
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Sujin Jiang
- Emory College of Arts & Sciences, Emory University, Atlanta, GA, United States of America
| | - Lim C. Samuel
- Emory College of Arts & Sciences, Emory University, Atlanta, GA, United States of America
| | - Claire-Anne Gutekunst
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Robert E. Gross
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States of America
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States of America
| | - Annaelle Devergnas
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States of America
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States of America
| |
Collapse
|
2
|
Connolly MJ, Jiang S, Samuel L, Gutekunst CA, Gross RE, Devergnas A. Seizure onset and offset pattern determine the entrainment of the cortex and substantia nigra in the nonhuman primate model of focal temporal lobe seizures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.04.543608. [PMID: 37333298 PMCID: PMC10274660 DOI: 10.1101/2023.06.04.543608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Temporal lobe (TL) epilepsy is the most common form of drug-resistant epilepsy. A major focus of human and animal studies on TLE network has been the limbic circuit and the structures composing the temporal lobe. However, there is also evidence suggesting an active role of the basal ganglia in the propagation and control of temporal lobe seizures. Evidence suggests that the network involved in temporal lobe seizure may depend on their onset and offset pattern but studies on the relationship between the patterns and extralimbic activity are limited. Here, we characterize the involvement of the substantia nigra (SN) and somatosensory cortex (SI) during temporal lobe seizures induced in two nonhuman primates (NHP). The seizure onset and offset patterns were manually classified and spectral power and coherence were calculated. We then analyzed the three first and last seconds of the seizure as well as 3-second segments of recorded in pre-ictal and post-ictal periods and compared the changes based on the seizure onset and offset patterns. Our results demonstrated an involvement of the SN and SI dependent on the seizure onset and offset pattern. We found that seizures with both low amplitude fast activity (LAF) and high amplitude slow activity (HAS) onset patterns were associated with an increase in activity of the SN while the change in activity was limited to LAF seizures in the SI. However, the increase of HPC/SI coherence was similar for both type of onset, while the increase in HPC/SN coherence was specific to the farther-spreading LAF onset pattern. As for the role of the SN in seizure cessation, we observed that the coherence between the HPC/SN was reduced during burst suppression (BS) compared to other termination phases. Additionally, we found that this coherence returned to normal levels after the seizure ended, with no significant difference in post-ictal periods among the three types of seizure offsets. This result suggests that the SN might be involved differently in the termination of the BS seizure pattern. This study constitutes the first demonstration of temporal lobe seizures entraining the SN in the primate brain. Moreover, these findings provide evidence that this entrainment is dependent on the seizure onset pattern and support the hypothesis that the SN might play a role in the maintenance and termination of some specific temporal lobe seizure.
Collapse
Affiliation(s)
- Mark J. Connolly
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Sujin Jiang
- Emory College of Arts & Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Lim Samuel
- Emory College of Arts & Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Claire-Anne Gutekunst
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Robert E. Gross
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Annaelle Devergnas
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
3
|
Joplin S, Gascoigne M, Barton B, Webster R, Gill D, Lawson J, Mandalis A, Sabaz M, McLean S, Gonzalez L, Smith ML, Lah S. Repeat testing enhances long-term verbal memory in children with epilepsy. Child Neuropsychol 2024; 30:425-443. [PMID: 37144751 DOI: 10.1080/09297049.2023.2205633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 04/14/2023] [Indexed: 05/06/2023]
Abstract
To (i) determine whether accelerated long-term forgetting (ALF) can be found using standardized verbal memory test materials in children with genetic generalized epilepsy (GGE) and temporal lobe epilepsy (TLE), and (ii) to establish whether ALF is impacted by executive skills and repeat testing over long delays. One hundred and twenty-three children aged 8 to 16, (28 with GGE, 23 with TLE, and 72 typically developing; TD) completed a battery of standardized tests assessing executive functioning and memory for two stories. Stories were recalled immediately and after a 30-min delay. To examine whether repeat testing impacts long-term forgetting, one story was tested via free recall at 1-day and 2-weeks, and the other at 2-weeks only. Recognition was then tested for both stories at 2-weeks. Children with epilepsy recalled fewer story details, both immediately and after 30-min relative to TD children. Compared to TD children, the GGE group, but not the TLE group, showed ALF, having significantly poorer recall of the story tested only at the longest delay. Poor executive skills were significantly correlated with ALF for children with epilepsy. Standard story memory materials can detect ALF in children with epilepsy when administered over long delays. Our findings suggest that (i) ALF is related to poor executive skills in children with epilepsy, and (ii) repeated testing may ameliorate ALF in some children.
Collapse
Affiliation(s)
- Samantha Joplin
- School of Psychology, The University of Sydney, Camperdown, NSW, Australia
| | - Michael Gascoigne
- School of Psychology and Translational Health Research Institute, Western Sydney University, Sydney, NSW, Australia
| | - Belinda Barton
- Faculty of Health, Discipline of Psychology, Southern Cross University, Coffs Harbour, NSW, Australia
| | - Richard Webster
- TY Nelson Department of Neurology, Kids Neuroscience Centre, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Deepak Gill
- TY Nelson Department of Neurology, Kids Neuroscience Centre, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - John Lawson
- Department of Neurology SCHN, School of Women and Children's Health, UNSW, Randwick, NSW, Australia
| | - Anna Mandalis
- Department of Psychology, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Mark Sabaz
- Department of Psychology, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Samantha McLean
- TY Nelson Department of Neurology, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Linda Gonzalez
- Brain and Mind, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Mary-Lou Smith
- Department of Psychology, University of Toronto Mississauga and Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Suncica Lah
- School of Psychology, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
4
|
Xu K, Xie P, Deng J, Tang C, Wang X, Guan Y, Zhou J, Li T, Liang X, Jing B, Gao JH, Luan G. Long-term ANT-DBS effects in pilocarpine-induced epileptic rats: A combined 9.4T MRI and histological study. J Neurosci Res 2023; 101:916-929. [PMID: 36696411 DOI: 10.1002/jnr.25169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/26/2023]
Abstract
Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) appears to be effective against seizures in animals and humans however, its therapeutic mechanisms remain elusive. This study aimed to combine 9.4T multimodal magnetic resonance imaging (MRI) with histology to investigate the longitudinal effects of long-term ANT-DBS in pilocarpine-induced epileptic rats. Status epilepsy (SE) was induced by LiCl-pilocarpine injection in 11 adult male Sprague-Dawley rats. Four weeks after SE, chronic epileptic rats underwent either ANT-DBS (n = 6) or sham-DBS (n = 5) surgery. Electroencephalography (EEG) and spontaneous recurrent seizures (SRS) were recorded for 1 week. The T2-weighted image and images from resting-state functional MRI (rs-fMRI) were acquired at three states: before SE, at 4 weeks post-SE, and at 5 weeks post-DBS. Volumes of the hippocampal subregions and hippocampal-related functional connectivity (FC) were compared longitudinally. Finally, antibodies against neuronal nuclei (NeuN) and glial fibrillary acidic proteins were used to evaluate neuronal loss and astrogliosis in the hippocampus. Long-term ANT-DBS significantly reduced seizure generalization in pilocarpine-induced epileptic rats. By analyzing the gray matter volume using T2-weighted images, long-term ANT-DBS displayed morphometric restoration of the hippocampal subregions. Neuronal protection of the hippocampal subregions and inhibition of astrogliosis in the hippocampal subregions were observed in the ANT-DBS group. ANT-DBS caused reversible regulation of FC in the insula-hippocampus and subthalamic nucleus-hippocampus. Long-term ANT-DBS provides comprehensive protection of hippocampal histology, hippocampal morphometrics, and hippocampal-related functional networks.
