1
|
Nobukawa S, Shirama A, Takahashi T, Toda S. Recent trends in multiple metrics and multimodal analysis for neural activity and pupillometry. Front Neurol 2024; 15:1489822. [PMID: 39687402 PMCID: PMC11646859 DOI: 10.3389/fneur.2024.1489822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024] Open
Abstract
Recent studies focusing on neural activity captured by neuroimaging modalities have provided various metrics for elucidating the functional networks and dynamics of the entire brain. Functional magnetic resonance imaging (fMRI) can depict spatiotemporal functional neural networks and dynamic characteristics due to its excellent spatial resolution. However, its temporal resolution is limited. Neuroimaging modalities such as electroencephalography (EEG) and magnetoencephalography (MEG), which have higher temporal resolutions, are utilized for multi-temporal scale and multi-frequency-band analyzes. With this advantage, numerous EEG/MEG-bases studies have revealed the frequency-band specific functional networks involving dynamic functional connectivity and multiple temporal-scale time-series patterns of neural activity. In addition to analyzing neural data, the examination of behavioral data can unveil additional aspects of brain activity through unimodal and multimodal data analyzes performed using appropriate integration techniques. Among the behavioral data assessments, pupillometry can provide comprehensive spatial-temporal-specific features of neural activity. In this perspective, we summarize the recent progress in the development of metrics for analyzing neural data obtained from neuroimaging modalities such as fMRI, EEG, and MEG, as well as behavioral data, with a special focus on pupillometry data. First, we review the typical metrics of neural activity, emphasizing functional connectivity, complexity, dynamic functional connectivity, and dynamic state transitions of whole-brain activity. Second, we examine the metrics related to the time-series data of pupillary diameters and discuss the possibility of multimodal metrics that combine neural and pupillometry data. Finally, we discuss future perspectives on these multiple and multimodal metrics.
Collapse
Affiliation(s)
- Sou Nobukawa
- Department of Computer Science, Chiba Institute of Technology, Narashino, Chiba, Japan
- Graduate School of Information and Computer Science, Chiba Institute of Technology, Narashino, Chiba, Japan
- Research Center for Mathematical Engineering, Chiba Institute of Technology, Narashino, Chiba, Japan
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Aya Shirama
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tetsuya Takahashi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Department of Neuropsychiatry, University of Fukui, Fukui, Japan
- Uozu Shinkei Sanatorium, Uozu, Toyama, Japan
| | - Shigenobu Toda
- Department of Psychiatry, Shizuoka Psychiatric Medical Center, Shizuoka, Japan
- Department of Psychiatry and Behavioral Science, Kanazawa University, Kanazawa, Japan
- Department of Psychiatry, Showa University, Tokyo, Japan
| |
Collapse
|
2
|
Ran H, Chen G, Ran C, He Y, Xie Y, Yu Q, Liu J, Hu J, Zhang T. Altered White-Matter Functional Network in Children with Idiopathic Generalized Epilepsy. Acad Radiol 2024; 31:2930-2941. [PMID: 38350813 DOI: 10.1016/j.acra.2023.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 02/15/2024]
Abstract
RATIONALE AND OBJECTIVES The white matter (WM) functional network changes offers insights into the potential pathological mechanisms of certain diseases, the alterations of WM functional network in idiopathic generalized epilepsy (IGE) remain unclear. We aimed to explore the topological characteristics changes of WM functional network in childhood IGE using resting-state functional Magnetic resonance imaging (MRI) and T1-weighted images. METHODS A total of 84 children (42 IGE and 42 matched healthy controls) were included in this study. Functional and structural MRI data were acquired to construct a WM functional network. Group differences in the global and regional topological characteristics were assessed by graph theory and the correlations with clinical and neuropsychological scores were analyzed. A support vector machine algorithm model was employed to classify individuals with IGE using WM functional connectivity as features, and the model's accuracy was evaluated using leave-one-out cross-validation. RESULTS In IGE group, at the network level, the WM functional network exhibited increased assortativity; at the nodal level, 17 nodes presented nodal disturbances in WM functional network, and nodal disturbances of 11 nodes were correlated with cognitive performance scores, disease duration and age of onset. The classification model achieved the 72.6% accuracy, 0.746 area under the curve, 69.1% sensitivity, 76.2% specificity. CONCLUSION Our study demonstrated that the WM functional network topological properties changes in childhood IGE, which were associated with cognitive function, and WM functional network may help clinical classification for childhood IGE. These findings provide novel information for understanding the pathogenesis of IGE and suggest that the WM function network might be qualified as potential biomarkers.
