1
|
Cheng M, Bai L, Yang Y, Liu W, Niu X, Chen Y, Tan Q, Yang X, Wu Q, Zhao HQ, Zhang Y. Novel copy number variations and phenotypes of infantile epileptic spasms syndrome. Clin Genet 2024; 106:161-179. [PMID: 38544467 DOI: 10.1111/cge.14520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 07/02/2024]
Abstract
We summarize the copy number variations (CNVs) and phenotype spectrum of infantile epileptic spasms syndrome (IESS) in a Chinese cohort. The CNVs were identified by genomic copy number variation sequencing. The CNVs and clinical data were analyzed. 74 IESS children with CNVs were enrolled. 35 kinds of CNVs were identified. There were 11 deletions and 5 duplications not reported previously in IESS, including 2 CNVs not reported in epilepsy. 87.8% were de novo, 9.5% were inherited from mother and 2.7% from father. Mosaicism occurred in one patient with Xq21.31q25 duplication. 16.2% (12/74) were 1p36 deletion, and 20.3% (15/74) were 15q11-q13 duplication. The age of seizure onset ranged from 17 days to 24 months. Seizure types included epileptic spasms, focal seizures, tonic seizures, and myoclonic seizures. All patients displayed developmental delay. Additional features included craniofacial anomaly, microcephaly, congenital heart defects, and hemangioma. 29.7% of patients were seizure-free for more than 12 months, and 70.3% still had seizures after trying 2 or more anti-seizure medications. In conclusion, CNVs is a prominent etiology of IESS. 1p36 deletion and 15q duplication occurred most frequently. CNV detection should be performed in patients with IESS of unknown causes, especially in children with craniofacial anomalies and microcephaly.
Collapse
Affiliation(s)
- Miaomiao Cheng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ling Bai
- Research and Development Center, Beijing USCI Medical Laboratory Co., Ltd, Beijing, China
| | - Ying Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Wenwei Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xueyang Niu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yi Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Quanzhen Tan
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiaoling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Qixi Wu
- Research and Development Center, Beijing USCI Medical Laboratory Co., Ltd, Beijing, China
| | - Han-Qing Zhao
- Research and Development Center, Beijing USCI Medical Laboratory Co., Ltd, Beijing, China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
2
|
Posar A, Visconti P. Continuous Spike-Waves during Slow Sleep Today: An Update. CHILDREN (BASEL, SWITZERLAND) 2024; 11:169. [PMID: 38397281 PMCID: PMC10887038 DOI: 10.3390/children11020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
In the context of childhood epilepsy, the concept of continuous spike-waves during slow sleep (CSWS) includes several childhood-onset heterogeneous conditions that share electroencephalograms (EEGs) characterized by a high frequency of paroxysmal abnormalities during sleep, which have negative effects on the cognitive development and behavior of the child. These negative effects may have the characteristics of a clear regression or of a slowdown in development. Seizures are very often present, but not constantly. The above makes it clear why CSWS have been included in epileptic encephalopathies, in which, by definition, frequent EEG paroxysmal abnormalities have an unfavorable impact on cognitive functions, including socio-communicative skills, causing autistic features, even regardless of the presence of clinically overt seizures. Although several decades have passed since the original descriptions of the electroclinical condition of CSWS, there are still many areas that are little-known and deserve to be further studied, including the EEG diagnostic criteria, the most effective electrophysiological parameter for monitoring the role of the thalamus in CSWS pathogenesis, its long-term evolution, the nosographic location of Landau-Kleffner syndrome, standardized neuropsychological and behavioral assessments, and pharmacological and non-pharmacological therapies.