Collapse
Affiliation(s)
- Ke Xu
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, China
| | - Pandeng Xie
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, China
| | - Jiahui Deng
- Beijing Key Laboratory of Epilepsy Research, Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Chongyang Tang
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, China
| | - Xiongfei Wang
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, China
| | - Yuguang Guan
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, China
| | - Jian Zhou
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, China
| | - Tianfu Li
- Beijing Key Laboratory of Epilepsy Research, Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Epilepsy, Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, SanBo Brain Hospital, Capital Medical University, Beijing, China
| | - Xiaohang Liang
- Beijing City Key Laboratory for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
- Center for MRI Research, Peking University, Beijing, China
| | - Bin Jing
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Jia-Hong Gao
- Beijing City Key Laboratory for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
- Center for MRI Research, Peking University, Beijing, China
| | - Guoming Luan
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Epilepsy Research, Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Wu S, Nordli DR. Motor seizure semiology. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:295-304. [PMID: 37620075 DOI: 10.1016/b978-0-323-98817-9.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Motor semiology is a major component of epilepsy evaluation, which provides essential information on seizure classification and helps in seizure localization. The typical motor seizures include tonic, clonic, tonic-clonic, myoclonic, atonic, epileptic spasms, automatisms, and hyperkinetic seizures. Compared to the "positive" motor signs, negative motor phenomena, for example, atonic seizures and Todd's paralysis are also crucial in seizure analysis. Several motor signs, for example, version, unilateral dystonia, figure 4 sign, M2e sign, and asymmetric clonic ending, are commonly observed and have significant clinical value in seizure localization. The purpose of this chapter is to review the localization value and pathophysiology associated with the well-defined motor seizure semiology using updated knowledge from intracranial electroencephalographic recordings, particularly stereoelectroencephalography.
Collapse
Affiliation(s)
- Shasha Wu
- Department of Neurology and the Comprehensive Epilepsy Center, The University of Chicago, Chicago, IL, United States.
| | - Douglas R Nordli
- Department of Pediatrics and the Comprehensive Epilepsy Center, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
6
|
Qi L, Xu C, Wang X, Du J, He Q, Wu D, Wang X, Jin G, Wang Q, Chen J, Wang D, Zhang H, Zhang X, Wei P, Shan Y, Cui Z, Wang Y, Shu Y, Zhao G, Yu T, Ren L. Intracranial direct electrical mapping reveals the functional architecture of the human basal ganglia. Commun Biol 2022; 5:1123. [PMID: 36274105 PMCID: PMC9588773 DOI: 10.1038/s42003-022-04084-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022] Open
Abstract
The basal ganglia play a key role in integrating a variety of human behaviors through the cortico–basal ganglia–thalamo–cortical loops. Accordingly, basal ganglia disturbances are implicated in a broad range of debilitating neuropsychiatric disorders. Despite accumulating knowledge of the basal ganglia functional organization, the neural substrates and circuitry subserving functions have not been directly mapped in humans. By direct electrical stimulation of distinct basal ganglia regions in 35 refractory epilepsy patients undergoing stereoelectroencephalography recordings, we here offer currently the most complete overview of basal ganglia functional characterization, extending not only to the expected sensorimotor responses, but also to vestibular sensations, autonomic responses, cognitive and multimodal effects. Specifically, some locations identified responses weren’t predicted by the model derived from large-scale meta-analyses. Our work may mark an important step toward understanding the functional architecture of the human basal ganglia and provide mechanistic explanations of non-motor symptoms in brain circuit disorders. Direct electrical stimulation of the basal ganglia using implanted SEEG electrodes produced a variety of motor and non-motor effects in human participants, providing insight into the functional architecture of this key brain region.
Collapse
|
7
|
Altered Functional Connectivity after Epileptic Seizure Revealed by Scalp EEG. Neural Plast 2020; 2020:8851415. [PMID: 33299398 PMCID: PMC7710419 DOI: 10.1155/2020/8851415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/23/2020] [Accepted: 11/13/2020] [Indexed: 12/18/2022] Open
Abstract
Epileptic seizures are considered to be a brain network dysfunction, and chronic recurrent seizures can cause severe brain damage. However, the functional brain network underlying recurrent epileptic seizures is still left unveiled. This study is aimed at exploring the differences in a related brain activity before and after chronic repetitive seizures by investigating the power spectral density (PSD), fuzzy entropy, and functional connectivity in epileptic patients. The PSD analysis revealed differences between the two states at local area, showing postseizure energy accumulation. Besides, the fuzzy entropies of preseizure in the frontal, central, and temporal regions are higher than that of postseizure. Additionally, attenuated long-range connectivity and enhanced local connectivity were also found. Moreover, significant correlations were found between network metrics (i.e., characteristic path length and clustering coefficient) and individual seizure number. The PSD, fuzzy entropy, and network analysis may indicate that the brain is gradually impaired along with the occurrence of epilepsy, and the accumulated effect of brain impairment is observed in individuals with consecutive epileptic bursts. The findings of this study may provide helpful insights into understanding the network mechanism underlying chronic recurrent epilepsy.
Collapse
|
8
|
Aupy J, Ribot B, Dovero S, Biendon N, Nguyen TH, Porras G, Deffains M, Guehl D, Burbaud P. Acute Striato-Cortical Synchronization Induces Focal Motor Seizures in Primates. Cereb Cortex 2020; 30:6469-6480. [PMID: 32776091 DOI: 10.1093/cercor/bhaa212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE Whether the basal ganglia are involved in the cortical synchronization during focal seizures is still an open question. In the present study, we proposed to synchronize cortico-striatal activities acutely inducing striatal disinhibition, performing GABA-antagonist injections within the putamen in primates. METHOD Experiments were performed on three fascicularis monkeys. During each experimental session, low volumes of bicuculline (0.5-4 μL) were injected at a slow rate of 1 μL/min. Spontaneous behavioral changes were classified according to Racine's scale modified for primates. These induced motor behaviors were correlated with electromyographic, electroencephalographic, and putaminal and pallidal local field potentials changes in activity. RESULTS acute striatal desinhibition induced focal motor seizures. Seizures were closely linked to cortical epileptic activity synchronized with a striatal paroxysmal activity. These changes in striatal activity preceded the cortical epileptic activity and the induced myoclonia, and both cortical and subcortical activities were coherently synchronized during generalized seizures. INTERPRETATION Our results strongly suggest the role of the sensorimotor striatum in the regulation and synchronization of cortical excitability. These dramatic changes in the activity of this "gating" pathway might influence seizure susceptibility by modulating the threshold for the initiation of focal motor seizures.