Collapse
Affiliation(s)
- Haifeng Ran
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, 563003, China
| | - Guiqin Chen
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, 563003, China
| | - Chunyan Ran
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, 563003, China
| | - Yulun He
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, 563003, China
| | - Yuxin Xie
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, 563003, China
| | - Qiane Yu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, 563003, China
| | - Junwei Liu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, 563003, China
| | - Jie Hu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, 563003, China; Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tijiang Zhang
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, 563003, China.
| |
Collapse
|
3
|
Paramonova AI, Lysova KD, Timechko EE, Senchenko GV, Sapronova MR, Dmitrenko DV. Cognitive impairment in childhood-onset epilepsy. EPILEPSY AND PAROXYSMAL CONDITIONS 2024; 16:54-68. [DOI: 10.17749/2077-8333/epi.par.con.2024.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
In pediatric practice, epilepsy holds one of the leading places among neurological pathologies. Along with seizures, a child's intellectual impairment lowering quality of life plays a crucial role in social disintegration. Cognitive impairments occuring in idiopathic generalized epilepsies (IGE) and self-limited epilepsy with centrotemporal spikes (SeLECTS) considered benign have been widely investigated. However, available data suggest that such disorders result in multiple persistent alterations in the cognitive sphere. In this case, features of the epilepsy etiopathogenesis account for disease early onset and profoundly remodeled structures involved in the implementation of cognitive functions. Current review is aimed to summarizing data regarding developmental mechanisms and range of cognitive impairment in IGE and SeLECTS.
Collapse
Affiliation(s)
| | - K. D. Lysova
- Voino-Yasenetsky Krasnoyarsk State Medical University
| | | | | | | | | |
Collapse
|
4
|
Jiang S, Pei H, Chen J, Li H, Liu Z, Wang Y, Gong J, Wang S, Li Q, Duan M, Calhoun VD, Yao D, Luo C. Striatum- and Cerebellum-Modulated Epileptic Networks Varying Across States with and without Interictal Epileptic Discharges. Int J Neural Syst 2024; 34:2450017. [PMID: 38372049 DOI: 10.1142/s0129065724500175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Idiopathic generalized epilepsy (IGE) is characterized by cryptogenic etiology and the striatum and cerebellum are recognized as modulators of epileptic network. We collected simultaneous electroencephalogram and functional magnetic resonance imaging data from 145 patients with IGE, 34 of whom recorded interictal epileptic discharges (IEDs) during scanning. In states without IEDs, hierarchical connectivity was performed to search core cortical regions which might be potentially modulated by striatum and cerebellum. Node-node and edge-edge moderation models were constructed to depict direct and indirect moderation effects in states with and without IEDs. Patients showed increased hierarchical connectivity with sensorimotor cortices (SMC) and decreased connectivity with regions in the default mode network (DMN). In the state without IEDs, striatum, cerebellum, and thalamus were linked to weaken the interactions of regions in the salience network (SN) with DMN and SMC. In periods with IEDs, overall increased moderation effects on the interaction between regions in SN and DMN, and between regions in DMN and SMC were observed. The thalamus and striatum were implicated in weakening interactions between regions in SN and SMC. The striatum and cerebellum moderated the cortical interaction among DMN, SN, and SMC in alliance with the thalamus, contributing to the dysfunction in states with and without IEDs in IGE. The current work revealed state-specific modulation effects of striatum and cerebellum on thalamocortical circuits and uncovered the potential core cortical targets which might contribute to develop new clinical neuromodulation techniques.
