1
|
Moscovicz F, Taborda C, Fernández F, Borda N, Auzmendi J, Lazarowski A. Ironing out the Links: Ferroptosis in epilepsy and SUDEP. Epilepsy Behav 2024; 157:109890. [PMID: 38905915 DOI: 10.1016/j.yebeh.2024.109890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/23/2024]
Abstract
Iron is a crucial element for almost all organisms because it plays a vital role in oxygen transport, enzymatic processes, and energy generation due to its electron transfer capabilities. However, its dysregulation can lead to a form of programmed cell death known as ferroptosis, which is characterized by cellular iron accumulation, reactive oxygen species (ROS) production, and unrestricted lipid peroxidation. Both iron and ferroptosis have been identified as key players in the pathogenesis of various neurodegenerative diseases. While in epilepsy this phenomenon remains relatively understudied, seizures can be considered hypoxic-ischemic episodes resulting in increased ROS production, lipid peroxidation, membrane disorganization, and cell death. All of this is accompanied by elevated intracellular free Fe2+ concentration and hemosiderin precipitation, as existing reports suggest a significant accumulation of iron in the brain and heart associated with epilepsy. Generalized tonic-clonic seizures (GTCS), a primary risk factor for Sudden Unexpected Death in Epilepsy (SUDEP), not only have an impact on the brain but also lead to cardiogenic dysfunctions associated with "Iron Overload and Cardiomyopathy" (IOC) and "Epileptic heart" characterized by electrical and mechanical dysfunction and a high risk of malignant bradycardia. In line with this phenomenon, studies conducted by our research group have demonstrated that recurrent seizures induce hypoxia in cardiomyocytes, resulting in P-glycoprotein (P-gp) overexpression, prolonged Q-T interval, severe bradycardia, and hemosiderin precipitation, correlating with an elevated spontaneous death ratio. In this article, we explore the intricate connections among ferroptosis, epilepsy, and SUDEP. By synthesizing current knowledge and drawing insights from recent publications, this study provides a comprehensive understanding of the molecular underpinnings. Furthermore, this review offers insights into potential therapeutic avenues and outlines future research directions.
Collapse
Affiliation(s)
- F Moscovicz
- University of Buenos Aires, Faculty of Pharmacy and Biochemistry, Institute of Phisiopatology and Clinical Biochemistry (INFIBIOC), Applied Neurobiology Lab, Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), Argentina.
| | - C Taborda
- University of Buenos Aires, Faculty of Pharmacy and Biochemistry, Institute of Phisiopatology and Clinical Biochemistry (INFIBIOC), Applied Neurobiology Lab, Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), Argentina
| | - F Fernández
- University of Buenos Aires, Faculty of Pharmacy and Biochemistry, Institute of Phisiopatology and Clinical Biochemistry (INFIBIOC), Applied Neurobiology Lab, Buenos Aires, Argentina
| | - N Borda
- University of Buenos Aires, Faculty of Pharmacy and Biochemistry, Institute of Phisiopatology and Clinical Biochemistry (INFIBIOC), Applied Neurobiology Lab, Buenos Aires, Argentina
| | - J Auzmendi
- University of Buenos Aires, Faculty of Pharmacy and Biochemistry, Institute of Phisiopatology and Clinical Biochemistry (INFIBIOC), Applied Neurobiology Lab, Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), Argentina.
| | - A Lazarowski
- University of Buenos Aires, Faculty of Pharmacy and Biochemistry, Institute of Phisiopatology and Clinical Biochemistry (INFIBIOC), Applied Neurobiology Lab, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Liu W, Mossel P, Schwach V, Slart RHJA, Luurtsema G. Cardiac PET Imaging of ATP Binding Cassette (ABC) Transporters: Opportunities and Challenges. Pharmaceuticals (Basel) 2023; 16:1715. [PMID: 38139840 PMCID: PMC10748140 DOI: 10.3390/ph16121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Adenosine triphosphate binding cassette (ABC) transporters are a broad family of membrane protein complexes that use energy to transport molecules across cells and/or intracellular organelle lipid membranes. Many drugs used to treat cardiac diseases have an affinity for these transporters. Among others, P-glycoprotein (P-gp) plays an essential role in regulating drug concentrations that reach cardiac tissue and therefore contribute to cardiotoxicity. As a molecular imaging modality, positron emission tomography (PET) has emerged as a viable technique to investigate the function of P-gp in organs and tissues. Using PET imaging to evaluate cardiac P-gp function provides new insights for drug development and improves the precise use of medications. Nevertheless, information in this field is limited. In this review, we aim to examine the current applications of ABC transporter PET imaging and its tracers in the heart, with a specific emphasis on P-gp. Furthermore, the opportunities and challenges in this novel field will be discussed.
Collapse
Affiliation(s)
- Wanling Liu
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (W.L.); (P.M.)
| | - Pascalle Mossel
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (W.L.); (P.M.)
| | - Verena Schwach
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7500 AE Enschede, The Netherlands;
| | - Riemer H. J. A. Slart
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (W.L.); (P.M.)