Collapse
Affiliation(s)
- Jerome Aupy
- University of Bordeaux, Bordeaux Neurocampus, IMN, UMR CNRS 5293, 33076 Bordeaux, France.,Department of Clinical Neurosciences, Bordeaux University Hospital, 33076 Bordeaux, France
| | - Bastien Ribot
- University of Bordeaux, Bordeaux Neurocampus, IMN, UMR CNRS 5293, 33076 Bordeaux, France
| | - Sandra Dovero
- University of Bordeaux, Bordeaux Neurocampus, IMN, UMR CNRS 5293, 33076 Bordeaux, France
| | - Nathalie Biendon
- University of Bordeaux, Bordeaux Neurocampus, IMN, UMR CNRS 5293, 33076 Bordeaux, France
| | - Tho-Hai Nguyen
- University of Bordeaux, Bordeaux Neurocampus, IMN, UMR CNRS 5293, 33076 Bordeaux, France
| | - Gregory Porras
- University of Bordeaux, Bordeaux Neurocampus, IMN, UMR CNRS 5293, 33076 Bordeaux, France
| | - Marc Deffains
- University of Bordeaux, Bordeaux Neurocampus, IMN, UMR CNRS 5293, 33076 Bordeaux, France
| | - Dominique Guehl
- University of Bordeaux, Bordeaux Neurocampus, IMN, UMR CNRS 5293, 33076 Bordeaux, France.,Department of Clinical Neurosciences, Bordeaux University Hospital, 33076 Bordeaux, France
| | - Pierre Burbaud
- University of Bordeaux, Bordeaux Neurocampus, IMN, UMR CNRS 5293, 33076 Bordeaux, France.,Department of Clinical Neurosciences, Bordeaux University Hospital, 33076 Bordeaux, France
| |
Collapse
|
9
|
Pizzo F, Roehri N, Giusiano B, Lagarde S, Carron R, Scavarda D, McGonigal A, Filipescu C, Lambert I, Bonini F, Trebuchon A, Bénar CG, Bartolomei F. The Ictal Signature of Thalamus and Basal Ganglia in Focal Epilepsy: A SEEG Study. Neurology 2020; 96:e280-e293. [PMID: 33024023 DOI: 10.1212/wnl.0000000000011003] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/26/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine the involvement of subcortical regions in human epilepsy by analyzing direct recordings from these regions during epileptic seizures using stereo-EEG (SEEG). METHODS We studied the SEEG recordings of a large series of patients (74 patients, 157 seizures) with an electrode sampling the thalamus and in some cases also the basal ganglia (caudate nucleus, 22 patients; and putamen, 4 patients). We applied visual analysis and signal quantification methods (Epileptogenicity Index [EI]) to their ictal recordings and compared electrophysiologic with clinical data. RESULTS We found that in 86% of patients, thalamus was involved during seizures (visual analysis) and 20% showed high values of epileptogenicity (EI >0.3). Basal ganglia may also disclose high values of epileptogenicity (9% in caudate nucleus) but to a lesser degree than thalamus (p < 0.01). We observed different seizure onset patterns including low voltage high frequency activities. We found high values of thalamic epileptogenicity in different epilepsy localizations, including opercular and motor epilepsies. We found no difference between epilepsy etiologies (cryptogenic vs malformation of cortical development, p = 0.77). Thalamic epileptogenicity was correlated with the extension of epileptogenic networks (p = 0.02, ρ 0.32). We found a significant effect (p < 0.05) of thalamic epileptogenicity regarding the postsurgical outcome (higher thalamic EI corresponding to higher probability of surgical failure). CONCLUSIONS Thalamic involvement during seizures is common in different seizure types. The degree of thalamic epileptogenicity is a possible marker of the epileptogenic network extension and of postsurgical prognosis.
Collapse
Affiliation(s)
- Francesca Pizzo
- From the Epileptology Department (F.P., S.L., A.M., I.L., F. Bonini, A.T., F. Bartolomei), Functional and Stereotactic Neurosurgery (R.C.), and Pediatric Neurosurgery (D.S.), APHM, Timone Hospital, Institut de Neurosciences des Systèmes (F.P., N.R., B.G., S.L., R.C., D.S., A.M., I.L., F. Bonini, A.T., C.-G.B, F. Bartolomei), INSERM, Aix Marseille Universite; and Psychiatrie et Neurosciences (C.F.), GHU Paris, St Anne, Paris.
| | - Nicolas Roehri
- From the Epileptology Department (F.P., S.L., A.M., I.L., F. Bonini, A.T., F. Bartolomei), Functional and Stereotactic Neurosurgery (R.C.), and Pediatric Neurosurgery (D.S.), APHM, Timone Hospital, Institut de Neurosciences des Systèmes (F.P., N.R., B.G., S.L., R.C., D.S., A.M., I.L., F. Bonini, A.T., C.-G.B, F. Bartolomei), INSERM, Aix Marseille Universite; and Psychiatrie et Neurosciences (C.F.), GHU Paris, St Anne, Paris
| | - Bernard Giusiano
- From the Epileptology Department (F.P., S.L., A.M., I.L., F. Bonini, A.T., F. Bartolomei), Functional and Stereotactic Neurosurgery (R.C.), and Pediatric Neurosurgery (D.S.), APHM, Timone Hospital, Institut de Neurosciences des Systèmes (F.P., N.R., B.G., S.L., R.C., D.S., A.M., I.L., F. Bonini, A.T., C.-G.B, F. Bartolomei), INSERM, Aix Marseille Universite; and Psychiatrie et Neurosciences (C.F.), GHU Paris, St Anne, Paris
| | - Stanislas Lagarde
- From the Epileptology Department (F.P., S.L., A.M., I.L., F. Bonini, A.T., F. Bartolomei), Functional and Stereotactic Neurosurgery (R.C.), and Pediatric Neurosurgery (D.S.), APHM, Timone Hospital, Institut de Neurosciences des Systèmes (F.P., N.R., B.G., S.L., R.C., D.S., A.M., I.L., F. Bonini, A.T., C.-G.B, F. Bartolomei), INSERM, Aix Marseille Universite; and Psychiatrie et Neurosciences (C.F.), GHU Paris, St Anne, Paris
| | - Romain Carron
- From the Epileptology Department (F.P., S.L., A.M., I.L., F. Bonini, A.T., F. Bartolomei), Functional and Stereotactic Neurosurgery (R.C.), and Pediatric Neurosurgery (D.S.), APHM, Timone Hospital, Institut de Neurosciences des Systèmes (F.P., N.R., B.G., S.L., R.C., D.S., A.M., I.L., F. Bonini, A.T., C.-G.B, F. Bartolomei), INSERM, Aix Marseille Universite; and Psychiatrie et Neurosciences (C.F.), GHU Paris, St Anne, Paris
| | - Didier Scavarda
- From the Epileptology Department (F.P., S.L., A.M., I.L., F. Bonini, A.T., F. Bartolomei), Functional and Stereotactic Neurosurgery (R.C.), and Pediatric Neurosurgery (D.S.), APHM, Timone Hospital, Institut de Neurosciences des Systèmes (F.P., N.R., B.G., S.L., R.C., D.S., A.M., I.L., F. Bonini, A.T., C.-G.B, F. Bartolomei), INSERM, Aix Marseille Universite; and Psychiatrie et Neurosciences (C.F.), GHU Paris, St Anne, Paris
| | - Aileen McGonigal