Collapse
Affiliation(s)
- Sisi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Haonan Pei
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Junxia Chen
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Hechun Li
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Zetao Liu
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Yuehan Wang
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Jinnan Gong
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- School of Computer Science, Chengdu University of Information Technology, Chengdu, P. R. China
| | - Sheng Wang
- Department of Neurology, Hainan Medical University, Hainan 571199, P. R. China
| | - Qifu Li
- Department of Neurology, Hainan Medical University, Hainan 571199, P. R. China
| | - Mingjun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035 Chengdu, P. R. China
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035 Chengdu, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035 Chengdu, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
| |
Collapse
|
5
|
Hsieh H, Xu Q, Zhang Q, Yang F, Xu Y, Liu G, Liu R, Yu Q, Zhang Z, Lu G, Gu X, Zhang Z. Mapping progressive damage epicenters in epilepsy with generalized tonic-clonic seizures by causal structural covariance network density (CaSCNd). Brain Res 2024; 1828:148766. [PMID: 38242522 DOI: 10.1016/j.brainres.2024.148766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/28/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
AIMS Mapping progressive patterns of structural damage in epilepsies with idiopathic and secondarily generalized tonic-clonic seizures with causal structural covariance networks and multiple analysis strategies. METHODS Patients with idiopathic generalized tonic-clonic seizures (IGTCS) (n = 114) and secondarily generalized tonic-clonic seizures (SGTCS) (n = 125) were recruited. Morphometric parameter of gray matter volume was analyzed on structural MRI. Structural covariance network based on granger causality analysis (CaSCN) was performed on the cross-sectional morphometric data sorted by disease durations of patients. Seed-based CaSCN analysis was firstly carried out to map the progressive and influential patterns of damage to thalamus-related structures. A novel technique for voxel-based CaSCN density (CaSCNd) analysis was further proposed, enabling for identifying the epicenter of structural brain damage during the disease process. RESULTS The thalamus-associated CaSCNs demonstrated different patterns of progressive damage in two types of generalized tonic-clonic seizures. In IGTCS, the structural damage was predominantly driven from the thalamus, and expanded to the cortex, while in SGTCS, the damage was predominantly driven from the cortex, and expanded to the thalamus through the basal ganglia. CaSCNd analysis revealed that the IGTCS had an out-effect epicenter in the thalamus, whereas the SGTCS had equipotent in- and out-effects in the thalamus, cortex, and basal ganglia. CONCLUSION CaSCN revealed distinct damage patterns in the two types of GTCS, featuring with measurement of structural brain damage from the accumulating effect over a relatively long time period. Our work provided evidence for understanding network impairment mechanism underlying different GTCSs.