- Department of Biomedical Photonic Imaging, University of Twente, 7500 AE Enschede, The Netherlands
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (W.L.); (P.M.)
| |
Collapse
|
3
|
Jin Y, Ren L, Jing X, Wang H. Targeting ferroptosis as novel therapeutic approaches for epilepsy. Front Pharmacol 2023; 14:1185071. [PMID: 37124220 PMCID: PMC10133701 DOI: 10.3389/fphar.2023.1185071] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
Epilepsy is a chronic disorder of the central nervous system characterized by recurrent unprovoked seizures resulting from excessive synchronous discharge of neurons in the brain. As one of the most common complications of many neurological diseases, epilepsy is an expensive and complex global public health issue that is often accompanied by neurobehavioral comorbidities, such as abnormalities in cognition, psychiatric status, and social-adaptive behaviors. Recurrent or prolonged seizures can result in neuronal damage and cell death; however, the molecular mechanisms underlying the epilepsy-induced damage to neurons remain unclear. Ferroptosis, a novel type of regulated cell death characterized by iron-dependent lipid peroxidation, is involved in the pathophysiological progression of epilepsy. Emerging studies have demonstrated pharmacologically inhibiting ferroptosis can mitigate neuronal damage in epilepsy. In this review, we briefly describe the core molecular mechanisms of ferroptosis and the roles they play in contributing to epilepsy, highlight emerging compounds that can inhibit ferroptosis to treat epilepsy and associated neurobehavioral comorbidities, and outline their pharmacological beneficial effects. The current review suggests inhibiting ferroptosis as a therapeutic target for epilepsy and associated neurobehavioral comorbidities.
Collapse
Affiliation(s)
- Yuzi Jin
- Department of Pediatrics, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Lei Ren
- Department of Pediatrics, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Xiaoqing Jing
- Department of Pediatrics, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Hongquan Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
4
|
Akyüz E, Saleem QH, Sari Ç, Auzmendi J, Lazarowski A. Enlightening the mechanism of ferroptosis in epileptic heart. Curr Med Chem 2023; 31:CMC-EPUB-129729. [PMID: 36815654 DOI: 10.2174/0929867330666230223103524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 02/24/2023]
Abstract
Epilepsy is a chronic neurological degenerative disease with a high incidence, affecting all age groups. Refractory Epilepsy (RE) occurs in approximately 30-40% of cases with a higher risk of sudden unexpected death in epilepsy (SUDEP). Recent studies have shown that spontaneous seizures developed in epilepsy can be related to an increase in oxidative stress and reactive oxygen derivatives (ROS) production. Increasing ROS concentration causes lipid peroxidation, protein oxidation, destruction of nuclear genetic material, enzyme inhibition, and cell death by a mechanism known as "ferroptosis" (Fts). Inactivation of glutathione peroxidase 4 (GPX4) induces Fts, while oxidative stress is linked with increased intracellular free iron (Fe+2) concentration. Fts is also a non-apoptotic programmed cell death mechanism, where a hypoxia-inducible factor 1 alpha (HIF-141) dependent hypoxic stress-like condition appears to occur with accumulation of iron and cytotoxic ROS in affected cells. Assuming convulsive crises as hypoxic stress, repetitive convulsive/hypoxic stress can be an effective inducer of the "epileptic heart" (EH), which is characterized by altered autonomic function and a high risk of malignant or fatal bradycardia. We previously reported that experimental recurrent seizures induce cardiomyocyte Fts associated with SUDEP. Furthermore, several genes related to Fts and hypoxia have recently been identified in acute myocardial infarction. An emerging theme from recent studies indicates that inhibition of GPX4 through modulating expression or activities of the xCT antiporter system (SLC7A11) governs cell sensitivity to oxidative stress from ferroptosis. Furthermore, during hypoxia, an increased expression of stress transcriptional factor ATF3 can promote Fts induced by erastin in a HIF-141-dependent manner. We propose that inhibition of Fts with ROS scavengers, iron chelators, antioxidants, and transaminase inhibitors could provide a therapeutic effect in epilepsy and improve the prognosis of SUDEP risk by protecting the heart from ferroptosis.