- From the Epileptology Department (F.P., S.L., A.M., I.L., F. Bonini, A.T., F. Bartolomei), Functional and Stereotactic Neurosurgery (R.C.), and Pediatric Neurosurgery (D.S.), APHM, Timone Hospital, Institut de Neurosciences des Systèmes (F.P., N.R., B.G., S.L., R.C., D.S., A.M., I.L., F. Bonini, A.T., C.-G.B, F. Bartolomei), INSERM, Aix Marseille Universite; and Psychiatrie et Neurosciences (C.F.), GHU Paris, St Anne, Paris
| | - Cristina Filipescu
- From the Epileptology Department (F.P., S.L., A.M., I.L., F. Bonini, A.T., F. Bartolomei), Functional and Stereotactic Neurosurgery (R.C.), and Pediatric Neurosurgery (D.S.), APHM, Timone Hospital, Institut de Neurosciences des Systèmes (F.P., N.R., B.G., S.L., R.C., D.S., A.M., I.L., F. Bonini, A.T., C.-G.B, F. Bartolomei), INSERM, Aix Marseille Universite; and Psychiatrie et Neurosciences (C.F.), GHU Paris, St Anne, Paris
| | - Isabelle Lambert
- From the Epileptology Department (F.P., S.L., A.M., I.L., F. Bonini, A.T., F. Bartolomei), Functional and Stereotactic Neurosurgery (R.C.), and Pediatric Neurosurgery (D.S.), APHM, Timone Hospital, Institut de Neurosciences des Systèmes (F.P., N.R., B.G., S.L., R.C., D.S., A.M., I.L., F. Bonini, A.T., C.-G.B, F. Bartolomei), INSERM, Aix Marseille Universite; and Psychiatrie et Neurosciences (C.F.), GHU Paris, St Anne, Paris
| | - Francesca Bonini
- From the Epileptology Department (F.P., S.L., A.M., I.L., F. Bonini, A.T., F. Bartolomei), Functional and Stereotactic Neurosurgery (R.C.), and Pediatric Neurosurgery (D.S.), APHM, Timone Hospital, Institut de Neurosciences des Systèmes (F.P., N.R., B.G., S.L., R.C., D.S., A.M., I.L., F. Bonini, A.T., C.-G.B, F. Bartolomei), INSERM, Aix Marseille Universite; and Psychiatrie et Neurosciences (C.F.), GHU Paris, St Anne, Paris
| | - Agnes Trebuchon
- From the Epileptology Department (F.P., S.L., A.M., I.L., F. Bonini, A.T., F. Bartolomei), Functional and Stereotactic Neurosurgery (R.C.), and Pediatric Neurosurgery (D.S.), APHM, Timone Hospital, Institut de Neurosciences des Systèmes (F.P., N.R., B.G., S.L., R.C., D.S., A.M., I.L., F. Bonini, A.T., C.-G.B, F. Bartolomei), INSERM, Aix Marseille Universite; and Psychiatrie et Neurosciences (C.F.), GHU Paris, St Anne, Paris
| | - Christian-George Bénar
- From the Epileptology Department (F.P., S.L., A.M., I.L., F. Bonini, A.T., F. Bartolomei), Functional and Stereotactic Neurosurgery (R.C.), and Pediatric Neurosurgery (D.S.), APHM, Timone Hospital, Institut de Neurosciences des Systèmes (F.P., N.R., B.G., S.L., R.C., D.S., A.M., I.L., F. Bonini, A.T., C.-G.B, F. Bartolomei), INSERM, Aix Marseille Universite; and Psychiatrie et Neurosciences (C.F.), GHU Paris, St Anne, Paris
| | - Fabrice Bartolomei
- From the Epileptology Department (F.P., S.L., A.M., I.L., F. Bonini, A.T., F. Bartolomei), Functional and Stereotactic Neurosurgery (R.C.), and Pediatric Neurosurgery (D.S.), APHM, Timone Hospital, Institut de Neurosciences des Systèmes (F.P., N.R., B.G., S.L., R.C., D.S., A.M., I.L., F. Bonini, A.T., C.-G.B, F. Bartolomei), INSERM, Aix Marseille Universite; and Psychiatrie et Neurosciences (C.F.), GHU Paris, St Anne, Paris.
| |
Collapse
|
10
|
He X, Chaitanya G, Asma B, Caciagli L, Bassett DS, Tracy JI, Sperling MR. Disrupted basal ganglia-thalamocortical loops in focal to bilateral tonic-clonic seizures. Brain 2020; 143:175-190. [PMID: 31860076 DOI: 10.1093/brain/awz361] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/16/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Focal to bilateral tonic-clonic seizures are associated with lower quality of life, higher risk of seizure-related injuries, increased chance of sudden unexpected death, and unfavourable treatment outcomes. Achieving greater understanding of their underlying circuitry offers better opportunity to control these seizures. Towards this goal, we provide a network science perspective of the interactive pathways among basal ganglia, thalamus and cortex, to explore the imprinting of secondary seizure generalization on the mesoscale brain network in temporal lobe epilepsy. Specifically, we parameterized the functional organization of both the thalamocortical network and the basal ganglia-thalamus network with resting state functional MRI in three groups of patients with different focal to bilateral tonic-clonic seizure histories. Using the participation coefficient to describe the pattern of thalamocortical connections among different cortical networks, we showed that, compared to patients with no previous history, those with positive histories of focal to bilateral tonic-clonic seizures, including both remote (none for >1 year) and current (within the past year) histories, presented more uniform distribution patterns of thalamocortical connections in the ipsilateral medial-dorsal thalamic nuclei. As a sign of greater thalamus-mediated cortico-cortical communication, this result comports with greater susceptibility to secondary seizure generalization from the epileptogenic temporal lobe to broader brain networks in these patients. Using interregional integration to characterize the functional interaction between basal ganglia and thalamus, we demonstrated that patients with current history presented increased interaction between putamen and globus pallidus internus, and decreased interaction between the latter and the thalamus, compared to the other two patient groups. Importantly, through a series of 'disconnection' simulations, we showed that these changes in interactive profiles of the basal ganglia-thalamus network in the current history group mainly depended upon the direct but not the indirect basal ganglia pathway. It is intuitively plausible that such disruption in the striatum-modulated tonic inhibition of the thalamus from the globus pallidus internus could lead to an under-suppressed thalamus, which in turn may account for their greater vulnerability to secondary seizure generalization. Collectively, these findings suggest that the broken balance between basal ganglia inhibition and thalamus synchronization can inform the presence and effective control of focal to bilateral tonic-clonic seizures. The mechanistic underpinnings we uncover may shed light on the development of new treatment strategies for patients with temporal lobe epilepsy.