Collapse
Affiliation(s)
- Hsinyu Hsieh
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Qiang Xu
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Qirui Zhang
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Fang Yang
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Yin Xu
- Institute of Neurology Anhui, University of Chinese Medicine, Hefei 230061, China
| | - Gaoping Liu
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Ruoting Liu
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Qianqian Yu
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Zixuan Zhang
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Guangming Lu
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Xing Gu
- Department of Ultrasound, YanCheng 1(st) People Hospital, China
| | - Zhiqiang Zhang
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
6
|
Silva Alves A, Rigoni I, Mégevand P, Lagarde S, Picard F, Seeck M, Vulliémoz S, Roehri N. High-density electroencephalographic functional networks in genetic generalized epilepsy: Preserved whole-brain topology hides local reorganization. Epilepsia 2024; 65:961-973. [PMID: 38306118 DOI: 10.1111/epi.17903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
OBJECTIVE Genetic generalized epilepsy (GGE) accounts for approximately 20% of adult epilepsy cases and is considered a disorder of large brain networks, involving both hemispheres. Most studies have not shown any difference in functional whole-brain network topology when compared to healthy controls. Our objective was to examine whether this preserved global network topology could hide local reorganizations that balance out at the global network level. METHODS We recorded high-density electroencephalograms from 20 patients and 20 controls, and reconstructed the activity of 118 regions. We computed functional connectivity in windows free of interictal epileptiform discharges in broad, delta, theta, alpha, and beta frequency bands, characterized the network topology, and used the Hub Disruption Index (HDI) to quantify the topological reorganization. We examined the generalizability of our results by reproducing a 25-electrode clinical system. RESULTS Our study did not reveal any significant change in whole-brain network topology among GGE patients. However, the HDI was significantly different between patients and controls in all frequency bands except alpha (p < .01, false discovery rate [FDR] corrected, d < -1), and accompanied by an increase in connectivity in the prefrontal regions and default mode network. This reorganization suggests that regions that are important in transferring the information in controls were less so in patients. Inversely, the crucial regions in patients are less so in controls. These findings were also found in delta and theta frequency bands when using 25 electrodes (p < .001, FDR corrected, d < -1). SIGNIFICANCE In GGE patients, the overall network topology is similar to that of healthy controls but presents a balanced local topological reorganization. This reorganization causes the prefrontal areas and default mode network to be more integrated and segregated, which may explain executive impairment associated with GGE. Additionally, the reorganization distinguishes patients from controls even when using 25 electrodes, suggesting its potential use as a diagnostic tool.
Collapse
Affiliation(s)
- André Silva Alves
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Isotta Rigoni
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pierre Mégevand
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stanislas Lagarde
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Aix Marseille University, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Fabienne Picard
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Margitta Seeck
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Serge Vulliémoz
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Roehri
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Feng X, Piper RJ, Prentice F, Clayden JD, Baldeweg T. Functional brain connectivity in children with focal epilepsy: A systematic review of functional MRI studies. Seizure 2024; 117:164-173. [PMID: 38432080 DOI: 10.1016/j.seizure.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
Epilepsy is increasingly recognised as a brain network disorder and many studies have investigated functional connectivity (FC) in children with epilepsy using functional MRI (fMRI). This systematic review of fMRI studies, published up to November 2023, investigated profiles of FC changes and their clinical relevance in children with focal epilepsy compared to healthy controls. A literature search in PubMed and Web of Science yielded 62 articles. We categorised the results into three groups: 1) differences in correlation-based FC between patients and controls; 2) differences in other FC measures between patients and controls; and 3) associations between FC and disease variables (for example, age of onset), cognitive and seizure outcomes. Studies revealed either increased or decreased FC across multiple brain regions in children with focal epilepsy. However, findings lacked consistency: conflicting FC alterations (decreased and increased FC) co-existed within or between brain regions across all focal epilepsy groups. The studies demonstrated overall that 1) interhemispheric connections often displayed abnormal connectivity and 2) connectivity within and between canonical functional networks was decreased, particularly for the default mode network. Focal epilepsy disrupted FC in children both locally (e.g., seizure-onset zones, or within-brain subnetworks) and globally (e.g., whole-brain network architecture). The wide variety of FC study methodologies limits clinical application of the results. Future research should employ longitudinal designs to understand the evolution of brain networks during the disease course and explore the potential of FC biomarkers for predicting cognitive and postsurgical seizure outcomes.
