1
|
Ille S, Zhang H, Stassen N, Schwendner M, Schröder A, Wiestler B, Meyer B, Krieg SM. Noninvasive- and invasive mapping reveals similar language network centralities - A function-based connectome analysis. Cortex 2024; 174:189-200. [PMID: 38569257 DOI: 10.1016/j.cortex.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/11/2023] [Accepted: 01/23/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Former comparisons between direct cortical stimulation (DCS) and navigated transcranial magnetic stimulation (nTMS) only focused on cortical mapping. While both can be combined with diffusion tensor imaging, their differences in the visualization of subcortical and even network levels remain unclear. Network centrality is an essential parameter in network analysis to measure the importance of nodes identified by mapping. Those include Degree centrality, Eigenvector centrality, Closeness centrality, Betweenness centrality, and PageRank centrality. While DCS and nTMS have repeatedly been compared on the cortical level, the underlying network identified by both has not been investigated yet. METHOD 27 patients with brain lesions necessitating preoperative nTMS and intraoperative DCS language mapping during awake craniotomy were enrolled. Function-based connectome analysis was performed based on the cortical nodes obtained through the two mapping methods, and language-related network centralities were compared. RESULTS Compared with DCS language mapping, the positive predictive value of cortical nTMS language mapping is 74.1%, with good consistency of tractography for the arcuate fascicle and superior longitudinal fascicle. Moreover, network centralities did not differ between the two mapping methods. However, ventral stream tracts can be better traced based on nTMS mappings, demonstrating its strengths in acquiring language-related networks. In addition, it showed lower centralities than other brain areas, with decentralization as an indicator of language function loss. CONCLUSION This study deepens the understanding of language-related functional anatomy and proves that non-invasive mapping-based network analysis is comparable to the language network identified via invasive cortical mapping.
Collapse
Affiliation(s)
- Sebastian Ille
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany; TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany; Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany.
| | - Haosu Zhang
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany; Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany.
| | - Nina Stassen
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany.
| | - Maximilian Schwendner
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany; Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany.
| | - Axel Schröder
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany.
| | - Benedikt Wiestler
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany; TranslaTUM (Zentralinstitut für translationale Krebsforschung der Technischen Universität München), Munich, Germany.
| | - Bernhard Meyer
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany.
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany; TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany; Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
2
|
Gruenwald J, Sieghartsleitner S, Kapeller C, Scharinger J, Kamada K, Brunner P, Guger C. Characterization of High-Gamma Activity in Electrocorticographic Signals. Front Neurosci 2023; 17:1206120. [PMID: 37609450 PMCID: PMC10440607 DOI: 10.3389/fnins.2023.1206120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/10/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction Electrocorticographic (ECoG) high-gamma activity (HGA) is a widely recognized and robust neural correlate of cognition and behavior. However, fundamental signal properties of HGA, such as the high-gamma frequency band or temporal dynamics of HGA, have never been systematically characterized. As a result, HGA estimators are often poorly adjusted, such that they miss valuable physiological information. Methods To address these issues, we conducted a thorough qualitative and quantitative characterization of HGA in ECoG signals. Our study is based on ECoG signals recorded from 18 epilepsy patients while performing motor control, listening, and visual perception tasks. In this study, we first categorize HGA into HGA types based on the cognitive/behavioral task. For each HGA type, we then systematically quantify three fundamental signal properties of HGA: the high-gamma frequency band, the HGA bandwidth, and the temporal dynamics of HGA. Results The high-gamma frequency band strongly varies across subjects and across cognitive/behavioral tasks. In addition, HGA time courses have lowpass character, with transients limited to 10 Hz. The task-related rise time and duration of these HGA time courses depend on the individual subject and cognitive/behavioral task. Task-related HGA amplitudes are comparable across the investigated tasks. Discussion This study is of high practical relevance because it provides a systematic basis for optimizing experiment design, ECoG acquisition and processing, and HGA estimation. Our results reveal previously unknown characteristics of HGA, the physiological principles of which need to be investigated in further studies.
