1
|
Neal EG, Schimmel S, George Z, Monsour M, Alayli A, Lockard G, Piper K, Maciver S, Vale FL, Bezchlibnyk YB. No change in network connectivity measurements between separate rsfMRI acquisition times. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1342161. [PMID: 38292021 PMCID: PMC10823025 DOI: 10.3389/fnetp.2024.1342161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
The role of resting state functional MRI (rsfMRI) is increasing in the field of epilepsy surgery because it is possible to interpolate network connectivity patterns across the brain with a high degree of spatial resolution. Prior studies have shown that by rsfMRI with scalp electroencephalography (EEG), an epileptogenic network can be modeled and visualized with characteristic patterns of connectivity that are relevant to both seizure-related and neuropsychological outcomes after surgery. The aim of this study is to show that a 5-min acquisition time provides reproducible results related to the relevant connectivity metrics when compared to a separately acquired 5-min scan. Fourteen separate rsfMRI sessions from ten different patients were used for comparison, comprised of patients with temporal lobe epilepsy both pre- and post-operation. Results showed that there was no significant difference in any of the connectivity metrics when comparing both 5-min scans to each other. These data support the continued use of a 5-min scan for epileptogenic network modeling in future studies because the inter-scan variability is sufficiently low as not to alter the output metrics characterizing the network connectivity.
Collapse
Affiliation(s)
- Elliot G. Neal
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Samantha Schimmel
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Zeegan George
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Molly Monsour
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Adam Alayli
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Gavin Lockard
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Keaton Piper
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Stephanie Maciver
- Department of Neurology, Advent Health Tampa, Tampa, FL, United States
| | - Fernando L. Vale
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Yarema B. Bezchlibnyk
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| |
Collapse
|
2
|
Neal EG, Schoenberg MR, Maciver S, Bezchlibnyk YB, Vale FL. Seizure Freedom After Epilepsy Surgery and Higher Baseline Cognition May Be Associated With a Negatively Correlated Epilepsy Network in Temporal Lobe Epilepsy. Front Neurosci 2021; 14:629667. [PMID: 33584184 PMCID: PMC7874020 DOI: 10.3389/fnins.2020.629667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/28/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Brain regions positively correlated with the epileptogenic zone in patients with temporal lobe epilepsy vary in spread across the brain and in the degree of correlation to the temporal lobes, thalamus, and limbic structures, and these parameters have been associated with pre-operative cognitive impairment and seizure freedom after epilepsy surgery, but negatively correlated regions have not been as well studied. We hypothesize that connectivity within a negatively correlated epilepsy network may predict which patients with temporal lobe epilepsy will respond best to surgery. Methods: Scalp EEG and resting state functional MRI (rsfMRI) were collected from 19 patients with temporal lobe epilepsy and used to estimate the irritative zone. Using patients' rsfMRI, the negatively correlated epilepsy network was mapped by determining all the brain voxels that were negatively correlated with the voxels in the epileptogenic zone and the spread and average connectivity within the network was determined. Results: Pre-operatively, connectivity within the negatively correlated network was inversely related to the spread (diffuseness) of that network and positively associated with higher baseline verbal and logical memory. Pre-operative connectivity within the negatively correlated network was also significantly higher in patients who would go on to be seizure free. Conclusion: Patients with higher connectivity within brain regions negatively correlated with the epilepsy network had higher baseline memory function, narrower network spread, and were more likely to be seizure free after surgery.
Collapse
Affiliation(s)
- Elliot G Neal
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
| | - Mike R Schoenberg
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States.,Department of Neurology, University of South Florida, Tampa, FL, United States
| | - Stephanie Maciver
- Department of Neurology, University of South Florida, Tampa, FL, United States
| | - Yarema B Bezchlibnyk
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
| | - Fernando L Vale
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
3
|
van Mierlo P, Vorderwülbecke BJ, Staljanssens W, Seeck M, Vulliémoz S. Ictal EEG source localization in focal epilepsy: Review and future perspectives. Clin Neurophysiol 2020; 131:2600-2616. [PMID: 32927216 DOI: 10.1016/j.clinph.2020.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/12/2020] [Accepted: 08/04/2020] [Indexed: 11/25/2022]
Abstract
Electroencephalographic (EEG) source imaging localizes the generators of neural activity in the brain. During presurgical epilepsy evaluation, EEG source imaging of interictal epileptiform discharges is an established tool to estimate the irritative zone. However, the origin of interictal activity can be partly or fully discordant with the origin of seizures. Therefore, source imaging based on ictal EEG data to determine the seizure onset zone can provide precious clinical information. In this descriptive review, we address the importance of localizing the seizure onset zone based on noninvasive EEG recordings as a complementary analysis that might reduce the burden of the presurgical evaluation. We identify three major challenges (low signal-to-noise ratio of the ictal EEG data, spread of ictal activity in the brain, and validation of the developed methods) and discuss practical solutions. We provide an extensive overview of the existing clinical studies to illustrate the potential clinical utility of EEG-based localization of the seizure onset zone. Finally, we conclude with future perspectives and the needs for translating ictal EEG source imaging into clinical practice.