Collapse
Affiliation(s)
- Enes Akyüz
- University of Health Sciences, Faculty of International Medicine, Department of Biophysics, Istanbul, Turkey
| | - Qamar Hakeem Saleem
- University of Health Sciences, Faculty of International Medicine, Istanbul, Turkey
| | - Çiğdem Sari
- Istanbul University, Faculty of Medicine, Istanbul, Turkey
| | - Jerónimo Auzmendi
- National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
- Institute for Research in Physiopathology and Clinical Biochemistry (INFIBIOC), Clinical Biochemistry Department, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Alberto Lazarowski
- Institute for Research in Physiopathology and Clinical Biochemistry (INFIBIOC), Clinical Biochemistry Department, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
5
|
Sun X, Lv Y, Lin J. The mechanism of sudden unexpected death in epilepsy: A mini review. Front Neurol 2023; 14:1137182. [PMID: 36815002 PMCID: PMC9939452 DOI: 10.3389/fneur.2023.1137182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is defined as a sudden, unexpected, non-traumatic, non-drowning death in a person with epilepsy. SUDEP is generally considered to result from seizure-related cardiac dysfunction, respiratory depression, autonomic nervous dysfunction, or brain dysfunction. Frequency of generalized tonic clonic seizures (GTCS), prone posture, and refractory epilepsy are considered risk factors. SUDEP has also been associated with inherited cardiac ion channel disease and severe obstructive sleep apnea. Most previous studies of SUDEP mechanisms have focused on cardiac and respiratory dysfunction and imbalance of the neural regulatory system. Cardiac-related mechanisms include reduction in heart rate variability and prolongation of QT interval, which can lead to arrhythmias. Laryngospasm and amygdala activation may cause obstructive and central apnea, respectively. Neural mechanisms include impairment of 5-HT and adenosine neuromodulation. The research to date regarding molecular mechanisms of SUDEP is relatively limited. Most studies have focused on p-glycoprotein, catecholamines, potassium channels, and the renin-angiotensin system, all of which affect cardiac and respiratory function.
Collapse
Affiliation(s)
- Xinyi Sun
- School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yehui Lv
- School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China,Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China,*Correspondence: Yehui Lv ✉
| | - Jian Lin
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China,Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
6
|
Ji X, Pei Q, Zhang J, Lin P, Li B, Yin H, Sun J, Su D, Qu X, Yin D. Single-cell sequencing combined with machine learning reveals the mechanism of interaction between epilepsy and stress cardiomyopathy. Front Immunol 2023; 14:1078731. [PMID: 36776884 PMCID: PMC9911815 DOI: 10.3389/fimmu.2023.1078731] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Background Epilepsy is a disorder that can manifest as abnormalities in neurological or physical function. Stress cardiomyopathy is closely associated with neurological stimulation. However, the mechanisms underlying the interrelationship between epilepsy and stress cardiomyopathy are unclear. This paper aims to explore the genetic features and potential molecular mechanisms shared in epilepsy and stress cardiomyopathy. Methods By analyzing the epilepsy dataset and stress cardiomyopathy dataset separately, the intersection of the two disease co-expressed differential genes is obtained, the co-expressed differential genes reveal the biological functions, the network is constructed, and the core modules are identified to reveal the interaction mechanism, the co-expressed genes with diagnostic validity are screened by machine learning algorithms, and the co-expressed genes are validated in parallel on the epilepsy single-cell data and the stress cardiomyopathy rat model. Results Epilepsy causes stress cardiomyopathy, and its key pathways are Complement and coagulation cascades, HIF-1 signaling pathway, its key co-expressed genes include SPOCK2, CTSZ, HLA-DMB, ALDOA, SFRP1, ERBB3. The key immune cell subpopulations localized by single-cell data are the T_cells subgroup, Microglia subgroup, Macrophage subgroup, Astrocyte subgroup, and Oligodendrocytes subgroup. Conclusion We believe epilepsy causing stress cardiomyopathy results from a multi-gene, multi-pathway combination. We identified the core co-expressed genes (SPOCK2, CTSZ, HLA-DMB, ALDOA, SFRP1, ERBB3) and the pathways that function in them (Complement and coagulation cascades, HIF-1 signaling pathway, JAK-STAT signaling pathway), and finally localized their key cellular subgroups (T_cells subgroup, Microglia subgroup, Macrophage subgroup, Astrocyte subgroup, and Oligodendrocytes subgroup). Also, combining cell subpopulations with hypercoagulability as well as sympathetic excitation further narrowed the cell subpopulations of related functions.