Collapse
Affiliation(s)
- Annio Posar
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, 40139 Bologna, Italy;
- Department of Biomedical and Neuromotor Sciences, Bologna University, 40139 Bologna, Italy
| | - Paola Visconti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, 40139 Bologna, Italy;
| |
Collapse
|
3
|
Freibauer AE, RamachandranNair R, Jain P, Jones KC, Whitney R. The genetic landscape of developmental and epileptic encephalopathy with spike-and-wave activation in sleep. Seizure 2023; 110:119-125. [PMID: 37352690 DOI: 10.1016/j.seizure.2023.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023] Open
Abstract
OBJECTIVE Epileptic Encephalopathy / Developmental Epileptic Encephalopathy with spike-and-wave activation in sleep (EE/DEE-SWAS) is defined as an epilepsy syndrome characterized by neurodevelopmental regression temporally related to the emergence of significant activation of spike-wave discharges in EEG during sleep. The availability of genetic testing has made it evident that monogenic and chromosomal abnormalities play an aetiological role in the development of EE/DEE-SWAS. We sought to review the literature to better understand the genetic landscape of EE/DEE-SWAS. METHODS In this systematic review, we reviewed cases of EE/DEE-SWAS associated with a genetic aetiology, collecting information related to the underlying aetiology, onset, management, and EEG patterns. RESULTS One hundred and seventy-two cases of EE/DEE-SWAS were identified. Genetic causes of note included pathogenic variants in GRIN2A, ZEB2, CNKSR2 and chromosome 17q21.31 deletions, each of which demonstrated unique clinical characteristics, EEG patterns, and age of onset. Factors identified to raise suspicion of a potential genetic aetiology included the presentation of DEE-SWAS and onset of SWAS under the age of five years. Treatment of EE/DEE-SWAS due to genetic causes was diverse, including a combination of anti-seizure medications, steroids, and other clinical strategies, with no clear consensus on a preferred or superior treatment. Data collected was significantly heterogeneous, with a lack of consistent use of neuropsychology testing, EEG patterns, or use of established clinical definitions. CONCLUSIONS Uniformity concerning the new definition of EE/DEE-SWAS, guidelines for management and more frequent genetic screening will be needed to guide best practices for the treatment of patients with EE/DEE-SWAS.
Collapse
Affiliation(s)
- Alexander E Freibauer
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON, Canada
| | | | - Puneet Jain
- Epilepsy Program, Division of Neurology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Kevin C Jones
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON, Canada
| | - Robyn Whitney
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
4
|
Arganbright JM, Tracy M, Hughes SS, Ingram DG. Sleep patterns and problems among children with 22q11 deletion syndrome. Mol Genet Genomic Med 2020; 8:e1153. [PMID: 32222065 PMCID: PMC7284043 DOI: 10.1002/mgg3.1153] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 01/08/2020] [Accepted: 01/11/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND To delineate sleep habits and problems in children with 22q11.2 deletion syndrome (22q11DS). METHODS Thirty children, age 1-15 (mean 6.8) years, participated in the study, which was an internet-based anonymous survey of parents of children with 22q11DS administered via the 22q11.2 Foundation. The main outcome was the Childhood Sleep Habits Questionnaire (CSHQ). RESULTS Scores on the CSHQ demonstrated clinically significant sleep problems in 29 of the 30 children. When compared with previously reported normative values for typically developing children of the same age, children with 22q11DS had significantly greater sleep problems. Only 30% of children had previously undergone sleep study. While about half of children had tried a medication for sleep, it usually was not felt to be helpful. In contrast, parents reported that behavioral interventions, such as consistent bedtime routine and appropriate sleep environment, were helpful. This is one of the first studies to specifically address sleep problems other than obstructive sleep apnea in children with 22q11DS. CONCLUSIONS The findings suggest children with 22q11DS may have a higher risk of experiencing clinical sleep problems, compared to typically developing children. Consideration of additional screening and treatment of sleep disorders in children with 22q11DS is warranted.
Collapse
Affiliation(s)
- Jill M Arganbright
- Division of Otolaryngology, Children's Mercy Hospital, Kansas City, MO, USA
| | - Meghan Tracy
- Division of Otolaryngology, Children's Mercy Hospital, Kansas City, MO, USA
| | | | - David G Ingram
- Division of Pulmonary and Sleep Medicine, Children's Mercy Hospital, Kansas City, MO, USA
| |
Collapse
|
5
|
Demily C, Lesca G, Poisson A, Till M, Barcia G, Chatron N, Sanlaville D, Munnich A. Additive Effect of Variably Penetrant 22q11.2 Duplication and Pathogenic Mutations in Autism Spectrum Disorder: To Which Extent Does the Tree Hide the Forest? J Autism Dev Disord 2019; 48:2886-2889. [PMID: 29589274 DOI: 10.1007/s10803-018-3552-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The 22q11.2 duplication is a variably penetrant copy number variant (CNV) associated with a broad spectrum of clinical manifestations including autism spectrum disorders (ASD), and epilepsy. Here, we report on pathogenic HUWE1 and KIF1A mutations in two severely affected ASD/ID participants carrying a 22q11.2 duplication. Based on previous studies, this CNV was originally considered as disease-causing. Yet, owing to their clinical severity, the participants were further investigated by next generation sequencing and eventually found to carry pathogenic mutations in HUWE1 and KIF1A respectively. We suggest giving consideration to additive effect of 22q11.2 duplication and pathogenic mutations when clinical presentation is either unusually severe or associated with atypical features. Caution should be exercised when delivering genetic counseling for variably penetrant CNVs, as uncertain penetrance of this CNV may lead to ignore additive pathogenic mutations. Systematic panel or exome sequencing of known ASD genes should be recommended when counseling families of patients carrying variably penetrant CNV.