Collapse
Affiliation(s)
- Xiyu Feng
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford, London WC1N 1EH, United Kingdom
| | - Rory J Piper
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford, London WC1N 1EH, United Kingdom; Department of Neurosurgery, Great Ormond Street Hospital, London, United Kingdom
| | - Freya Prentice
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford, London WC1N 1EH, United Kingdom
| | - Jonathan D Clayden
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford, London WC1N 1EH, United Kingdom
| | - Torsten Baldeweg
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford, London WC1N 1EH, United Kingdom.
| |
Collapse
|
8
|
Bröhl T, Rings T, Pukropski J, von Wrede R, Lehnertz K. The time-evolving epileptic brain network: concepts, definitions, accomplishments, perspectives. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 3:1338864. [PMID: 38293249 PMCID: PMC10825060 DOI: 10.3389/fnetp.2023.1338864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024]
Abstract
Epilepsy is now considered a network disease that affects the brain across multiple levels of spatial and temporal scales. The paradigm shift from an epileptic focus-a discrete cortical area from which seizures originate-to a widespread epileptic network-spanning lobes and hemispheres-considerably advanced our understanding of epilepsy and continues to influence both research and clinical treatment of this multi-faceted high-impact neurological disorder. The epileptic network, however, is not static but evolves in time which requires novel approaches for an in-depth characterization. In this review, we discuss conceptual basics of network theory and critically examine state-of-the-art recording techniques and analysis tools used to assess and characterize a time-evolving human epileptic brain network. We give an account on current shortcomings and highlight potential developments towards an improved clinical management of epilepsy.
Collapse
Affiliation(s)
- Timo Bröhl
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
| | - Thorsten Rings
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
| | - Jan Pukropski
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Randi von Wrede
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Klaus Lehnertz
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
- Interdisciplinary Center for Complex Systems, University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
De Benedictis A, de Palma L, Rossi-Espagnet MC, Marras CE. Connectome-based approaches in pediatric epilepsy surgery: "State-of-the art" and future perspectives. Epilepsy Behav 2023; 149:109523. [PMID: 37944286 DOI: 10.1016/j.yebeh.2023.109523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Modern epilepsy science has overcome the traditional interpretation of a strict region-specific origin of epilepsy, highlighting the involvement of wider patterns of altered neuronal circuits. In selected cases, surgery may constitute a valuable option to achieve both seizure freedom and neurocognitive improvement. Although epilepsy is now considered as a brain network disease, the most relevant literature concerning the "connectome-based" epilepsy surgery mainly refers to adults, with a limited number of studies dedicated to the pediatric population. In this review, the Authors summarized the main current available knowledge on the relevance of WM surgical anatomy in epilepsy surgery, the post-surgical modifications of brain structural connectivity and the related clinical impact of such modifications within the pediatric context. In the last part, possible implications and future perspectives of this approach have been discussed, especially concerning the optimization of surgical strategies and the predictive value of the epilepsy network analysis for planning tailored approaches, with the final aim of improving case selection, presurgical planning, intraoperative management, and postoperative results.
Collapse
Affiliation(s)
| | - Luca de Palma
- Epilepsy and Movement Disorders Neurology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | | | | |
Collapse
|
10
|
Epilepsy-related white matter network changes in patients with frontal lobe glioma. J Neuroradiol 2023; 50:258-265. [PMID: 35346748 DOI: 10.1016/j.neurad.2022.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/22/2022] [Accepted: 03/21/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Epilepsy is a common symptom in patients with frontal lobe glioma. Tumor-related epilepsy was recently considered a type of network disease. Glioma can severely influence the integrity of the white matter network. The association between white matter network changes and presurgical epilepsy remains unclear in glioma patients. This study aims to identify alterations to the subcortical brain networks caused by glioma and glioma-related epilepsy. METHODS Sixty-one patients with frontal lobe gliomas were enrolled and stratified into the epileptic and non-epileptic groups. Additionally, 14 healthy participants were enrolled after matching for age, sex, and education level. All participants underwent diffusion tensor imaging. Graph theoretical analysis was applied to reveal topological changes in their white matter networks. Regions affected by tumors were excluded from the analysis. RESULTS Global efficiency was significantly decreased (p = 0.008), while the shortest path length increased (p = 0.02) in the left and right non-epileptic groups compared to the controls. A total of five edges exhibited decreased fiber count in the non-epileptic group (p < 0.05, false discovery rate-corrected). The topological properties and connectional edges showed no significant differences when comparing the epileptic groups and the controls. Additionally, the degree centrality of several nodes connected to the alternated edges was also diminished. CONCLUSIONS Compared to the controls, the epilepsy groups showed raletively intact WM networks, while the non-epileptsy groups had damaged network with lower efficiency and longer path length. These findings indicated that the occurrence of glioma related epilepsy have association with white matter network intergrity.