Collapse
Affiliation(s)
- Pieter van Mierlo
- Medical Image and Signal Processing Group, Department of Electronics and Information Systems, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - Bernd J Vorderwülbecke
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine Geneva, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland; Department of Neurology, Epilepsy-Center Berlin-Brandenburg, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Willeke Staljanssens
- Medical Image and Signal Processing Group, Department of Electronics and Information Systems, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Margitta Seeck
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine Geneva, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland.
| | - Serge Vulliémoz
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine Geneva, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland.
| |
Collapse
|
4
|
Neal EG, Maciver S, Schoenberg MR, Vale FL. Surgical disconnection of epilepsy network correlates with improved outcomes. Seizure 2020; 76:56-63. [PMID: 32014727 DOI: 10.1016/j.seizure.2020.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 01/15/2020] [Accepted: 01/27/2020] [Indexed: 02/02/2023] Open
Abstract
PURPOSE A novel software algorithm combining non-invasive EEG and resting state functional MRI data to map networks of cortex correlated to epileptogenic tissue was used to map an epilepsy network non-invasively. The relationship between epilepsy network connectivity and outcomes after surgery was investigated using this non-invasive and non-concurrent modeling algorithm. METHOD Scalp EEG and resting state functional MRI were acquired for nineteen patients with temporal lobe epilepsy. The hypothetical irritative zone was mapped, and resting state functional MRI data was used to model regions functionally correlated with the irritative zone. Epilepsy network connectivity was measured in patient with temporal lobe epilepsy (n = 19) both pre- and post-operatively. Temporal networks were also mapped in healthy control participants (n = 6). RESULTS Thirteen of nineteen patients (68 %) were seizure free after 20.3 ± 4.8 months. Epilepsy network connectivity within the temporal lobe was significantly higher among patients with temporal lobe epilepsy compared to the healthy control patients (p < 0.05). Disconnection of the epilepsy network was significantly higher in patients who were seizure free. Using spearman rho analyses, neuropsychological function after surgery was found to be relatively better in patients with higher degree of epilepsy network disconnection. CONCLUSIONS The magnitude of network disconnection after surgery was strongly associated with increased rates of seizure freedom and relatively better neuropsychological measures of memory and naming function. It was shown that seizure-free outcomes and relatively improved neuropsychological function correlated with surgical disconnection of a highly synchronous epilepsy network.
Collapse
Affiliation(s)
- Elliot G Neal
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Stephanie Maciver
- Department of Neurology, University of South Florida, Tampa, FL, USA
| | - Mike R Schoenberg
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA; Department of Neurology, University of South Florida, Tampa, FL, USA
| | - Fernando L Vale
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
5
|
Neal EG, Di L, Reale-Caldwell A, Maciver S, Schoenberg MR, Vale FL. Network connectivity separate from the hypothesized irritative zone correlates with impaired cognition and higher rates of seizure recurrence. Epilepsy Behav 2019; 101:106585. [PMID: 31698262 DOI: 10.1016/j.yebeh.2019.106585] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Surgery remains an essential option for the treatment of medically intractable temporal lobe epilepsy (TLE). However, only 66% of patients achieve postoperative seizure freedom, perhaps attributable to an incomplete understanding of brain network alterations in surgical candidates. Here, we applied a novel network modeling algorithm and measured key characteristics of epileptic networks correlated with surgical outcomes and objective measures of cognition. METHODS Twenty-two patients were prospectively included, and relevant demographic information was attained. Resting state functional magnetic resonance imaging (rsfMRI) and electroencephalography (EEG) data were recorded and preprocessed. Using our novel algorithm, patient-specific epileptic networks were mapped preoperatively, and geographic spread was quantified. Global functional connectivity was also determined using a volumetric functional atlas. Neuropsychological pre- and postsurgical raw and standardized scores obtained blinded to epileptic network status. Key demographic data and features of epileptic networks were then correlated with surgical outcome using Pearson's product-moment correlation. RESULTS At an average follow-up of 18.4 months, 15/22 (68%) patients were seizure-free. Connectivity was measured globally using a functional 3D atlas. Higher mean global connectivity correlated with worse scores in preoperative neuropsychological testing of executive functioning (Ruff Figural Fluency Test [RFFT]-ER; R = 0.943, p = 0.005). A higher ratio of highly correlated connections between regions of interest (ROIs) in the hemisphere contralateral to the seizure onset correlated with impairment in executive functioning (RFFT-ER; R = 0.943, p = 0.005). Higher numbers of highly correlated connections between ROIs in the contralateral hemisphere correlated with impairment in both short- and long-term measures of verbal memory (Rey Auditory Verbal Learning Test Trials 6, 7 [RAVLT6, RAVLT7]; R = -0.650, p = 0.020, R = -0.676, p = 0.030). Epilepsy networks were modeled in each patient, and localization of the epilepsy network in the bitemporal lobes correlated with lower scores in neuropsychological tests measuring verbal learning and short-term memory (RAVLT6; R = -0.671, p = 0.024). Higher rates of seizure recurrence correlated with localization of the epilepsy network bitemporally (R = -0.542, p = 0.014), with the stronger correlation found with localization to the contralateral temporal lobe from side of surgery (R = - 0.530, p = 0.016). CONCLUSION Increased connectivity contralateral to seizure onset and epilepsy network spread in the bitemporal lobes correlated with lower measures of executive functioning and verbal memory. Epilepsy network localization to the bitemporal lobes, in particular, the contralateral temporal lobe, is associated with higher rates of seizure recurrence. These findings may reflect network-level disruption that has infiltrated the contralateral hemisphere and the bitemporal lobes contributing to impaired cognition and relatively worse surgical outcomes. Further identification of network parameters that predict patient outcomes may aid in patient selection, resection planning, and ultimately the efficacy of epilepsy surgery.