Collapse
Affiliation(s)
- Caroline Demily
- Centre de Référence Maladies Rares GénoPsy, Centre Hospitalier le Vinatier, Bron et UMR 5229 (CNRS & Université Lyon 1), Bron, France.
| | - Gaétan Lesca
- Hospices Civils de Lyon, Centre de Référence des Anomalies du Développement, Laboratoire de Cytogénétique, GHE, Lyon, France
- Centre de Recherche en Neurosciences de Lyon, Inserm U1028, UMR CNRS 5292, Université Claude Bernard Lyon 1, Lyon, France
| | - Alice Poisson
- Centre de Référence Maladies Rares GénoPsy, Centre Hospitalier le Vinatier, Bron et UMR 5229 (CNRS & Université Lyon 1), Bron, France
| | - Marianne Till
- Hospices Civils de Lyon, Centre de Référence des Anomalies du Développement, Laboratoire de Cytogénétique, GHE, Lyon, France
| | - Giulia Barcia
- Département de génétique médicale, Institut Imagine, Hôpital Necker-Enfants Malades, INSERM UMR 1163, Université Paris Descartes-Sorbonne, Paris, France
| | - Nicolas Chatron
- Hospices Civils de Lyon, Centre de Référence des Anomalies du Développement, Laboratoire de Cytogénétique, GHE, Lyon, France
- Centre de Recherche en Neurosciences de Lyon, Inserm U1028, UMR CNRS 5292, Université Claude Bernard Lyon 1, Lyon, France
| | - Damien Sanlaville
- Hospices Civils de Lyon, Centre de Référence des Anomalies du Développement, Laboratoire de Cytogénétique, GHE, Lyon, France
- Centre de Recherche en Neurosciences de Lyon, Inserm U1028, UMR CNRS 5292, Université Claude Bernard Lyon 1, Lyon, France
| | - Arnold Munnich
- Département de génétique médicale, Institut Imagine, Hôpital Necker-Enfants Malades, INSERM UMR 1163, Université Paris Descartes-Sorbonne, Paris, France
| |
Collapse
|
6
|
Mathieu ML, de Bellescize J, Till M, Flurin V, Labalme A, Chatron N, Sanlaville D, Chemaly N, des Portes V, Ostrowsky K, Arzimanoglou A, Lesca G. Electrical status epilepticus in sleep, a constitutive feature of Christianson syndrome? Eur J Paediatr Neurol 2018; 22:1124-1132. [PMID: 30126759 DOI: 10.1016/j.ejpn.2018.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 06/25/2018] [Accepted: 07/16/2018] [Indexed: 10/28/2022]
Abstract
Christianson syndrome (CS) is a X-linked neurodevelopmental disorder, including severe intellectual disability (ID), progressive microcephaly, ataxia, autistic behaviour (ASD), near absent speech, and epilepsy. Electrical status epilepticus in sleep (ESES) has been reported in two patients. We describe five male patients from three unrelated families with Christianson syndrome caused by a pathogenic nucleotide variation or a copy-number variation involving SLC9A6. ESES was present in three out of the five patients in the critical age window between 4 and 8 years. All patients presented with severe intellectual disability, autistic features, and hyperactivity. Epilepsy onset occurred within the first two years of life. Seizures were of various types. In the two boys with a 20-years follow-up, epilepsy was drug-resistant during childhood, and became less active in early adolescence. Psychomotor regression was noted in two patients presenting with ESES. It was difficult to assess to what extent ESES could have contributed to the pathophysiological process, leading to regression of the already very limited communication skills. The two published case reports and our observation suggests that ESES could be a constitutive feature of Christianson syndrome, as it has already been shown for other Mendelian epileptic disorders, such as GRIN2A and CNKSR2-related developmental epileptic encephalopathies. Sleep EEG should be performed in patients with Christianson syndrome between 4 and 8 years of age. ESES occurring in the context of ID, ASD and severe speech delay, could be helpful to make a diagnosis of CS.