Collapse
Affiliation(s)
- Xuanrui Ji
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Quanwei Pei
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Junpei Zhang
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengqi Lin
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bin Li
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongpeng Yin
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingmei Sun
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dezhan Su
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiufen Qu
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dechun Yin
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Wang P, Nan S, Zhang Y, Fan J. Effects of GABA B receptor positive allosteric modulator BHF177 and IRS-1 on apoptosis of hippocampal neurons in rats with refractory epilepsy via the PI3K/Akt pathway. Cell Biol Int 2022; 46:1775-1786. [PMID: 35989486 DOI: 10.1002/cbin.11839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/12/2021] [Accepted: 05/07/2022] [Indexed: 11/11/2022]
Abstract
The present study was conducted to determine the effects of the γ-aminobutyric acid B (GABAB ) receptor positive allosteric modulator BHF177 on refractory epilepsy (RE). An RE rat model was initially established via treatment with lithium-pilocarpine. The RE rats were then treated with BHF177 or the GABAB receptor antagonist CGP46381, followed by recording of their seizure rate and assessment of their spatial learning in the Morris water maze test. Treatment of BHF177 reduced the seizure intensity, whereas this effect was revered upoj treatment with CGP46381. Immunohistochemistry revealed that BHF177 treatment diminished P-glycoprotein (P-gp) expression in the hippocampal tissues of RE rats. Next, we found that BHF177 activated GABAB receptor, resulting in upregulated expression of insulin receptor substrate 1 (IRS-1) and PI3K, as well as antiapoptotic factors (Bcl-2 and mTOR), along with suppression of the apoptosis factors Bax and cleaved caspase-3 in the hippocampal tissues. Further, activation of GABAB receptors by BHF177 alleviated the inflammatory response in hippocampal tissues of RE rats, as evidenced by reduced VCAM-1, ICAM-1, and tumor necrosis factor-α levels. Next, we treated primary cultured rat hippocampal neurons with BHF177 and the IRS-1 selective inhibitor NT157. BHF177 inhibited hippocampal apoptosis in rat hippocampal neurons by regulating the IRS-1/PI3K/Akt axis through crosstalk between GABAB and insulin-like growth factor-1 receptors. Collectively, our findings indicate that the BHF177 inhibited neuron apoptosis, thus protecting against RE through the IRS-1/PI3K/Akt axis, which may present a new therapeutic channel for RE.
Collapse
Affiliation(s)
- Peng Wang
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Shanji Nan
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yizhi Zhang
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jia Fan
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
Cai M, Lin W. The Function of NF-Kappa B During Epilepsy, a Potential Therapeutic Target. Front Neurosci 2022; 16:851394. [PMID: 35360161 PMCID: PMC8961383 DOI: 10.3389/fnins.2022.851394] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/22/2022] [Indexed: 01/04/2023] Open
Abstract
The transcriptional regulator nuclear factor kappa B (NF-κB) modulates cellular biological activity by binding to promoter regions in the nucleus and transcribing various protein-coding genes. The NF-κB pathway plays a major role in the expressing genes related to inflammation, including chemokines, interleukins, and tumor necrosis factor. It also transcribes genes that can promote neuronal survival or apoptosis. Epilepsy is one of the most common brain disorders and it not only causes death worldwide but also affects the day-to-day life of affected individuals. While epilepsy has diverse treatment options, there remain patients who are not sensitive to the existing treatment methods. Recent studies have implicated the critical role of NF-κB in epilepsy. It is upregulated in neurons, glial cells, and endothelial cells, due to neuronal loss, glial cell proliferation, blood-brain barrier dysfunction, and hippocampal sclerosis through the glutamate and γ-aminobutyric acid imbalance, ion concentration changes, and other mechanisms. In this review, we summarize the functional changes caused by the upregulation of NF-κB in the central nervous system during different periods after seizures. This review is the first to deconvolute the complicated functions of NF-κB, and speculate that the regulation of NF-κB can be a safe and effective treatment strategy for epilepsy.
Collapse
|
9
|
Akyuz E, Koklu B, Uner A, Angelopoulou E, Paudel YN. Envisioning the role of inwardly rectifying potassium (Kir) channel in epilepsy. J Neurosci Res 2021; 100:413-443. [PMID: 34713909 DOI: 10.1002/jnr.24985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 01/29/2023]
Abstract
Epilepsy is a devastating neurological disorder characterized by recurrent seizures attributed to the disruption of the dynamic excitatory and inhibitory balance in the brain. Epilepsy has emerged as a global health concern affecting about 70 million people worldwide. Despite recent advances in pre-clinical and clinical research, its etiopathogenesis remains obscure, and there are still no treatment strategies modifying disease progression. Although the precise molecular mechanisms underlying epileptogenesis have not been clarified yet, the role of ion channels as regulators of cellular excitability has increasingly gained attention. In this regard, emerging evidence highlights the potential implication of inwardly rectifying potassium (Kir) channels in epileptogenesis. Kir channels consist of seven different subfamilies (Kir1-Kir7), and they are highly expressed in both neuronal and glial cells in the central nervous system. These channels control the cell volume and excitability. In this review, we discuss preclinical and clinical evidence on the role of the several subfamilies of Kir channels in epileptogenesis, aiming to shed more light on the pathogenesis of this disorder and pave the way for future novel therapeutic approaches.