Collapse
Affiliation(s)
- Johannes Gruenwald
- g.tec medical engineering GmbH, Schiedlberg, Austria
- Institute of Computational Perception, Johannes Kepler University, Linz, Austria
| | - Sebastian Sieghartsleitner
- g.tec medical engineering GmbH, Schiedlberg, Austria
- Institute of Computational Perception, Johannes Kepler University, Linz, Austria
| | | | - Josef Scharinger
- Institute of Computational Perception, Johannes Kepler University, Linz, Austria
| | - Kyousuke Kamada
- Department for Neurosurgery, Asahikawa Medical University, Asahikawa, Japan
- Hokashin Group Megumino Hospital, Sapporo, Japan
| | - Peter Brunner
- National Center for Adaptive Neurotechnologies, Albany, NY, United States
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, United States
| | | |
Collapse
|
3
|
Arya R, Ervin B, Buroker J, Greiner HM, Byars AW, Rozhkov L, Skoch J, Horn PS, Frink C, Scholle C, Leach JL, Mangano FT, Glauser TA, Holland KD. Neuronal Circuits Supporting Development of Visual Naming Revealed by Intracranial Coherence Modulations. Front Neurosci 2022; 16:867021. [PMID: 35663562 PMCID: PMC9160526 DOI: 10.3389/fnins.2022.867021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background Improvement in visual naming abilities throughout the childhood and adolescence supports development of higher-order linguistic skills. We investigated neuronal circuits underlying improvement in the speed of visual naming with age, and age-related dynamics of these circuits. Methods Response times were electronically measured during an overt visual naming task in epilepsy patients undergoing stereo-EEG monitoring. Coherence modulations among pairs of neuroanatomic parcels were computed and analyzed for relationship with response time and age. Results During the overt visual naming task, mean response time (latency) significantly decreased from 4 to 23 years of age. Coherence modulations during visual naming showed that increased connectivity between certain brain regions, particularly that between left fusiform gyrus/left parahippocampal gyrus and left frontal operculum, is associated with improvement in naming speed. Also, decreased connectivity in other brain regions, particularly between left angular and supramarginal gyri, is associated with decreased mean response time. Further, coherence modulations between left frontal operculum and both left fusiform and left posterior cingulate gyri significantly increase, while that between left angular and supramarginal gyri significantly decrease, with age. Conclusion Naming speed continues to improve from pre-school years into young adulthood. This age-related improvement in efficiency of naming environmental objects occurs likely because of strengthened direct connectivity between semantic and phonological nodes, and elimination of intermediate higher-order cognitive steps.
Collapse
Affiliation(s)
- Ravindra Arya
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Brian Ervin
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Jason Buroker
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Hansel M. Greiner
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Anna W. Byars
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Leonid Rozhkov
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Jesse Skoch
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Paul S. Horn
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Clayton Frink
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Craig Scholle
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - James L. Leach
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Pediatric Neuroradiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Francesco T. Mangano
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Tracy A. Glauser
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Katherine D. Holland
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
4
|
Ekert JO, Lorca-Puls DL, Gajardo-Vidal A, Crinion JT, Hope TMH, Green DW, Price CJ. A functional dissociation of the left frontal regions that contribute to single word production tasks. Neuroimage 2021; 245:118734. [PMID: 34793955 PMCID: PMC8752962 DOI: 10.1016/j.neuroimage.2021.118734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/06/2021] [Accepted: 11/14/2021] [Indexed: 11/02/2022] Open
Abstract
Controversy surrounds the interpretation of higher activation for pseudoword compared to word reading in the left precentral gyrus and pars opercularis. Specifically, does activation in these regions reflect: (1) the demands on sublexical assembly of articulatory codes, or (2) retrieval effort because the combinations of articulatory codes are unfamiliar? Using fMRI, in 84 neurologically intact participants, we addressed this issue by comparing reading and repetition of words (W) and pseudowords (P) to naming objects (O) from pictures or sounds. As objects do not provide sublexical articulatory cues, we hypothesis that retrieval effort will be greater for object naming than word repetition/reading (which benefits from both lexical and sublexical cues); while the demands on sublexical assembly will be higher for pseudoword production than object naming. We found that activation was: (i) highest for pseudoword reading [P>O&W in the visual modality] in the anterior part of the ventral precentral gyrus bordering the precentral sulcus (vPCg/vPCs), consistent with the sublexical assembly of articulatory codes; but (ii) as high for object naming as pseudoword production [P&O>W] in dorsal precentral gyrus (dPCg) and the left inferior frontal junction (IFJ), consistent with retrieval demands and cognitive control. In addition, we dissociate the response properties of vPCg/vPCs, dPCg and IFJ from other left frontal lobe regions that are activated during single word speech production. Specifically, in both auditory and visual modalities: a central part of vPCg (head and face area) was more activated for verbal than nonverbal stimuli [P&W>O]; and the pars orbitalis and inferior frontal sulcus were most activated during object naming [O>W&P]. Our findings help to resolve a previous discrepancy in the literature, dissociate three functionally distinct parts of the precentral gyrus, and refine our knowledge of the functional anatomy of speech production in the left frontal lobe.