Collapse
Affiliation(s)
- Xiaosong He
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ganne Chaitanya
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Burcu Asma
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Joseph I Tracy
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Aupy J, Wendling F, Taylor K, Bulacio J, Gonzalez-Martinez J, Chauvel P. Cortico-striatal synchronization in human focal seizures. Brain 2020; 142:1282-1295. [PMID: 30938430 DOI: 10.1093/brain/awz062] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 11/12/2022] Open
Abstract
Although a number of experimental and clinical studies have pointed out participation or an even more prominent role of basal ganglia in focal seizures, the mode of interaction between cortical and striatal signals remains unclear. In the present study, we took stereoelectroencephalographic (SEEG) recordings in drug-resistant epilepsy patients, to qualitatively and quantitatively analyse the ictal striatum activity as well as its synchronization with cerebral cortex. Eleven patients who underwent SEEG evaluation were prospectively included if they fulfilled two inclusion criteria: (i) at least one orthogonal intracerebral electrode contact explored the basal ganglia, in either their putaminal or caudate part; and (ii) at least two SEEG seizures were recorded. Cortical and subcortical regions of interest were defined and different periods of interest were analysed. SEEG was visually inspected and h2 non-linear correlation analysis performed to study functional connectivity between cortical region of interest and striatum. Six correlation indices were calculated. Two main patterns of striatal activation were recorded: the most frequent was characterized by an early alpha/beta activity that started within the first 5 s after seizure onset, sometimes concomitant with it. The second one was characterized by late, slower, theta/delta activity. A significant difference in h2 correlation indices was observed during the preictal and seizure onset period compared to background for global striatal index, mesio-temporal/striatal index, latero-temporal/striatal index, insular/striatal index, prefrontal/striatal index. In addition, a significant difference in h2 correlation indices was observed during the seizure termination period compared to all the other periods of interest for the six indices calculated. These results indicate that cortico-striatal synchronization can arise from the start of focal seizures. Depending on the ictal frequency pattern, desynchronization can occur later, but a late and terminal hypersynchronization progressively takes over. These changes in synchronization level between cortical and striatal activity might be part of an endogenous mechanism controlling the duration of abnormal oscillations within the striato-thalamo-cortical loop and thereby their termination. Pathophysiology of basal ganglia in focal seizures appears to be much more interlinked with the cortex than expected. Beyond the stereotypical features they could imprint to seizure semiology, their role in strengthening mechanisms underlying cessation of ictal propagation should inspire new rationales for deep brain stimulation in patients with intractable focal epilepsies.
Collapse
Affiliation(s)
- Jerome Aupy
- Cleveland Clinic, Neurological Institute, Epilepsy Center, Cleveland, OH, USA.,University of Bordeaux, Bordeaux Neurocampus, IMN, UMR CNRS, Bordeaux, France.,Bordeaux University Hospital, Department of Clinical Neurosciences, Bordeaux, France
| | - Fabrice Wendling
- Inserm, Rennes I University, LTSI - UMR 1099, F-35000 Rennes, France
| | - Kenneth Taylor
- Cleveland Clinic, Neurological Institute, Epilepsy Center, Cleveland, OH, USA
| | - Juan Bulacio
- Cleveland Clinic, Neurological Institute, Epilepsy Center, Cleveland, OH, USA
| | | | - Patrick Chauvel
- Cleveland Clinic, Neurological Institute, Epilepsy Center, Cleveland, OH, USA
| |
Collapse
|
12
|
Subcortical SISCOM hyperperfusion: Should we pay more attention to it? Seizure 2018; 62:43-48. [PMID: 30278347 DOI: 10.1016/j.seizure.2018.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 11/20/2022] Open
|
13
|
Cui Y, Yu S, Zhang T, Zhang Y, Xia Y, Yao D, Guo D. Altered activity and information flow in the default mode network of pilocarpine-induced epilepsy rats. Brain Res 2018; 1696:71-80. [DOI: 10.1016/j.brainres.2018.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/08/2018] [Accepted: 05/13/2018] [Indexed: 01/08/2023]
|
14
|
Zhang L. Severe neonatal hyperbilirubinemia induces temporal and occipital lobe seizures. PLoS One 2018; 13:e0197113. [PMID: 29750802 PMCID: PMC5947905 DOI: 10.1371/journal.pone.0197113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/26/2018] [Indexed: 11/28/2022] Open
Abstract
To examine the origin of seizures induced by severe neonatal hyperbilirubinemia, The EEG characteristics of seizures were analyzed in newborns with and without severe neonatal hyperbilirubinemia. Fisher’s exact test was used to determine the specificity. In total, 931 patients had a total serum bilirubin (TSB) level of 340–425 μmol/L, only 2 of whom had seizures. Compared to patients with hyperbilirubinemia and a TSB level of 340–425 μmol/L, those with a TSB level >425 μmol/L had a significant risk of seizure (OR = 213.2, 95% CI = 113.0–405.8, P<0.001). Of all 28 patients with severe hyperbilirubinemia and seizure, 26 had seizures that originated in the temporal and/or occipital lobe. In seizure patients without severe hyperbilirubinemia, origination in the temporal/occipital and other lobes occurred in 19 and 117 cases, respectively. Compared to the risk of seizure origination in the temporal and/or occipital lobe in other diseases, the risk in patients with severe hyperbilirubinemia was increased by approximately 80 times (OR = 80.1, 95% CI = 28.3–226.4, P<0.001). Severe neonatal hyperbilirubinemia can selectively induce temporal and occipital lobe seizures. This is the first report of a new syndrome with the same etiology and electrophysiological features as epilepsy.
Collapse
MESH Headings
- Bilirubin/blood
- Epilepsies, Partial/blood
- Epilepsies, Partial/etiology
- Epilepsies, Partial/physiopathology
- Epilepsy, Temporal Lobe/blood
- Epilepsy, Temporal Lobe/etiology
- Epilepsy, Temporal Lobe/physiopathology
- Female
- Humans
- Hyperbilirubinemia, Neonatal/blood
- Hyperbilirubinemia, Neonatal/complications
- Hyperbilirubinemia, Neonatal/physiopathology
- Infant
- Infant, Newborn
- Male
- Risk Factors
Collapse
Affiliation(s)
- Lian Zhang
- Department of Neonatology, Shenzhen City Baoan District Women and Children’s Hospital, Shenzhen, People’s Republic of China
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou, People’s Republic of China
- * E-mail:
| |
Collapse
|
15
|
Aupy J, Kheder A, Bulacio J, Chauvel P, Gonzalez-Martinez J. Is the caudate nucleus capable of generating seizures? Evidence from direct intracerebral recordings. Clin Neurophysiol 2018; 129:931-933. [DOI: 10.1016/j.clinph.2018.01.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 10/17/2022]
|
16
|
Yang L, Li H, Zhu L, Yu X, Jin B, Chen C, Wang S, Ding M, Zhang M, Chen Z, Wang S. Localized shape abnormalities in the thalamus and pallidum are associated with secondarily generalized seizures in mesial temporal lobe epilepsy. Epilepsy Behav 2017; 70:259-264. [PMID: 28427841 DOI: 10.1016/j.yebeh.2017.02.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/06/2017] [Accepted: 02/06/2017] [Indexed: 01/16/2023]
Abstract
Mesial temporal lobe epilepsy (mTLE) is a common type of drug-resistant epilepsy and secondarily generalized tonic-clonic seizures (sGTCS) have devastating consequences for patients' safety and quality of life. To probe the mechanism underlying the genesis of sGTCS, we investigated the structural differences between patients with and without sGTCS in a cohort of mTLE with radiologically defined unilateral hippocampal sclerosis. We performed voxel-based morphometric analysis of cortex and vertex-wise shape analysis of subcortical structures (the basal ganglia and thalamus) on MRI of 39 patients (21 with and 18 without sGTCS). Comparisons were initially made between sGTCS and non-sGTCS groups, and subsequently made between uncontrolled-sGTCS and controlled-sGTCS subgroups. Regional atrophy of the ipsilateral ventral pallidum (cluster size=450 voxels, corrected p=0.047, Max voxel coordinate=107, 120, 65), medial thalamus (cluster size=1128 voxels, corrected p=0.049, Max voxel coordinate=107, 93, 67), middle frontal gyrus (cluster size=60 voxels, corrected p<0.05, Max voxel coordinate=-30, 49.5, 6), and contralateral posterior cingulate cortex (cluster size=130 voxels, corrected p<0.05, Max voxel coordinate=16.5, -57, 27) was found in the sGTCS group relative to the non-sGTCS group. Furthermore, the uncontrolled-sGTCS subgroup showed more pronounced atrophy of the ipsilateral medial thalamus (cluster size=1240 voxels, corrected p=0.014, Max voxel coordinate=107, 93, 67) than the controlled-sGTCS subgroup. These findings indicate a central role of thalamus and pallidum in the pathophysiology of sGTCS in mTLE.