Collapse
|
11
|
Lemoine É, Neves Briard J, Rioux B, Podbielski R, Nauche B, Toffa D, Keezer M, Lesage F, Nguyen DK, Bou Assi E. Computer-assisted analysis of routine electroencephalogram to identify hidden biomarkers of epilepsy: protocol for a systematic review. BMJ Open 2023; 13:e066932. [PMID: 36693684 PMCID: PMC9884857 DOI: 10.1136/bmjopen-2022-066932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
INTRODUCTION The diagnosis of epilepsy frequently relies on the visual interpretation of the electroencephalogram (EEG) by a neurologist. The hallmark of epilepsy on EEG is the interictal epileptiform discharge (IED). This marker lacks sensitivity: it is only captured in a small percentage of 30 min routine EEGs in patients with epilepsy. In the past three decades, there has been growing interest in the use of computational methods to analyse the EEG without relying on the detection of IEDs, but none have made it to the clinical practice. We aim to review the diagnostic accuracy of quantitative methods applied to ambulatory EEG analysis to guide the diagnosis and management of epilepsy. METHODS AND ANALYSIS The protocol complies with the recommendations for systematic reviews of diagnostic test accuracy by Cochrane. We will search MEDLINE, EMBASE, EBM reviews, IEEE Explore along with grey literature for articles, conference papers and conference abstracts published after 1961. We will include observational studies that present a computational method to analyse the EEG for the diagnosis of epilepsy in adults or children without relying on the identification of IEDs or seizures. The reference standard is the diagnosis of epilepsy by a physician. We will report the estimated pooled sensitivity and specificity, and receiver operating characteristic area under the curve (ROC AUC) for each marker. If possible, we will perform a meta-analysis of the sensitivity and specificity and ROC AUC for each individual marker. We will assess the risk of bias using an adapted QUADAS-2 tool. We will also describe the algorithms used for signal processing, feature extraction and predictive modelling, and comment on the reproducibility of the different studies. ETHICS AND DISSEMINATION Ethical approval was not required. Findings will be disseminated through peer-reviewed publication and presented at conferences related to this field. PROSPERO REGISTRATION NUMBER CRD42022292261.
Collapse
Affiliation(s)
- Émile Lemoine
- Department of Neurosciences, University of Montreal, Montreal, Québec, Canada
- Institute of Biomedical Engineering, Ecole Polytechnique de Montreal, Montreal, Québec, Canada
| | - Joel Neves Briard
- Department of Neurosciences, University of Montreal, Montreal, Québec, Canada
- University of Montreal Hospital Centre Research Centre, Montreal, Québec, Canada
| | - Bastien Rioux
- Department of Neurosciences, University of Montreal, Montreal, Québec, Canada
- University of Montreal Hospital Centre Research Centre, Montreal, Québec, Canada
| | - Renata Podbielski
- University of Montreal Hospital Centre Research Centre, Montreal, Québec, Canada
| | - Bénédicte Nauche
- University of Montreal Hospital Centre Research Centre, Montreal, Québec, Canada
| | - Denahin Toffa
- Department of Neurosciences, University of Montreal, Montreal, Québec, Canada
- University of Montreal Hospital Centre Research Centre, Montreal, Québec, Canada
| | - Mark Keezer
- Department of Neurosciences, University of Montreal, Montreal, Québec, Canada
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Frédéric Lesage
- Institute of Biomedical Engineering, Ecole Polytechnique de Montreal, Montreal, Québec, Canada
| | - Dang K Nguyen
- Department of Neurosciences, University of Montreal, Montreal, Québec, Canada
- University of Montreal Hospital Centre Research Centre, Montreal, Québec, Canada
| | - Elie Bou Assi