Collapse
Affiliation(s)
- Enes Akyuz
- Faculty of International Medicine, Department of Biophysics, University of Health Sciences, Istanbul, Turkey
| | - Betul Koklu
- Faculty of Medicine, Namık Kemal University, Tekirdağ, Turkey
| | - Arda Uner
- Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
10
|
Merelli A, Repetto M, Lazarowski A, Auzmendi J. Hypoxia, Oxidative Stress, and Inflammation: Three Faces of Neurodegenerative Diseases. J Alzheimers Dis 2021; 82:S109-S126. [PMID: 33325385 DOI: 10.3233/jad-201074] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cerebral hypoxia-ischemia can induce a wide spectrum of biologic responses that include depolarization, excitotoxicity, oxidative stress, inflammation, and apoptosis, and result in neurodegeneration. Several adaptive and survival endogenous mechanisms can also be activated giving an opportunity for the affected cells to remain alive, waiting for helper signals that avoid apoptosis. These signals appear to help cells, depending on intensity, chronicity, and proximity to the central hypoxic area of the affected tissue. These mechanisms are present not only in a large list of brain pathologies affecting commonly older individuals, but also in other pathologies such as refractory epilepsies, encephalopathies, or brain trauma, where neurodegenerative features such as cognitive and/or motor deficits sequelae can be developed. The hypoxia inducible factor 1α (HIF-1α) is a master transcription factor driving a wide spectrum cellular response. HIF-1α may induce erythropoietin (EPO) receptor overexpression, which provides the therapeutic opportunity to administer pharmacological doses of EPO to rescue and/or repair affected brain tissue. Intranasal administration of EPO combined with other antioxidant and anti-inflammatory compounds could become an effective therapeutic alternative, to avoid and/or slow down neurodegenerative deterioration without producing adverse peripheral effects.
Collapse
Affiliation(s)
- Amalia Merelli
- Universidad de Buenos Aires, Facultad de Farmacia y Bioqummica, Departamento de Bioquímica Clínica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Argentina
| | - Marisa Repetto
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica; Instituto de Bioquímica y Medicina Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas (IBIMOL, UBA-CONICET), Argentina
| | - Alberto Lazarowski
- Universidad de Buenos Aires, Facultad de Farmacia y Bioqummica, Departamento de Bioquímica Clínica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Argentina
| | - Jerónimo Auzmendi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioqummica, Departamento de Bioquímica Clínica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
11
|
Czornyj L, Auzmendi J, Lazarowski A. Transporter hypothesis in pharmacoresistant epilepsies Is it at the central or peripheral level? Epilepsia Open 2021; 7 Suppl 1:S34-S46. [PMID: 34542938 PMCID: PMC9340303 DOI: 10.1002/epi4.12537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022] Open
Abstract
The multidrug‐resistance (MDR) phenotype is typically observed in patients with refractory epilepsy (RE) whose seizures are not controlled despite receiving several combinations of more than two antiseizure medications (ASMs) directed against different ion channels or neurotransmitter receptors. Since the use of bromide in 1860, more than 20 ASMs have been developed; however, historically ~30% of cases of RE with MDR phenotype remains unchanged. Irrespective of metabolic biotransformation, the biodistribution of ASMs and their metabolites depends on the functional expression of some ATP‐binding cassette transporters (ABC‐t) in different organs, such as the blood‐brain barrier (BBB), bowel, liver, and kidney, among others. ABC‐t, such as P‐glycoprotein (P‐gp), multidrug resistance–associated protein (MRP‐1), and breast cancer–resistance protein (BCRP), are mainly expressed in excretory organs and play a critical role in the pharmacokinetics (PK) of all drugs. The transporter hypothesis can explain pharmacoresistance to a broad spectrum of ASMs, even when administered simultaneously. Since ABC‐t expression can be induced by hypoxia, inflammation, or seizures, a high frequency of uncontrolled seizures increases the risk of RE. These stimuli can induce ABC‐t expression in excretory organs and in previously non‐expressing (electrically responsive) cells, such as neurons or cardiomyocytes. In this regard, an alternative mechanism to the classical pumping function of P‐gp indicates that P‐gp activity can also produce a significant reduction in resting membrane potential (ΔΨ0 = −60 to −10 mV). P‐gp expression in neurons and cardiomyocytes can produce membrane depolarization and participate in epileptogenesis, heart failure, and sudden unexpected death in epilepsy. On this basis, ABC‐t play a peripheral role in controlling the PK of ASMs and their access to the brain and act at a central level, favoring neuronal depolarization by mechanisms independent of ion channels or neurotransmitters that current ASMs cannot control.