Collapse
Affiliation(s)
- Justyna O Ekert
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, 12 Queen Square, London WC1N 3AR, United Kingdom.
| | - Diego L Lorca-Puls
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, 12 Queen Square, London WC1N 3AR, United Kingdom; Department of Speech, Language and Hearing Sciences, Faculty of Medicine, Universidad de Concepcion, Concepcion, Chile
| | - Andrea Gajardo-Vidal
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, 12 Queen Square, London WC1N 3AR, United Kingdom; Faculty of Health Sciences, Universidad del Desarrollo, Concepcion, Chile
| | - Jennifer T Crinion
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Thomas M H Hope
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, 12 Queen Square, London WC1N 3AR, United Kingdom
| | - David W Green
- Department of Experimental Psychology, University College London, London, United Kingdom
| | - Cathy J Price
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, 12 Queen Square, London WC1N 3AR, United Kingdom
| |
Collapse
|
5
|
A distributed network supports spatiotemporal cerebral dynamics of visual naming. Clin Neurophysiol 2021; 132:2948-2958. [PMID: 34715419 DOI: 10.1016/j.clinph.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/31/2021] [Accepted: 09/18/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Cerebral spatiotemporal dynamics of visual naming were investigated in epilepsy patients undergoing stereo-electroencephalography (SEEG) monitoring. METHODS Brain networks were defined by Parcel-Activation-Resection-Symptom matching (PARS) approach by matching high-gamma (50-150 Hz) modulations (HGM) in neuroanatomic parcels during visual naming, with neuropsychological outcomes after resection/ablation of those parcels. Brain parcels with >50% electrode contacts simultaneously showing significant HGM were aligned, to delineate spatiotemporal course of naming-related HGM. RESULTS In 41 epilepsy patients, neuroanatomic parcels showed sequential yet temporally overlapping HGM course during visual naming. From bilateral occipital lobes, HGM became increasingly left lateralized, coursing through limbic system. Bilateral superior temporal HGM was noted around response time, and right frontal HGM thereafter. Correlations between resected/ablated parcels, and post-surgical neuropsychological outcomes showed specific regional groupings. CONCLUSIONS Convergence of data from spatiotemporal course of HGM during visual naming, and functional role of specific parcels inferred from neuropsychological deficits after resection/ablation of those parcels, support a model with six cognitive subcomponents of visual naming having overlapping temporal profiles. SIGNIFICANCE Cerebral substrates supporting visual naming are bilaterally distributed with relative hemispheric contribution dependent on cognitive demands at a specific time. PARS approach can be extended to study other cognitive and functional brain networks.