Collapse
Affiliation(s)
- Marie-Laure Mathieu
- Neuropaediatrics Department, Femme Mère Enfant Hospital, Lyon, France; Claude Bernard Lyon 1 University, Lyon, France
| | - Julitta de Bellescize
- Department of Paediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the European Reference Network EpiCARE, Hospices Civils de Lyon, Lyon, France
| | - Marianne Till
- Department of Medical Genetics, Lyon University Hospital, Lyon, France
| | - Vincent Flurin
- Department of Paediatric Intensive Care, Le Mans Hospital, Le Mans, France
| | - Audrey Labalme
- Department of Medical Genetics, Lyon University Hospital, Lyon, France
| | - Nicolas Chatron
- Department of Medical Genetics, Lyon University Hospital, Lyon, France; Claude Bernard Lyon 1 University, Lyon, France; INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Centre (CRNL), Lyon, France
| | - Damien Sanlaville
- Department of Medical Genetics, Lyon University Hospital, Lyon, France; Claude Bernard Lyon 1 University, Lyon, France; INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Centre (CRNL), Lyon, France
| | - Nicole Chemaly
- Reference Centre for Rare Epilepsies, APHP, Necker-Enfants Malades Hospital, Imagine Institute, Paris, France; INSERM U1129, Paris, France; Paris Descartes University, CEA, Gif sur Yvette, France
| | - Vincent des Portes
- Neuropaediatrics Department, Femme Mère Enfant Hospital, Lyon, France; Claude Bernard Lyon 1 University, Lyon, France
| | - Karine Ostrowsky
- Department of Paediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the European Reference Network EpiCARE, Hospices Civils de Lyon, Lyon, France
| | - Alexis Arzimanoglou
- Department of Paediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the European Reference Network EpiCARE, Hospices Civils de Lyon, Lyon, France; DYCOG Team, Lyon Neuroscience Research Centre (CRNL), INSERM U1028, CNRS UMR 5292, Lyon, France
| | - Gaëtan Lesca
- Department of Medical Genetics, Lyon University Hospital, Lyon, France; Claude Bernard Lyon 1 University, Lyon, France; INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Centre (CRNL), Lyon, France.
| |
Collapse
|
7
|
Deshpande A, Weiss LA. Recurrent reciprocal copy number variants: Roles and rules in neurodevelopmental disorders. Dev Neurobiol 2018; 78:519-530. [PMID: 29575775 DOI: 10.1002/dneu.22587] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/08/2018] [Accepted: 03/13/2018] [Indexed: 12/14/2022]
Abstract
Deletions and duplications, called reciprocal CNVs when they occur at the same locus, are implicated in neurodevelopmental phenotypes ranging from morphological to behavioral. In this article, we propose three models of how differences in gene expression in deletion and duplication genotypes may result in deleterious phenotypes. To explore these models, we use examples of the similarities and differences in clinical phenotypes of five reciprocal CNVs known to cause neurodevelopmental disorders: 1q21.1, 7q11.23, 15q13.3, 16p11.2, and 22q11.2. These models and examples may inform some insights into better understanding of gene-phenotype relationships. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 519-530, 2018.
Collapse
Affiliation(s)
- Aditi Deshpande
- Department of Psychiatry, University of California, San Francisco, San Francisco, California, 94143.,Institute for Human Genetics, University of California, San Francisco, San Francisco, California, 94143.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, 94143
| | - Lauren A Weiss
- Department of Psychiatry, University of California, San Francisco, San Francisco, California, 94143.,Institute for Human Genetics, University of California, San Francisco, San Francisco, California, 94143.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, 94143
| |
Collapse
|
8
|
Addis L, Rosch RE, Valentin A, Makoff A, Robinson R, Everett KV, Nashef L, Pal DK. Analysis of rare copy number variation in absence epilepsies. NEUROLOGY-GENETICS 2016; 2:e56. [PMID: 27123475 PMCID: PMC4830185 DOI: 10.1212/nxg.0000000000000056] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/04/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To identify shared genes and pathways between common absence epilepsy (AE) subtypes (childhood absence epilepsy [CAE], juvenile absence epilepsy [JAE], and unclassified absence epilepsy [UAE]) that may indicate common mechanisms for absence seizure generation and potentially a diagnostic continuum. METHODS We used high-density single-nucleotide polymorphism arrays to analyze genome-wide rare copy number variation (CNV) in a cohort of 144 children with AEs (95 CAE, 26 UAE, and 23 JAE). RESULTS We identified CNVs that are known risk factors for AE in 4 patients, including 3x 15q11.2 deletion. We also expanded the phenotype at 4 regions more commonly identified in other neurodevelopmental disorders: 1p36.33 duplication, 1q21.1 deletion, 22q11.2 duplication, and Xp22.31 deletion and duplication. Fifteen patients (10.5%) were found to carry rare CNVs that disrupt genes associated with neuronal development and function (8 CAE, 2 JAE, and 5 UAE). Four categories of protein are each disrupted by several CNVs: (1) synaptic vesicle membrane or vesicle endocytosis, (2) synaptic cell adhesion, (3) synapse organization and motility via actin, and (4) gap junctions. CNVs within these categories are shared across the AE subtypes. CONCLUSIONS Our results have reinforced the complex and heterogeneous nature of the AEs and their potential for shared genetic mechanisms and have highlighted several pathways that may be important in epileptogenesis of absence seizures.