Collapse
Affiliation(s)
- Liliana Czornyj
- Neurology Service, "Juan P. Garrahan" National Children's Hospital, Buenos Aires, Argentina
| | - Jerónimo Auzmendi
- Institute for Research in Physiopathology and Clinical Biochemistry (INFIBIOC), Clinical Biochemistry Department, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina.,National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Alberto Lazarowski
- Institute for Research in Physiopathology and Clinical Biochemistry (INFIBIOC), Clinical Biochemistry Department, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
12
|
Akyüz E, Üner AK, Köklü B, Arulsamy A, Shaikh MF. Cardiorespiratory findings in epilepsy: A recent review on outcomes and pathophysiology. J Neurosci Res 2021; 99:2059-2073. [PMID: 34109651 DOI: 10.1002/jnr.24861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/16/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022]
Abstract
Epilepsy is a debilitating disorder of uncontrollable recurrent seizures that occurs as a result of imbalances in the brain excitatory and inhibitory neuronal signals, that could stem from a range of functional and structural neuronal impairments. Globally, nearly 70 million people are negatively impacted by epilepsy and its comorbidities. One such comorbidity is the effect epilepsy has on the autonomic nervous system (ANS), which plays a role in the control of blood circulation, respiration and gastrointestinal function. These epilepsy-induced impairments in the circulatory and respiratory systems may contribute toward sudden unexpected death in epilepsy (SUDEP). Although, various hypotheses have been proposed regarding the role of epilepsy on ANS, the linking pathological mechanism still remains unclear. Channelopathies and seizure-induced damages in ANS-control brain structures were some of the causal/pathological candidates of cardiorespiratory comorbidities in epilepsy patients, especially in those who were drug resistant. However, emerging preclinical research suggest that neurotransmitter/receptor dysfunction and synaptic changes in the ANS may also contribute to the epilepsy-related autonomic disorders. Thus, pathological mechanisms of cardiorespiratory dysfunction should be elucidated by considering the modifications in anatomy and physiology of the autonomic system caused by seizures. In this regard, we present a comprehensive review of the current literature, both clinical and preclinical animal studies, on the cardiorespiratory findings in epilepsy and elucidate the possible pathological mechanisms of these findings, in hopes to prevent SUDEP especially in patients who are drug resistant.
Collapse
Affiliation(s)
- Enes Akyüz
- Department of Biophysics, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Arda Kaan Üner
- Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Betül Köklü
- Faculty of Medicine, Namık Kemal University, Tekirdağ, Turkey
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
13
|
Nikitin ES, Vinogradova LV. Potassium channels as prominent targets and tools for the treatment of epilepsy. Expert Opin Ther Targets 2021; 25:223-235. [PMID: 33754930 DOI: 10.1080/14728222.2021.1908263] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION K+ channels are of great interest to epilepsy research as mutations in their genes are found in humans with inherited epilepsy. At the level of cellular physiology, K+ channels control neuronal intrinsic excitability and are the main contributors to membrane repolarization of active neurons. Recently, a genetically modified voltage-dependent K+ channel has been patented as a remedy for epileptic seizures. AREAS COVERED We review the role of potassium channels in excitability, clinical and experimental evidence for the association of potassium channelopathies with epilepsy, the targeting of K+ channels by drugs, and perspectives of gene therapy in epilepsy with the expression of extra K+ channels in the brain. EXPERT OPINION Control over K+ conductance is of great potential benefit for the treatment of epilepsy. Nowadays, gene therapy affecting K+ channels is one of the most promising approaches to treat pharmacoresistant focal epilepsy.
Collapse
Affiliation(s)
- E S Nikitin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - L V Vinogradova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
14
|
Akyuz E, Doganyigit Z, Eroglu E, Moscovicz F, Merelli A, Lazarowski A, Auzmendi J. Myocardial Iron Overload in an Experimental Model of Sudden Unexpected Death in Epilepsy. Front Neurol 2021; 12:609236. [PMID: 33643194 PMCID: PMC7905080 DOI: 10.3389/fneur.2021.609236] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