Collapse
Affiliation(s)
- Linglin Yang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hong Li
- Departments of Radiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lujia Zhu
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinfeng Yu
- Departments of Radiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Jin
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cong Chen
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shan Wang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Meiping Ding
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Minming Zhang
- Departments of Radiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhong Chen
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuang Wang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
17
|
Výtvarová E, Mareček R, Fousek J, Strýček O, Rektor I. Large-scale cortico-subcortical functional networks in focal epilepsies: The role of the basal ganglia. NEUROIMAGE-CLINICAL 2016; 14:28-36. [PMID: 28123951 PMCID: PMC5222946 DOI: 10.1016/j.nicl.2016.12.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/02/2016] [Accepted: 12/15/2016] [Indexed: 12/02/2022]
Abstract
Objectives The aim was to describe the contribution of basal ganglia (BG) thalamo-cortical circuitry to the whole-brain functional connectivity in focal epilepsies. Methods Interictal resting-state fMRI recordings were acquired in 46 persons with focal epilepsies. Of these 46, 22 had temporal lobe epilepsy: 9 left temporal (LTLE), 13 right temporal (RTLE); 15 had frontal lobe epilepsy (FLE); and 9 had parietal/occipital lobe epilepsy (POLE). There were 20 healthy controls. The complete weighted network was analyzed based on correlation matrices of 90 and 194 regions. The network topology was quantified on a global and regional level by measures based on graph theory, and connection-level changes were analyzed by the partial least square method. Results In all patient groups except RTLE, the shift of the functional network topology away from random was observed (normalized clustering coefficient and characteristic path length were higher in patient groups than in controls). Links contributing to this change were found in the cortico-subcortical connections. Weak connections (low correlations) consistently contributed to this modification of the network. The importance of regions changed: decreases in the subcortical areas and both decreases and increases in the cortical areas were observed in node strength, clustering coefficient and eigenvector centrality in patient groups when compared to controls. Node strength decreases of the basal ganglia, i.e. the putamen, caudate, and pallidum, were displayed in LTLE, FLE, and POLE. The connectivity within the basal ganglia–thalamus circuitry was not disturbed; the disturbance concerned the connectivity between the circuitry and the cortex. Significance Focal epilepsies affect large-scale brain networks beyond the epileptogenic zones. Cortico-subcortical functional connectivity disturbance was displayed in LTLE, FLE, and POLE. Significant changes in the resting-state functional connectivity between cortical and subcortical structures suggest an important role of the BG and thalamus in focal epilepsies. Focal epilepsies affect large-scale brain networks beyond the epileptogenic zones. The functional network topology shifted away from random in focal epilepsies. Subcortico-cortical connectivity decreased in epilepsy due to changes in weak links. Basal ganglia–thalamus circuitry connectivity was not disturbed in focal epilepsy. The connectivity between basal ganglia-thalamus circuitry and cortex was affected.
Collapse
Affiliation(s)
- Eva Výtvarová
- Faculty of Informatics, Masaryk University, Botanická 68a, 602 00 Brno, Czech Republic
| | - Radek Mareček
- Brain and Mind Research Program, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jan Fousek
- Faculty of Informatics, Masaryk University, Botanická 68a, 602 00 Brno, Czech Republic
| | - Ondřej Strýček
- Brno Epilepsy Center, First Department of Neurology, St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Pekařská 53, 656 91 Brno, Czech Republic; Brain and Mind Research Program, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Ivan Rektor
- Brno Epilepsy Center, First Department of Neurology, St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Pekařská 53, 656 91 Brno, Czech Republic; Brain and Mind Research Program, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
18
|
Rektor I, Doležalová I, Chrastina J, Jurák P, Halámek J, Baláž M, Brázdil M. High-Frequency Oscillations in the Human Anterior Nucleus of the Thalamus. Brain Stimul 2016; 9:629-31. [DOI: 10.1016/j.brs.2016.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 04/11/2016] [Indexed: 11/26/2022] Open
|
19
|
Korczyn AD, Schachter SC, Amlerova J, Bialer M, van Emde Boas W, Brázdil M, Brodtkorb E, Engel J, Gotman J, Komárek V, Leppik IE, Marusic P, Meletti S, Metternich B, Moulin CJA, Muhlert N, Mula M, Nakken KO, Picard F, Schulze-Bonhage A, Theodore W, Wolf P, Zeman A, Rektor I. Third International Congress on Epilepsy, Brain and Mind: Part 1. Epilepsy Behav 2015; 50:116-37. [PMID: 26276417 PMCID: PMC5256665 DOI: 10.1016/j.yebeh.2015.06.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/24/2015] [Indexed: 12/12/2022]
Abstract
Epilepsy is both a disease of the brain and the mind. Here, we present the first of two papers with extended summaries of selected presentations of the Third International Congress on Epilepsy, Brain and Mind (April 3-5, 2014; Brno, Czech Republic). Epilepsy in history and the arts and its relationships with religion were discussed, as were overviews of epilepsy and relevant aspects of social cognition, handedness, accelerated forgetting and autobiographical amnesia, and large-scale brain networks.
Collapse
Affiliation(s)
- Amos D Korczyn
- Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Steven C Schachter
- Consortia for Improving Medicine with Innovation and Technology, Harvard Medical School, Boston, MA, USA.