Collapse
Affiliation(s)
- Laura Addis
- Department of Basic and Clinical Neuroscience (L.A., R.E.R., A.V., A.M., D.K.P.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, United Kingdom; Neuroscience Discovery Research (L.A.), Eli Lilly and Company, Erl Wood, Surrey, United Kingdom; Wellcome Trust Centre for Neuroimaging (R.E.R.), Institute of Neurology, University College London, United Kingdom; Department of Clinical Neurophysiology (A.V.), Department of Neurology (L.N.), and Department of Child Health (D.K.P.), King's College Hospital, United Kingdom; Department of Paediatric Neurology (R.R.), Great Ormond Street Hospital, London, United Kingdom; and St George's University of London (K.V.E.), Cranmer Terrace, London, United Kingdom
| | - Richard E Rosch
- Department of Basic and Clinical Neuroscience (L.A., R.E.R., A.V., A.M., D.K.P.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, United Kingdom; Neuroscience Discovery Research (L.A.), Eli Lilly and Company, Erl Wood, Surrey, United Kingdom; Wellcome Trust Centre for Neuroimaging (R.E.R.), Institute of Neurology, University College London, United Kingdom; Department of Clinical Neurophysiology (A.V.), Department of Neurology (L.N.), and Department of Child Health (D.K.P.), King's College Hospital, United Kingdom; Department of Paediatric Neurology (R.R.), Great Ormond Street Hospital, London, United Kingdom; and St George's University of London (K.V.E.), Cranmer Terrace, London, United Kingdom
| | - Antonio Valentin
- Department of Basic and Clinical Neuroscience (L.A., R.E.R., A.V., A.M., D.K.P.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, United Kingdom; Neuroscience Discovery Research (L.A.), Eli Lilly and Company, Erl Wood, Surrey, United Kingdom; Wellcome Trust Centre for Neuroimaging (R.E.R.), Institute of Neurology, University College London, United Kingdom; Department of Clinical Neurophysiology (A.V.), Department of Neurology (L.N.), and Department of Child Health (D.K.P.), King's College Hospital, United Kingdom; Department of Paediatric Neurology (R.R.), Great Ormond Street Hospital, London, United Kingdom; and St George's University of London (K.V.E.), Cranmer Terrace, London, United Kingdom
| | - Andrew Makoff
- Department of Basic and Clinical Neuroscience (L.A., R.E.R., A.V., A.M., D.K.P.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, United Kingdom; Neuroscience Discovery Research (L.A.), Eli Lilly and Company, Erl Wood, Surrey, United Kingdom; Wellcome Trust Centre for Neuroimaging (R.E.R.), Institute of Neurology, University College London, United Kingdom; Department of Clinical Neurophysiology (A.V.), Department of Neurology (L.N.), and Department of Child Health (D.K.P.), King's College Hospital, United Kingdom; Department of Paediatric Neurology (R.R.), Great Ormond Street Hospital, London, United Kingdom; and St George's University of London (K.V.E.), Cranmer Terrace, London, United Kingdom
| | - Robert Robinson
- Department of Basic and Clinical Neuroscience (L.A., R.E.R., A.V., A.M., D.K.P.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, United Kingdom; Neuroscience Discovery Research (L.A.), Eli Lilly and Company, Erl Wood, Surrey, United Kingdom; Wellcome Trust Centre for Neuroimaging (R.E.R.), Institute of Neurology, University College London, United Kingdom; Department of Clinical Neurophysiology (A.V.), Department of Neurology (L.N.), and Department of Child Health (D.K.P.), King's College Hospital, United Kingdom; Department of Paediatric Neurology (R.R.), Great Ormond Street Hospital, London, United Kingdom; and St George's University of London (K.V.E.), Cranmer Terrace, London, United Kingdom
| | - Kate V Everett
- Department of Basic and Clinical Neuroscience (L.A., R.E.R., A.V., A.M., D.K.P.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, United Kingdom; Neuroscience Discovery Research (L.A.), Eli Lilly and Company, Erl Wood, Surrey, United Kingdom; Wellcome Trust Centre for Neuroimaging (R.E.R.), Institute of Neurology, University College London, United Kingdom; Department of Clinical Neurophysiology (A.V.), Department of Neurology (L.N.), and Department of Child Health (D.K.P.), King's College Hospital, United Kingdom; Department of Paediatric Neurology (R.R.), Great Ormond Street Hospital, London, United Kingdom; and St George's University of London (K.V.E.), Cranmer Terrace, London, United Kingdom
| | - Lina Nashef