Collapse
|
6
|
Wang Y, Hays MA, Coogan C, Kang JY, Flinker A, Arya R, Korzeniewska A, Crone NE. Spatial-Temporal Functional Mapping Combined With Cortico-Cortical Evoked Potentials in Predicting Cortical Stimulation Results. Front Hum Neurosci 2021; 15:661976. [PMID: 33935673 PMCID: PMC8079642 DOI: 10.3389/fnhum.2021.661976] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
Functional human brain mapping is commonly performed during invasive monitoring with intracranial electroencephalographic (iEEG) electrodes prior to resective surgery for drug resistant epilepsy. The current gold standard, electrocortical stimulation mapping (ESM), is time consuming, sometimes elicits pain, and often induces after discharges or seizures. Moreover, there is a risk of overestimating eloquent areas due to propagation of the effects of stimulation to a broader network of language cortex. Passive iEEG spatial-temporal functional mapping (STFM) has recently emerged as a potential alternative to ESM. However, investigators have observed less correspondence between STFM and ESM maps of language than between their maps of motor function. We hypothesized that incongruities between ESM and STFM of language function may arise due to propagation of the effects of ESM to cortical areas having strong effective connectivity with the site of stimulation. We evaluated five patients who underwent invasive monitoring for seizure localization, whose language areas were identified using ESM. All patients performed a battery of language tasks during passive iEEG recordings. To estimate the effective connectivity of stimulation sites with a broader network of task-activated cortical sites, we measured cortico-cortical evoked potentials (CCEPs) elicited across all recording sites by single-pulse electrical stimulation at sites where ESM was performed at other times. With the combination of high gamma power as well as CCEPs results, we trained a logistic regression model to predict ESM results at individual electrode pairs. The average accuracy of the classifier using both STFM and CCEPs results combined was 87.7%, significantly higher than the one using STFM alone (71.8%), indicating that the correspondence between STFM and ESM results is greater when effective connectivity between ESM stimulation sites and task-activated sites is taken into consideration. These findings, though based on a small number of subjects to date, provide preliminary support for the hypothesis that incongruities between ESM and STFM may arise in part from propagation of stimulation effects to a broader network of cortical language sites activated by language tasks, and suggest that more studies, with larger numbers of patients, are needed to understand the utility of both mapping techniques in clinical practice.
Collapse
Affiliation(s)
- Yujing Wang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mark A Hays
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Christopher Coogan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Joon Y Kang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Adeen Flinker
- Department of Neurology, New York University School of Medicine, New York, NY, United States
| | - Ravindra Arya
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Anna Korzeniewska
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
Trébuchon A, Liégeois-Chauvel C, Gonzalez-Martinez JA, Alario FX. Contributions of electrophysiology for identifying cortical language systems in patients with epilepsy. Epilepsy Behav 2020; 112:107407. [PMID: 33181892 DOI: 10.1016/j.yebeh.2020.107407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 11/26/2022]
Abstract
A crucial element of the surgical treatment of medically refractory epilepsy is to delineate cortical areas that must be spared in order to avoid clinically relevant neurological and neuropsychological deficits postoperatively. For each patient, this typically necessitates determining the language lateralization between hemispheres and language localization within hemisphere. Understanding cortical language systems is complicated by two primary challenges: the extent of the neural tissue involved and the substantial variability across individuals, especially in pathological populations. We review the contributions made through the study of electrophysiological activity to address these challenges. These contributions are based on the techniques of magnetoencephalography (MEG), intracerebral recordings, electrical-cortical stimulation (ECS), and the electrovideo analyses of seizures and their semiology. We highlight why no single modality alone is adequate to identify cortical language systems and suggest avenues for improving current practice.
Collapse
Affiliation(s)
- Agnès Trébuchon
- Aix-Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Catherine Liégeois-Chauvel
- Aix-Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; Department of Neurological Surgery, School of Medicine, University of Pittsburgh (PA), USA
| | | | - F-Xavier Alario
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh (PA), USA; Aix-Marseille Univ, CNRS, LPC, Marseille, France.