Collapse
Affiliation(s)
- Elliot G Neal
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Long Di
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - AmberRose Reale-Caldwell
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA; Department of Neurology, University of South Florida, Tampa, FL, USA
| | - Stephanie Maciver
- Department of Neurology, University of South Florida, Tampa, FL, USA
| | - Mike R Schoenberg
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA; Department of Neurology, University of South Florida, Tampa, FL, USA
| | - Fernando L Vale
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
6
|
King R, Grohs MN, Kirton A, Lebel C, Esser MJ, Barlow KM. Microstructural neuroimaging of white matter tracts in persistent post-concussion syndrome: A prospective controlled cohort study. Neuroimage Clin 2019; 23:101842. [PMID: 31108457 PMCID: PMC6526293 DOI: 10.1016/j.nicl.2019.101842] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 04/08/2019] [Accepted: 04/27/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Children with mild traumatic brain injury (mTBI) typically recover quickly, however approximately 15% experience persistent post-concussive symptoms (PPCS) past 3 months. The microstructural pathology associated with underlying persistent symptoms is poorly understood but is suggested to involve axonal injury to white matter tracts. Diffusion tensor imaging (DTI) can be used to visualize and characterize damage to white matter microstructure of the brain. OBJECTIVE We aimed to investigate white matter microstructure in children with persistent concussive symptoms as compared to typically developing controls, alongside evaluating differences in white matter changes over time and how this relates to symptom recovery. METHODS The current study is a prospective, longitudinal, controlled cohort study of children with mTBI. 104 children aged 8 to 18 years with a mTBI (72 symptomatic; 32 asymptomatic) were recruited from the Alberta Children's Hospital and compared to 20 healthy controls. Microstructural evidence of white matter injury was evaluated using DTI one month post injury and repeated 4 to 6 weeks later. Primary outcomes included fractional anisotropy and mean diffusivity of the corticospinal tracts, uncinate fasciculi, and motor fibers of the corpus callosum. Post-concussive symptoms were also measured using the Post-Concussion Symptom Inventory (PCSI) taken at both time points. RESULTS Fractional anisotropy of the left uncinate fasciculi was lower in symptomatic children compared to controls (F(2,119) = 3.582, p = 0.031). No other significant differences were observed. CONCLUSIONS Our findings provide evidence of microstructural injury following mTBI in children with ongoing post-concussive symptoms one month post injury. The changes were persistent 4-6 weeks later. Further longitudinal studies of white matter microstructure in PPCS will be helpful to clarify whether these white matter alterations resolve over time.
Collapse
Affiliation(s)
- Regan King
- Hotchkiss Brain Institute, Canada; Alberta Children's Hospital Research Institute, Canada; Department of Clinical Neurosciences, Canada
| | - Melody N Grohs
- Alberta Children's Hospital Research Institute, Canada; Department of Clinical Neurosciences, Canada
| | - Adam Kirton
- Hotchkiss Brain Institute, Canada; Alberta Children's Hospital Research Institute, Canada; Department of Clinical Neurosciences, Canada; Department of Pediatrics, Canada; Cummings School of Medicine, University of Calgary, Canada
| | - Catherine Lebel
- Alberta Children's Hospital Research Institute, Canada; Department of Clinical Neurosciences, Canada; Department of Pediatrics, Canada
| | - Michael J Esser
- Alberta Children's Hospital Research Institute, Canada; Department of Pediatrics, Canada; Cummings School of Medicine, University of Calgary, Canada
| | - Karen M Barlow
- Hotchkiss Brain Institute, Canada; Alberta Children's Hospital Research Institute, Canada; Department of Clinical Neurosciences, Canada; Department of Pediatrics, Canada; Cummings School of Medicine, University of Calgary, Canada.
| |
Collapse
|