- Department of Basic and Clinical Neuroscience (L.A., R.E.R., A.V., A.M., D.K.P.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, United Kingdom; Neuroscience Discovery Research (L.A.), Eli Lilly and Company, Erl Wood, Surrey, United Kingdom; Wellcome Trust Centre for Neuroimaging (R.E.R.), Institute of Neurology, University College London, United Kingdom; Department of Clinical Neurophysiology (A.V.), Department of Neurology (L.N.), and Department of Child Health (D.K.P.), King's College Hospital, United Kingdom; Department of Paediatric Neurology (R.R.), Great Ormond Street Hospital, London, United Kingdom; and St George's University of London (K.V.E.), Cranmer Terrace, London, United Kingdom
| | - Deb K Pal
- Department of Basic and Clinical Neuroscience (L.A., R.E.R., A.V., A.M., D.K.P.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, United Kingdom; Neuroscience Discovery Research (L.A.), Eli Lilly and Company, Erl Wood, Surrey, United Kingdom; Wellcome Trust Centre for Neuroimaging (R.E.R.), Institute of Neurology, University College London, United Kingdom; Department of Clinical Neurophysiology (A.V.), Department of Neurology (L.N.), and Department of Child Health (D.K.P.), King's College Hospital, United Kingdom; Department of Paediatric Neurology (R.R.), Great Ormond Street Hospital, London, United Kingdom; and St George's University of London (K.V.E.), Cranmer Terrace, London, United Kingdom
| |
Collapse
|
9
|
Bhatnagar M, Shorvon S. Genetic mutations associated with status epilepticus. Epilepsy Behav 2015; 49:104-10. [PMID: 25982265 DOI: 10.1016/j.yebeh.2015.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 01/28/2023]
Abstract
This paper reports the results of a preliminary search of the literature aimed at identifying the genetic mutations reported to be strongly associated with status epilepticus. Genetic mutations were selected for inclusion if status epilepticus was specifically mentioned as a consequence of the mutation in standard genetic databases or in a case report or review article. Mutations in 122 genes were identified. The genetic mutations identified were found in only rare conditions (sometimes vanishingly rare) and mostly in infants and young children with multiple other handicaps. Most of the genetic mutations can be subdivided into those associated with cortical dysplasias, inborn errors of metabolism, mitochondrial disease, or epileptic encephalopathies and childhood syndromes. There are no identified 'pure status epilepticus genes'. The range of genes underpinning status epilepticus differs in many ways from the range of genes underpinning epilepsy, which suggests that the processes underpinning status epilepticus differ from those underpinning epilepsy. It has been frequently postulated that status epilepticus is the result of a failure of 'seizure termination mechanisms', but the wide variety of genes affecting very diverse biochemical pathways identified in this survey makes any unitary cause unlikely. The genetic influences in status epilepticus are likely to involve a wide range of mechanisms, some related to development, some to cerebral energy production, some to diverse altered biochemical pathways, some to transmitter and membrane function, and some to defects in networks or systems. The fact that many of the identified genes are involved with cerebral development suggests that status epilepticus might often be a system or network phenomenon. To date, there are very few genes identified which are associated with adult-onset status epilepticus (except in those with preexisting neurological damage), and this is disappointing as the cause of many adult-onset status epilepticus cases remains obscure. It has been suggested that idiopathic adult-onset status epilepticus might often have an immunological cause but no gene mutations which relate to immunological mechanisms were identified. Overall, the clinical utility of what is currently known about the genetics of status epilepticus is slight and the findings have had little impact on clinical treatment despite what has been a very large investment in money and time. New genetic technologies may result in the identification of further genes, but if the identified genetic defects confer only minor susceptibility, this is unlikely to influence therapy. It is also important to recognize that genetics has social implications in a way that other areas of science do not. This article is part of a Special Issue entitled "Status Epilepticus".
Collapse
Affiliation(s)
- M Bhatnagar
- UCL Institute of Neurology, University College London, UK
| | - S Shorvon
- UCL Institute of Neurology, University College London, UK.