| | - Jana Amlerova
- Department of Neurology, Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic
| | - Meir Bialer
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Walter van Emde Boas
- Department of EEG, Dutch Epilepsy Clinics Foundation (SEIN), Heemstede, The Netherlands; Epilepsy Monitoring Unit, Dutch Epilepsy Clinics Foundation (SEIN), Heemstede, The Netherlands
| | - Milan Brázdil
- Masaryk University, Brno Epilepsy Center, St. Anne's Hospital and School of Medicine, Brno, Czech Republic; Central European Institute of Technology (CEITEC), Brno, Czech Republic
| | - Eylert Brodtkorb
- Department of Neurology and Clinical Neurophysiology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Jean Gotman
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Vladmir Komárek
- Department of Paediatric Neurology, Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic
| | - Ilo E Leppik
- MINCEP Epilepsy Care, University of Minnesota, Minneapolis, MN, USA; College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Petr Marusic
- Department of Neurology, Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic
| | - Stefano Meletti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Chris J A Moulin
- Laboratory for the Study of Learning and Development, University of Bourgogne, Dijon, France
| | - Nils Muhlert
- School of Psychology and Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, UK
| | - Marco Mula
- Epilepsy Group, Atkinson Morley Regional Neuroscience Centre, St. George's Hospital, London, UK; Institute of Medical and Biomedical Sciences, St. George's University of London, London, UK
| | - Karl O Nakken
- National Centre for Epilepsy, Oslo University Hospital, Norway
| | - Fabienne Picard
- Department of Neurology, University Hospital and Medical School of Geneva, Switzerland
| | | | - William Theodore
- Clinical Epilepsy Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Peter Wolf
- Danish Epilepsy Centre Filadelfia, Dianalund, Denmark; Department of Clinical Medicine, Neurological Service, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Adam Zeman
- University of Exeter Medical School, St. Luke's Campus, Exeter, UK
| | - Ivan Rektor
- Masaryk University, Brno Epilepsy Center, St. Anne's Hospital and School of Medicine, Brno, Czech Republic; Central European Institute of Technology (CEITEC), Brno, Czech Republic
| |
Collapse
|
20
|
Rektor I, Kuba R, Chrastina J, Rektorová I, Brázdil M. 16. fMRI and eeg studies of the role of basal ganglia in epilepsy. Clin Neurophysiol 2015. [DOI: 10.1016/j.clinph.2014.10.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Mercan M, Yıldırım İ, Akdemir Ö, Bilir E. Ictal body turning in focal epilepsy. Epilepsy Behav 2015; 44:253-7. [PMID: 25769674 DOI: 10.1016/j.yebeh.2014.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/06/2014] [Accepted: 11/08/2014] [Indexed: 11/19/2022]
Abstract
Despite the explanations of many lateralization findings, body turning in focal epilepsy has been rarely investigated. One of the aims of this study was to evaluate the role of ictal body turning in the lateralization of focal epilepsies. The records of 263 patients with focal epilepsy (temporal lobe epilepsy (TLE), n=178; extratemporal lobe epilepsy (ETLE), n=85) who underwent prolonged video-EEG monitoring during presurgical epilepsy evaluation were reviewed. Preoperative findings (TLE, n=16; ETLE, n=6) and postoperative outcomes (TLE, n=7) of patients with focal epilepsy with ictal body turning were assessed. For the evaluation of ictal body turning, two definitions were proposed. Nonversive body turning (NVBT) was used to denote at least a 90° nonforced (without tonic or clonic component) rotation of the upper (shoulder) and lower (hip) parts of the body around the body axis for a minimum of 3s. Versive body turning (VBT) was used to denote at least a 90° forced (with tonic or clonic component) rotation of the upper (shoulder) and lower (hip) parts of the body around the body axis for a minimum of 3s. Nonversive body turning was observed in 6% (n=11) of patients with TLE and 2% (n=2) of patients with ETLE. For VBT, these ratios were 5% (n=8) and 7% (n=6) for patients with TLE and ETLE, respectively. Nonversive body turning was frequently oriented to the same side as the epileptogenic zone (EZ) in TLE and ETLE seizures (76% and 80%, respectively). If the amount of NVBT was greater than 180°, then it was 80% to the same side in TLE seizures. Versive body turning was observed in 86% of the TLE seizures, and 55% of the ETLE seizures were found to be contralateral to the EZ. When present with head turning, NVBT ipsilateral to the EZ and VBT contralateral to the EZ were more valuable for lateralization. In TLE seizures, a significant correlation was found between the head turning and body turning onsets and durations. Our study demonstrated that ictal body turning is a rarely observed but reliable lateralization finding in TLE and ETLE seizures, which also probably has the same pathophysiological mechanism as head turning in TLE seizures.
Collapse
Affiliation(s)
- Metin Mercan
- Gazi University Faculty of Medicine, Department of Neurology, Ankara, Turkey.
| | - İrem Yıldırım
- Gazi University Faculty of Medicine, Department of Neurology, Ankara, Turkey
| | - Özgür Akdemir
- Gazi University Faculty of Medicine, Department of Nuclear Medicine, Ankara, Turkey
| | - Erhan Bilir
- Gazi University Faculty of Medicine, Department of Neurology, Ankara, Turkey
| |
Collapse
|
22
|
Morgan VL, Conrad BN, Abou-Khalil B, Rogers BP, Kang H. Increasing structural atrophy and functional isolation of the temporal lobe with duration of disease in temporal lobe epilepsy. Epilepsy Res 2014; 110:171-8. [PMID: 25616470 DOI: 10.1016/j.eplepsyres.2014.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/21/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Due to pharmacoresistant seizures and the underutilization of surgical treatments, a large number of temporal lobe epilepsy (TLE) patients experience seizures for years or decades. The goal of this study was to generate a predictive model of duration of disease with the least number of parameters possible in order to identify and quantify the significant volumetric and functional indicators of TLE progression. METHODS Two cohorts of subjects including 12 left TLE, 21 right TLE and 20 healthy controls (duration = 0) were imaged on a 3T MRI scanner using high resolution T1-weighted structural MRI and 20 min of resting functional MRI scanning. Multivariate linear regression methods were used to compute a predictive model of duration of disease using 49 predictors including functional connectivity and gray matter volumes computed from these images. RESULTS No model developed from the full set of data accurately predicted the duration of disease across the entire range from 3 to 50 years. We then performed the regression on 35 subjects with durations of disease in the range 10 to 35 years. The resulting predictive model showed that longer durations were associated with reductions in functional connectivity from the ipsilateral temporal lobe to the contralateral temporal lobe, precuneus and mid cingulate, and with decreases in volume of the ipsilateral hippocampus and pallidum. CONCLUSIONS Functional and volumetric parameters accurately predicted duration of disease in TLE. The findings suggest that TLE is associated with a gradual functional isolation and significant progressive structural atrophy of the ipsilateral temporal lobe over years of duration in the range of 10-35 years. Furthermore, these changes can also be detected in the contralateral hemisphere in these patients, but to a lesser degree.
Collapse
Affiliation(s)
- Victoria L Morgan
- Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA.
| | - Benjamin N Conrad
- Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Baxter P Rogers
- Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
23
|
Yoo JY, Farooque P, Chen WC, Youngblood MW, Zaveri HP, Gerrard JL, Spencer DD, Hirsch LJ, Blumenfeld H. Ictal spread of medial temporal lobe seizures with and without secondary generalization: an intracranial electroencephalography analysis. Epilepsia 2014; 55:289-95. [PMID: 24417694 DOI: 10.1111/epi.12505] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2013] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Secondary generalization of seizures has devastating consequences for patient safety and quality of life. The aim of this intracranial electroencephalography (icEEG) study was to investigate the differences in onset and propagation patterns of temporal lobe seizures that remained focal versus those with secondary generalization, in order to better understand the mechanism of secondary generalization. METHODS A total of 39 seizures were analyzed in nine patients who met the following criteria: (1) icEEG-video monitoring with at least one secondarily generalized tonic-clonic seizure (GTCS), (2) pathologically proven hippocampal sclerosis, and (3) no seizures for at least 1 year after anteromedial temporal lobe resection. Seizures were classified as focal or secondary generalized by behavioral analysis of video. Onset and propagation patterns were compared by analysis of icEEG. RESULTS We obtained data from 22 focal seizures without generalization (FS), and 17 GTCS. Seizure-onset patterns did not differ between FS and GTCS, but there were differences in later propagation. All seizures started with low voltage fast activity, except for seven seizures in one patient (six FS, one GTCS), which started with sharply contoured theta activity. Fifteen of 39 seizures started from the hippocampus, and 24 seizures (including six seizures in a patient without hippocampal contacts) started from other medial temporal lobe areas. We observed involvement or more prominent activation of the posterior-lateral temporal regions in GTCS prior to propagation to the other cortical regions, versus FS, which had no involvement or less prominent activation of the posterior lateral temporal cortex. Occipital contacts were not involved at the time of clinical secondary generalization. SIGNIFICANCE The posterior-lateral temporal cortex may serve as an important "gateway" controlling propagation of medial temporal lobe seizures to other cortical regions. Identifying the mechanisms of secondary generalization of focal seizures could lead to improved treatments to confine seizure spread.