- Department of Neurosciences, University of Montreal, Montreal, Québec, Canada
- University of Montreal Hospital Centre Research Centre, Montreal, Québec, Canada
| |
Collapse
|
12
|
Gesche J, Beier CP. Drug resistance in idiopathic generalized epilepsies: Evidence and concepts. Epilepsia 2022; 63:3007-3019. [PMID: 36102351 PMCID: PMC10092586 DOI: 10.1111/epi.17410] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 01/11/2023]
Abstract
Although approximately 10%-15% of patients with idiopathic generalized epilepsy (IGE)/genetic generalized epilepsy remain drug-resistant, there is no consensus or established concept regarding the underlying mechanisms and prevalence. This review summarizes the recent data and the current hypotheses on mechanisms that may contribute to drug-resistant IGE. A literature search was conducted in PubMed and Embase for studies on mechanisms of drug resistance published since 1980. The literature shows neither consensus on the definition nor a widely accepted model to explain drug resistance in IGE or one of its subsyndromes. Large-scale genetic studies have failed to identify distinct genetic causes or affected genes involved in pharmacokinetics. We found clinical and experimental evidence in support of four hypotheses: (1) "network hypothesis"-the degree of drug resistance in IGE reflects the severity of cortical network alterations, (2) "minor focal lesion in a predisposed brain hypothesis"-minor cortical lesions are important for drug resistance, (3) "interneuron hypothesis"-impaired functioning of γ-aminobutyric acidergic interneurons contributes to drug resistance, and (4) "changes in drug kinetics"-genetically impaired kinetics of antiseizure medication (ASM) reduce the effectiveness of available ASMs. In summary, the exact definition and cause of drug resistance in IGE is unknown. However, published evidence suggests four different mechanisms that may warrant further investigation.
Collapse
Affiliation(s)
- Joanna Gesche
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Christoph P Beier
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
13
|
Pitetzis D, Frantzidis C, Psoma E, Deretzi G, Kalogera-Fountzila A, Bamidis PD, Spilioti M. EEG Network Analysis in Epilepsy with Generalized Tonic-Clonic Seizures Alone. Brain Sci 2022; 12:1574. [PMID: 36421898 PMCID: PMC9688338 DOI: 10.3390/brainsci12111574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 08/13/2024] Open
Abstract
Many contradictory theories regarding epileptogenesis in idiopathic generalized epilepsy have been proposed. This study aims to define the network that takes part in the formation of the spike-wave discharges in patients with generalized tonic-clonic seizures alone (GTCSa) and elucidate the network characteristics. Furthermore, we intend to define the most influential brain areas and clarify the connectivity pattern among them. The data were collected from 23 patients with GTCSa utilizing low-density electroencephalogram (EEG). The source localization of generalized spike-wave discharges (GSWDs) was conducted using the Standardized low-resolution brain electromagnetic tomography (sLORETA) methodology. Cortical connectivity was calculated utilizing the imaginary part of coherence. The network characteristics were investigated through small-world propensity and the integrated value of influence (IVI). Source localization analysis estimated that most sources of GSWDs were in the superior frontal gyrus and anterior cingulate. Graph theory analysis revealed that epileptic sources created a network that tended to be regularized during generalized spike-wave activity. The IVI analysis concluded that the most influential nodes were the left insular gyrus and the left inferior parietal gyrus at 3 and 4 Hz, respectively. In conclusion, some nodes acted mainly as generators of GSWDs and others as influential ones across the whole network.