| |
Collapse
|
8
|
Ervin B, Buroker J, Rozhkov L, Holloway T, Horn PS, Scholle C, Byars AW, Mangano FT, Leach JL, Greiner HM, Holland KD, Arya R. High-gamma modulation language mapping with stereo-EEG: A novel analytic approach and diagnostic validation. Clin Neurophysiol 2020; 131:2851-2860. [PMID: 33137575 DOI: 10.1016/j.clinph.2020.09.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/30/2020] [Accepted: 09/07/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE A novel analytic approach for task-related high-gamma modulation (HGM) in stereo-electroencephalography (SEEG) was developed and evaluated for language mapping. METHODS SEEG signals, acquired from drug-resistant epilepsy patients during a visual naming task, were analyzed to find clusters of 50-150 Hz power modulations in time-frequency domain. Classifier models to identify electrode contacts within the reference neuroanatomy and electrical stimulation mapping (ESM) speech/language sites were developed and validated. RESULTS In 21 patients (9 females), aged 4.8-21.2 years, SEEG HGM model predicted electrode locations within Neurosynth language parcels with high diagnostic odds ratio (DOR 10.9, p < 0.0001), high specificity (0.85), and fair sensitivity (0.66). Another SEEG HGM model classified ESM speech/language sites with significant DOR (5.0, p < 0.0001), high specificity (0.74), but insufficient sensitivity. Time to largest power change reliably localized electrodes within Neurosynth language parcels, while, time to center-of-mass power change identified ESM sites. CONCLUSIONS SEEG HGM mapping can accurately localize neuroanatomic and ESM language sites. SIGNIFICANCE Predictive modelling incorporating time, frequency, and magnitude of power change is a useful methodology for task-related HGM, which offers insights into discrepancies between HGM language maps and neuroanatomy or ESM.
Collapse
Affiliation(s)
- Brian Ervin
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, USA
| | - Jason Buroker
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Leonid Rozhkov
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Timothy Holloway
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Paul S Horn
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Craig Scholle
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anna W Byars
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Francesco T Mangano
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - James L Leach
- Division of Pediatric Neuro-radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hansel M Greiner
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Katherine D Holland
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ravindra Arya
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
9
|
Sakpichaisakul K, Byars AW, Horn PS, Aungaroon G, Greiner HM, Mangano FT, Holland KD, Arya R. Neuropsychological outcomes after pediatric epilepsy surgery: Role of electrical stimulation language mapping. Seizure 2020; 80:183-191. [PMID: 32604001 DOI: 10.1016/j.seizure.2020.06.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 01/06/2023] Open
Abstract
PURPOSE We studied the association between electrical stimulation mapping (ESM) with a visual naming task and post-operative neuropsychological outcomes after pediatric epilepsy surgery. METHODS Children who underwent epilepsy surgery, having pre- and 1-year post-surgery neuropsychological evaluation (NPE) available, were included. NPE scores were transformed using principal components (PC) analysis. The relationship between post-surgical PC scores, adjusted for pre-surgery PC scores, and ESM was analyzed. Clinical variables influencing this relationship were also sought. RESULTS One hundred and four children (89 patients >5 years-old, and 15 patients 3-5 years-old) were included. Among children >5 years-of-age, a significant effect of language ESM was observed on all 3 post-surgery PC scores adjusted for respective pre-surgery PC scores. Specifically, only 30 % patients who underwent language ESM had a decrease in PC1 scores ≥1-year after epilepsy surgery, compared to 68 % those who did not undergo language ESM (p = 0.001). Seizure outcomes, age at the time of surgery, predominant seizure type, and family history of epilepsy were other significant determinants of post-surgical PC scores including a change in PC scores from pre-surgery baseline. Combinations of pre-surgical variables were able to predict post-surgical PC scores with high specificity. In children aged 3-5 years, no significant effect of language ESM was seen on post-surgery PC scores adjusted for respective pre-surgery PC scores. CONCLUSIONS Speech/language ESM should be performed more widely in patients >5 years-of-age undergoing epilepsy surgery. Also, more efficient brain mapping techniques and language paradigms are needed for younger children.
Collapse
Affiliation(s)
- Kullasate Sakpichaisakul
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Neurology, Department of Pediatrics, Queen Sirikit National Institute of Child Health, College of Medicine, Rangsit University, Bangkok, Thailand
| | - Anna W Byars
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Paul S Horn
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gewalin Aungaroon
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hansel M Greiner
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Francesco T Mangano
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Katherine D Holland
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ravindra Arya
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|