Uncontrolled repetitive generalized tonic-clonic seizures (GTCS) are the main risk factor for sudden unexpected death in epilepsy (SUDEP). GTCS can be observed in models such as Pentylenetetrazole kindling (PTZ-K) or pilocarpine-induced Status Epilepticus (SE-P), which share similar alterations in cardiac function, with a high risk of SUDEP. Terminal cardiac arrhythmia in SUDEP can develop as a result of a high rate of hypoxic stress-induced by convulsions with excessive sympathetic overstimulation that triggers a neurocardiogenic injury, recently defined as "Epileptic Heart" and characterized by heart rhythm disturbances, such as bradycardia and lengthening of the QT interval. Recently, an iron overload-dependent form of non-apoptotic cell death called ferroptosis was described at the brain level in both the PTZ-K and SE-P experimental models. However, seizure-related cardiac ferroptosis has not yet been reported. Iron overload cardiomyopathy (IOC) results from the accumulation of iron in the myocardium, with high production of reactive oxygen species (ROS), lipid peroxidation, and accumulation of hemosiderin as the final biomarker related to cardiomyocyte ferroptosis. Iron overload cardiomyopathy is the leading cause of death in patients with iron overload secondary to chronic blood transfusion therapy; it is also described in hereditary hemochromatosis. GTCS, through repeated hypoxic stress, can increase ROS production in the heart and cause cardiomyocyte ferroptosis. We hypothesized that iron accumulation in the "Epileptic Heart" could be associated with a terminal cardiac arrhythmia described in the IOC and the development of state-potentially in the development of SUDEP. Using the aforementioned PTZ-K and SE-P experimental models, after SUDEP-related repetitive GTCS, we observed an increase in the cardiac expression of hypoxic inducible factor 1α, indicating hypoxic-ischemic damage, and both necrotic cells and hemorrhagic areas were related to the possible hemosiderin production in the PTZ-K model. Furthermore, we demonstrated for the first time an accumulation of hemosiderin in the heart in the SE-P model. These results suggest that uncontrolled recurrent seizures, as described in refractory epilepsy, can give rise to high hypoxic stress in the heart, thus inducing hemosiderin accumulation as in IOC, and can act as an underlying hidden mechanism contributing to the development of a terminal cardiac arrhythmia in SUDEP. Because iron accumulation in tissues can be detected by non-invasive imaging methods, cardiac iron overload in refractory epilepsy patients could be treated with chelation therapy to reduce the risk of SUDEP.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, Medical School, Yozgat Bozok University, Yozgat, Turkey
| | - Zuleyha Doganyigit
- Department of Histology and Embryology, Medical School, Yozgat Bozok University, Yozgat, Turkey
| | - Ece Eroglu
- Medical School, Yozgat Bozok University, Yozgat, Turkey
| | - Franco Moscovicz
- Department of Clinical Biochemistry, School of Pharmacy and Biochemistry, Pathophysiology and Clinical Biochemistry Institute (INFIBIOC), University of Buenos Aires, Buenos Aires, Argentina
| | - Amalia Merelli
- Department of Clinical Biochemistry, School of Pharmacy and Biochemistry, Pathophysiology and Clinical Biochemistry Institute (INFIBIOC), University of Buenos Aires, Buenos Aires, Argentina
| | - Alberto Lazarowski
- Department of Clinical Biochemistry, School of Pharmacy and Biochemistry, Pathophysiology and Clinical Biochemistry Institute (INFIBIOC), University of Buenos Aires, Buenos Aires, Argentina
| | - Jerónimo Auzmendi
- Department of Clinical Biochemistry, School of Pharmacy and Biochemistry, Pathophysiology and Clinical Biochemistry Institute (INFIBIOC), University of Buenos Aires, Buenos Aires, Argentina.,National Council of Science and Technology (CONICET), Buenos Aires, Argentina
| |
Collapse
|
15
|
Auzmendi J, Puchulu MB, Rodríguez JCG, Balaszczuk AM, Lazarowski A, Merelli A. EPO and EPO-Receptor System as Potential Actionable Mechanism for the Protection of Brain and Heart in Refractory Epilepsy and SUDEP. Curr Pharm Des 2020; 26:1356-1364. [PMID: 32072891 DOI: 10.2174/1381612826666200219095548] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/31/2019] [Indexed: 12/26/2022]
Abstract
The most important activity of erythropoietin (EPO) is the regulation of erythrocyte production by activation of the erythropoietin receptor (EPO-R), which triggers the activation of anti-apoptotic and proliferative responses of erythroid progenitor cells. Additionally, to erythropoietic EPO activity, an antiapoptotic effect has been described in a wide spectrum of tissues. EPO low levels are found in the central nervous system (CNS), while EPO-R is expressed in most CNS cell types. In spite of EPO-R high levels expressed during the hypoxicischemic brain, insufficient production of endogenous cerebral EPO could be the cause of determined circuit alterations that lead to the loss of specific neuronal populations. In the heart, high EPO-R expression in cardiac progenitor cells appears to contribute to myocardial regeneration under EPO stimulation. Several lines of evidence have linked EPO to an antiapoptotic role in CNS and in heart tissue. In this review, an antiapoptotic role of EPO/EPO-R system in both brain and heart under hypoxic conditions, such as epilepsy and sudden death (SUDEP) has been resumed. Additionally, their protective effects could be a new field of research and a novel therapeutic strategy for the early treatment of these conditions and avoid SUDEP.