| |
Collapse
|
10
|
Prenatal Diagnosis of Central Nervous System Anomalies by High-Resolution Chromosomal Microarray Analysis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:426379. [PMID: 26064910 PMCID: PMC4443641 DOI: 10.1155/2015/426379] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/07/2015] [Indexed: 12/20/2022]
Abstract
The aims of this study were to evaluate the contribution of chromosomal microarray analysis (CMA) in the prenatal diagnosis of fetuses with central nervous system (CNS) anomalies but normal chromosomal karyotype. A total of 46 fetuses with CNS anomalies with or without other ultrasound anomalies but normal karyotypes were evaluated by array-based comparative genomic hybridisation (aCGH) or single-nucleotide polymorphism (SNP) array. The result showed that CNVs were detected in 17 (37.0%) fetuses. Of these, CNVs identified in 5 (5/46, 10.9%) fetuses were considered to be likely pathogenic, and CNVs detected in 3 (3/46, 6.5%) fetuses were defined as being of uncertain clinical significance. Fetuses with CNS malformations plus other ultrasound anomalies had a higher rate of pathogenic CNVs than those with isolated CNS anomalies (13.6% versus 8.3%), but there was no significant difference (Fisher's exact test, P > 0.05). Pathogenic CNVs were detected most frequently in fetuses with Dandy-Walker syndrome (2/6, 33.3%) when compared with other types of neural malformations, and holoprosencephaly (2/7, 28.6%) ranked the second. CMA is valuable in prenatal genetic diagnosis of fetuses with CNS anomalies. It should be considered as part of prenatal diagnosis in fetuses with CNS malformations and normal karyotypes.
Collapse
|
11
|
Bhat S, Ming X, Dekermenjian R, Chokroverty S. Continuous spike and wave in slow-wave sleep in a patient with Rett syndrome and in a patient with Lhermitte-Duclos syndrome and neurofibromatosis 1. J Child Neurol 2014; 29:NP176-80. [PMID: 24262385 DOI: 10.1177/0883073813509888] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Continuous spike and wave in slow-wave sleep (CSWS) is an electroencephalographic (EEG) pattern characterized by generalized spike-wave discharges occurring for at least 85% of non-rapid eye movement (non-REM) sleep, with marked attenuation during rapid eye movement (REM) sleep. It has been described in a large number of structural and nonstructural neurologic conditions and is associated with epilepsy, behavioral disturbances, and severe neuropsychiatric impairment. We describe continuous spike and wave in slow-wave sleep in 2 patients (one with Rett syndrome and the other with Lhermitte-Duclos syndrome). To our knowledge, continuous spike and wave in slow-wave sleep has not been previously described in these conditions.
Collapse
Affiliation(s)
- Sushanth Bhat
- NJ Neuroscience Institute at JFK Medical Center/Seton Hall University, Edison, NJ, USA
| | - Xue Ming
- NJ Neuroscience Institute at JFK Medical Center/Seton Hall University, Edison, NJ, USA Department of Neurology and Neurosciences, New Jersey Medical School UMDNJ Newark, Newark, NJ, USA
| | - Rony Dekermenjian
- NJ Neuroscience Institute at JFK Medical Center/Seton Hall University, Edison, NJ, USA
| | - Sudhansu Chokroverty
- NJ Neuroscience Institute at JFK Medical Center/Seton Hall University, Edison, NJ, USA
| |
Collapse
|
12
|
Olson HE, Poduri A, Pearl PL. Genetic forms of epilepsies and other paroxysmal disorders. Semin Neurol 2014; 34:266-79. [PMID: 25192505 DOI: 10.1055/s-0034-1386765] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetic mechanisms explain the pathophysiology of many forms of epilepsy and other paroxysmal disorders, such as alternating hemiplegia of childhood, familial hemiplegic migraine, and paroxysmal dyskinesias. Epilepsy is a key feature of well-defined genetic syndromes including tuberous sclerosis complex, Rett syndrome, Angelman syndrome, and others. There is an increasing number of single-gene causes or susceptibility factors associated with several epilepsy syndromes, including the early-onset epileptic encephalopathies, benign neonatal/infantile seizures, progressive myoclonus epilepsies, genetic generalized and benign focal epilepsies, epileptic aphasias, and familial focal epilepsies. Molecular mechanisms are diverse, and a single gene can be associated with a broad range of phenotypes. Additional features, such as dysmorphisms, head size, movement disorders, and family history may provide clues to a genetic diagnosis. Genetic testing can impact medical care and counseling. We discuss genetic mechanisms of epilepsy and other paroxysmal disorders, tools and indications for genetic testing, known genotype-phenotype associations, the importance of genetic counseling, and a look toward the future of epilepsy genetics.