Collapse
Affiliation(s)
- Ji Yeoun Yoo
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, U.S.A
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ji GJ, Zhang Z, Zhang H, Wang J, Liu DQ, Zang YF, Liao W, Lu G. Disrupted causal connectivity in mesial temporal lobe epilepsy. PLoS One 2013; 8:e63183. [PMID: 23696798 PMCID: PMC3655975 DOI: 10.1371/journal.pone.0063183] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 04/01/2013] [Indexed: 12/19/2022] Open
Abstract
Although mesial temporal lobe epilepsy (mTLE) is characterized by the pathological changes in mesial temporal lobe, function alteration was also found in extratemporal regions. Our aim is to investigate the information flow between the epileptogenic zone (EZ) and other brain regions. Resting-state functional magnetic resonance imaging (RS-fMRI) data were recorded from 23 patients with left mTLE and matched controls. We first identified the potential EZ using the amplitude of low-frequency fluctuation (ALFF) of RS-fMRI signal, then performed voxel-wise Granger causality analysis between EZ and the whole brain. Relative to controls, patients demonstrated decreased driving effect from EZ to thalamus and basal ganglia, and increased feedback. Additionally, we found an altered causal relation between EZ and cortical networks (default mode network, limbic system, visual network and executive control network). The influence from EZ to right precuneus and brainstem negatively correlated with disease duration, whereas that from the right hippocampus, fusiform cortex, and lentiform nucleus to EZ showed positive correlation. These findings demonstrate widespread brain regions showing abnormal functional interaction with EZ. In addition, increased ALFF in EZ was positively correlated with the increased driving effect on EZ in patients, but not in controls. This finding suggests that the initiation of epileptic activity depends not only on EZ itself, but also on the activity emerging in large-scale macroscopic brain networks. Overall, this study suggests that the causal topological organization is disrupted in mTLE, providing valuable information to understand the pathophysiology of this disorder.
Collapse
Affiliation(s)
- Gong-Jun Ji
- National Key Laboratory of Cognitive Neuroscience and Learning, School of Brian and Cognitive Sciences, Beijing Normal University, Beijing, China
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Han Zhang
- Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Jue Wang
- Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Dong-Qiang Liu
- Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Yu-Feng Zang
- National Key Laboratory of Cognitive Neuroscience and Learning, School of Brian and Cognitive Sciences, Beijing Normal University, Beijing, China
- Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Wei Liao
- Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
- * E-mail: (WL); (GL)
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
- * E-mail: (WL); (GL)
| |
Collapse
|
25
|
Rektor I, Tomčík J, Mikl M, Mareček R, Brázdil M, Rektorová I. Association between the basal ganglia and large-scale brain networks in epilepsy. Brain Topogr 2013; 26:355-62. [PMID: 23400553 DOI: 10.1007/s10548-012-0272-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 12/18/2012] [Indexed: 11/26/2022]
Abstract
Epilepsy may affect connectivity between the putamen and cortex even during the resting state. Putamen is part of the basal ganglia resting state network (BG-RSN) which is anti-correlated with the default mode network (DMN) in healthy subjects. Therefore, we aimed at studying the functional brain connectivity (FC) of the putamen with the cortical areas engaged in the DMN as well as with the primary somatomotor cortex which is a cortical region engaged in the BG-RSN. We compared the data obtained in patients with epilepsy with that in healthy controls (HC). Functional magnetic resonance imaging (fMRI) was performed in 10 HC and 24 patients with epilepsy: 14 patients with extratemporal epilepsy (PE) and 10 patients with temporal epilepsy (PT). Resting state fMRI data was obtained using the 1.5 T Siemens Symphony scanner. The Group ICA of fMRI Toolbox (GIFT) program was used for independent component analysis. The component representing the DMN was chosen according to a spatial correlation with a mask typical for DMN. The FC between the putamen and the primary somatomotor cortex was studied to assess the connectivity of the putamen within the BG-RSN. A second-level analysis was calculated to evaluate differences among the groups using SPM software. In patients with epilepsy as compared to HC, the magnitude of anti-correlation between the putamen and brain regions engaged in the DMN was significantly lower. In fact, the correlation changed the connectivity direction from negative in HC to positive in PE and PT. The disturbed FC of the BG in patients with epilepsy as compared with HC was further illustrated by a significant decrease in connectivity between the left/right putamen and the left/right somatomotor cortex, i.e. between regions that are engaged in the BG-RSN. The FC between the putamen and the cortex is disturbed in patients with epilepsy. This may reflect an altered function of the BG in epilepsy.
Collapse
Affiliation(s)
- Ivan Rektor
- Central European Institute of Technology, Masaryk University (CEITEC MU), Kamenice 5, 625 00, Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
26
|
Popovic L, Vojvodic N, Ristic AJ, Bascarevic V, Sokic D, Kostic VS. Ictal dystonia and secondary generalization in temporal lobe seizures: a video-EEG study. Epilepsy Behav 2012; 25:501-4. [PMID: 23153714 DOI: 10.1016/j.yebeh.2012.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/15/2012] [Accepted: 07/17/2012] [Indexed: 10/27/2022]
Abstract
The aim of this study was to determine whether the occurrence of unilateral ictal limb dystonia (ID) during complex partial seizures (CPS) reduces the possibility of contralateral propagation (CP) and secondary generalization (SG) in patients with temporal lobe epilepsy (TLE). We assessed 216 seizures recorded in 33 patients with pharmacoresistant TLE. All patients underwent video-EEG telemetry prior to surgical treatment with good postoperative outcomes (Engel I). Ictal limb dystonia was observed in 16 of the 33 patients (48%) and 58 of the 216 seizures (26.8%). We found highly significant differences in the frequency of SG between seizures with ID and seizures without ID (2/58 vs. 41/158; 3.45% vs. 25.95%; p<0.001). Contralateral propagation was seen in 13 of the 57 analyzed seizures with ID compared to 85 of the 158 seizures without ID (22.8% vs. 53.8%; p<0.001). Among the CPS without SG, we found that the mean duration of seizures with ID was significantly longer than the duration of seizures without ID (81.66±40.10 vs. 68.88±25.01 s; p=0.011). Our findings that CP and SG occur less often in patients with ID, yet the duration of CPS without SG is longer in patients with ID, suggest that the basal ganglia might inhibit propagation to the contralateral hemisphere but not ictal activity within the unilateral epileptic network.
Collapse
|
27
|
Do the basal ganglia inhibit seizure activity in temporal lobe epilepsy? Epilepsy Behav 2012; 25:56-9. [PMID: 22835431 DOI: 10.1016/j.yebeh.2012.04.125] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 04/20/2012] [Accepted: 04/21/2012] [Indexed: 11/22/2022]
Abstract
There is substantial evidence in the literature that the basal ganglia (BG), namely the striatum and pallidum, are involved in temporal lobe epilepsy (TLE). The BG are probably not involved in elaborating clinical seizures, as they do not produce specific epileptiform activity and there is no evident change in the electrical activity in the BG immediately after seizure onset. The data we obtained by direct ictal recording in the BG [1,2], as well as a large body of experimental and clinical evidence reported by other groups, suggest an inhibitory role of the BG during temporal lobe seizures. The BG may have a remote influence on cortical oscillatory processes related to control of epileptic seizures via their feedback pathways to the cortex.
Collapse
|