Collapse
Affiliation(s)
- Jerónimo Auzmendi
- Universidad de Buenos Aire (UBA), Facultad de Farmacia y Bioquimica (FFyB), Instituto de Fisiopatologia y Bioquimica Clínica (INFIBIOC), Junín 956, Ciudad Autonoma de Buenos Aires (CABA), Buenos Aires, Argentina
| | - María B Puchulu
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquimica, Departamento de Ciencias Biologicas, Catedra de Fisiologia, Instituto de Quimica y Metabolismo del Farmaco, CONICET, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
| | - Julio C G Rodríguez
- CENPALAB, Centro Nacional para la Producción de Animales de Laboratorio, La Habana, Cuba
| | - Ana M Balaszczuk
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquimica, Departamento de Ciencias Biologicas, Catedra de Fisiologia, Instituto de Quimica y Metabolismo del Farmaco, CONICET, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
| | - Alberto Lazarowski
- Universidad de Buenos Aire (UBA), Facultad de Farmacia y Bioquimica (FFyB), Instituto de Fisiopatologia y Bioquimica Clínica (INFIBIOC), Junín 956, Ciudad Autonoma de Buenos Aires (CABA), Buenos Aires, Argentina
| | - Amalia Merelli
- Universidad de Buenos Aire (UBA), Facultad de Farmacia y Bioquimica (FFyB), Instituto de Fisiopatologia y Bioquimica Clínica (INFIBIOC), Junín 956, Ciudad Autonoma de Buenos Aires (CABA), Buenos Aires, Argentina
| |
Collapse
|
16
|
Insights into Potential Targets for Therapeutic Intervention in Epilepsy. Int J Mol Sci 2020; 21:ijms21228573. [PMID: 33202963 PMCID: PMC7697405 DOI: 10.3390/ijms21228573] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a chronic brain disease that affects approximately 65 million people worldwide. However, despite the continuous development of antiepileptic drugs, over 30% patients with epilepsy progress to drug-resistant epilepsy. For this reason, it is a high priority objective in preclinical research to find novel therapeutic targets and to develop effective drugs that prevent or reverse the molecular mechanisms underlying epilepsy progression. Among these potential therapeutic targets, we highlight currently available information involving signaling pathways (Wnt/β-catenin, Mammalian Target of Rapamycin (mTOR) signaling and zinc signaling), enzymes (carbonic anhydrase), proteins (erythropoietin, copine 6 and complement system), channels (Transient Receptor Potential Vanilloid Type 1 (TRPV1) channel) and receptors (galanin and melatonin receptors). All of them have demonstrated a certain degree of efficacy not only in controlling seizures but also in displaying neuroprotective activity and in modifying the progression of epilepsy. Although some research with these specific targets has been done in relation with epilepsy, they have not been fully explored as potential therapeutic targets that could help address the unsolved issue of drug-resistant epilepsy and develop new antiseizure therapies for the treatment of epilepsy.
Collapse
|
17
|
Akyuz E, Polat K, Ates S, Unalmis D, Tokpinar A, Yilmaz S, Kaymak E, Doganyigit Z, Villa C. Investigating Cardiac Morphological Alterations in a Pentylenetetrazol-Kindling Model of Epilepsy. Diagnostics (Basel) 2020; 10:diagnostics10060388. [PMID: 32526953 PMCID: PMC7344915 DOI: 10.3390/diagnostics10060388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/28/2020] [Accepted: 06/06/2020] [Indexed: 12/21/2022] Open
Abstract
Epilepsy is a group of neurological disorders characterized by abnormal electrical activity in the central nervous system (CNS) and recurrent seizures representing the principal clinical manifestation. Sudden unexpected death in epilepsy (SUDEP) is the predominant cause of death in young epileptic patients. SUDEP patients displayed an increased cardiovascular (CV) risk, probably due to an impaired autonomic control of CV functions, but the underlying mechanisms need to be explored yet. Therefore, we aimed to examine the cardiac morphological alterations in a pentylenetetrazol (PTZ)-kindled rat model, a well-established tool for studying chronic epilepsy. To complete this, the distance between the atria, between the atrium and ventricle were measured, the heart was weighed, and the pathological morphology of dissected hearts was analyzed by histological assessment with hematoxylin and eosin staining. A significantly decreased distance between atria and a significant increase in heart weight were observed in PTZ-kindled rats which interestingly also displayed increased hemorrhagic content when compared with controls. Our findings provided evidence that changes in cardiac morphology may be related to autonomic CV dysfunctions occurring during SUDEP while also opening up more avenues to better develop novel drugs for the treatment of this disorder.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, Faculty of Medicine, Yozgat Bozok University, 66100 Yozgat, Turkey
- Correspondence: (E.A.); (C.V.); Tel.: +90-535-762-99-79 (E.A.); +39-02-6448-8138 (C.V.)
| | - Kristina Polat
- Faculty of Medicine, Yozgat Bozok University, 66100 Yozgat, Turkey;
| | - Sukru Ates
- Department of Anatomy, Faculty of Medicine, Yozgat Bozok University, 66100 Yozgat, Turkey; (S.A.); (D.U.); (A.T.); (S.Y.)
| | - Demet Unalmis
- Department of Anatomy, Faculty of Medicine, Yozgat Bozok University, 66100 Yozgat, Turkey; (S.A.); (D.U.); (A.T.); (S.Y.)
| | - Adem Tokpinar
- Department of Anatomy, Faculty of Medicine, Yozgat Bozok University, 66100 Yozgat, Turkey; (S.A.); (D.U.); (A.T.); (S.Y.)
| | - Seher Yilmaz
- Department of Anatomy, Faculty of Medicine, Yozgat Bozok University, 66100 Yozgat, Turkey; (S.A.); (D.U.); (A.T.); (S.Y.)
| | - Emin Kaymak
- Department of Histology and Embriology, Faculty of Medicine, Yozgat Bozok University, 66100 Yozgat, Turkey; (E.K.); (Z.D.)
| | - Zuleyha Doganyigit
- Department of Histology and Embriology, Faculty of Medicine, Yozgat Bozok University, 66100 Yozgat, Turkey; (E.K.); (Z.D.)
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Correspondence: (E.A.); (C.V.); Tel.: +90-535-762-99-79 (E.A.); +39-02-6448-8138 (C.V.)
| |
Collapse
|