Collapse
Affiliation(s)
- Heather E Olson
- Division of Epilepsy, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Annapurna Poduri
- Division of Epilepsy, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Phillip L Pearl
- Division of Epilepsy, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
13
|
Reinthaler EM, Lal D, Lebon S, Hildebrand MS, Dahl HHM, Regan BM, Feucht M, Steinböck H, Neophytou B, Ronen GM, Roche L, Gruber-Sedlmayr U, Geldner J, Haberlandt E, Hoffmann P, Herms S, Gieger C, Waldenberger M, Franke A, Wittig M, Schoch S, Becker AJ, Hahn A, Männik K, Toliat MR, Winterer G, Lerche H, Nürnberg P, Mefford H, Scheffer IE, Berkovic SF, Beckmann JS, Sander T, Jacquemont S, Reymond A, Zimprich F, Neubauer BA. 16p11.2 600 kb Duplications confer risk for typical and atypical Rolandic epilepsy. Hum Mol Genet 2014; 23:6069-80. [PMID: 24939913 DOI: 10.1093/hmg/ddu306] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rolandic epilepsy (RE) is the most common idiopathic focal childhood epilepsy. Its molecular basis is largely unknown and a complex genetic etiology is assumed in the majority of affected individuals. The present study tested whether six large recurrent copy number variants at 1q21, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 previously associated with neurodevelopmental disorders also increase risk of RE. Our association analyses revealed a significant excess of the 600 kb genomic duplication at the 16p11.2 locus (chr16: 29.5-30.1 Mb) in 393 unrelated patients with typical (n = 339) and atypical (ARE; n = 54) RE compared with the prevalence in 65,046 European population controls (5/393 cases versus 32/65,046 controls; Fisher's exact test P = 2.83 × 10(-6), odds ratio = 26.2, 95% confidence interval: 7.9-68.2). In contrast, the 16p11.2 duplication was not detected in 1738 European epilepsy patients with either temporal lobe epilepsy (n = 330) and genetic generalized epilepsies (n = 1408), suggesting a selective enrichment of the 16p11.2 duplication in idiopathic focal childhood epilepsies (Fisher's exact test P = 2.1 × 10(-4)). In a subsequent screen among children carrying the 16p11.2 600 kb rearrangement we identified three patients with RE-spectrum epilepsies in 117 duplication carriers (2.6%) but none in 202 carriers of the reciprocal deletion. Our results suggest that the 16p11.2 duplication represents a significant genetic risk factor for typical and atypical RE.
Collapse
Affiliation(s)
| | - Dennis Lal
- Cologne Center for Genomics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany, Department of Neuropediatrics, University Medical Faculty Giessen and Marburg, Giessen, Germany
| | - Sebastien Lebon
- Unit of Pediatric Neurology and Neurorehabilitation, Department of Pediatrics
| | - Michael S Hildebrand
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Australia
| | - Hans-Henrik M Dahl
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Australia
| | - Brigid M Regan
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Australia
| | - Martha Feucht
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | | | - Birgit Neophytou
- Department of Neuropediatrics, St. Anna Children's Hospital, Vienna, Austria
| | - Gabriel M Ronen
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Laurian Roche
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | | | - Julia Geldner
- Department of Pediatrics, Hospital SMZ Süd Kaiser-Franz-Josef Spital, Vienna, Austria
| | - Edda Haberlandt
- Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany, Division of Medical Genetics, University Hospital and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Stefan Herms
- Institute of Human Genetics, University of Bonn, Bonn, Germany, Division of Medical Genetics, University Hospital and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Christian Gieger
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Genetic Epidemiology, Neuherberg, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Michael Wittig
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Susanne Schoch
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Albert J Becker
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Andreas Hahn
- Department of Neuropediatrics, University Medical Faculty Giessen and Marburg, Giessen, Germany
| | - Katrin Männik
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | | | - Georg Winterer
- Experimental and Clinical Research Center (ECRC) Charité, University Medicine Berlin, Berlin, Germany
| | | | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute of Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Heather Mefford
- Division of Genetic Medicine, University of Washington, Seattle, Washington, USA
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Australia, Florey Institute and Department of Pediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Australia
| | - Jacques S Beckmann
- Service of Medical Genetics, Lausanne University Hospital, Lausanne, Switzerland, Swiss Institute of Bioinformatics, Lausanne, Switzerland and
| | | | | | | | - Sebastien Jacquemont
- Service of Medical Genetics, Lausanne University Hospital, Lausanne, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Bernd A Neubauer
- Department of Neuropediatrics, University Medical Faculty Giessen and Marburg, Giessen, Germany
| |
Collapse
|
14
|
Piccione M, Vecchio D, Salzano E, Corsello G. Delineating a new critical region for juvenile myoclonic epilepsy at the 22q11.2 chromosome. Epilepsy Behav 2013; 29:587-8. [PMID: 24012507 DOI: 10.1016/j.yebeh.2013.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 08/09/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Maria Piccione
- Department of Sciences for Health Promotion and Mother and Child Care, University of Palermo, Palermo, Italy.
| | | | | | | |
Collapse
|
15
|
Nakhro K, Park JM, Choi BO, Chung KW. Missense mutations ofmitofusin 2in axonal Charcot–Marie–Tooth neuropathy: polymorphic or incomplete penetration? Anim Cells Syst (Seoul) 2013. [DOI: 10.1080/19768354.2013.814587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|