Collapse
Affiliation(s)
- Dimitrios Pitetzis
- Department of Neurology, Papageorgiou General Hospital, 56403 Thessaloniki, Greece
| | - Christos Frantzidis
- Lab of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- School of Computer Science, University of Lincoln, Lincoln LN6 7TS, UK
| | - Elizabeth Psoma
- Department of Radiology, AHEPA General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Georgia Deretzi
- Department of Neurology, Papageorgiou General Hospital, 56403 Thessaloniki, Greece
| | - Anna Kalogera-Fountzila
- Department of Radiology, AHEPA General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Panagiotis D. Bamidis
- Lab of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Martha Spilioti
- 1st Department of Neurology, AHEPA General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| |
Collapse
|
14
|
EEG Markers of Treatment Resistance in Idiopathic Generalized Epilepsy: From Standard EEG Findings to Advanced Signal Analysis. Biomedicines 2022; 10:biomedicines10102428. [PMID: 36289690 PMCID: PMC9598660 DOI: 10.3390/biomedicines10102428] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022] Open
Abstract
Idiopathic generalized epilepsy (IGE) represents a common form of epilepsy in both adult and pediatric epilepsy units. Although IGE has been long considered a relatively benign epilepsy syndrome, a remarkable proportion of patients could be refractory to treatment. While some clinical prognostic factors have been largely validated among IGE patients, the impact of routine electroencephalography (EEG) findings in predicting drug resistance is still controversial and a growing number of authors highlighted the potential importance of capturing the sleep state in this setting. In addition, the development of advanced computational techniques to analyze EEG data has opened new opportunities in the identification of reliable and reproducible biomarkers of drug resistance in IGE patients. In this manuscript, we summarize the EEG findings associated with treatment resistance in IGE by reviewing the results of studies considering standard EEGs, 24-h EEG recordings, and resting-state protocols. We discuss the role of 24-h EEG recordings in assessing seizure recurrence in light of the potential prognostic relevance of generalized fast discharges occurring during sleep. In addition, we highlight new and promising biomarkers as identified by advanced EEG analysis, including hypothesis-driven functional connectivity measures of background activity and data-driven quantitative findings revealed by machine learning approaches. Finally, we thoroughly discuss the methodological limitations observed in existing studies and briefly outline future directions to identify reliable and replicable EEG biomarkers in IGE patients.
Collapse
|
15
|
Shakeshaft A, Laiou P, Abela E, Stavropoulos I, Richardson MP, Pal DK, Howell A, Hyde A, McQueen A, Duran A, Gaurav A, Collingwood A, Kitching A, Shakeshaft A, Papathanasiou A, Clough A, Gribbin A, Swain A, Needle A, Hall A, Smith A, Macleod A, Chhibda A, Fonferko-Shadrach B, Camara B, Petrova B, Stuart C, Hamilton C, Peacey C, Campbell C, Cotter C, Edwards C, Picton C, Busby C, Quamina C, Waite C, West C, Ng CC, Giavasi C, Backhouse C, Holliday C, Mewies C, Thow C, Egginton D, Dickerson D, Rice D, Mullan D, Daly D, Mcaleer D, Gardella E, Stephen E, Irvine E, Sacre E, Lin F, Castle G, Mackay G, Salim H, Cock H, Collier H, Cockerill H, Navarra H, Mhandu H, Crudgington H, Hayes I, Stavropoulos I, Daglish J, Smith J, Bartholomew J, Cotta J, Ceballos JP, Natarajan J, Crooks J, Quirk J, Bland J, Sidebottom J, Gesche J, Glenton J, Henry J, Davis J, Ball J, Selmer KK, Rhodes K, Holroyd K, Lim KS, O’Brien K, Thrasyvoulou L, Makawa L, Charles L, Richardson L, Nelson L, Walding L, Woodhead L, Ehiorobo L, Hawkins L, Adams L, Connon M, Home M, Baker M, Mencias M, Richardson MP, Sargent M, Syvertsen M, Milner M, Recto M, Chang M, O'Donoghue M, Young M, Ray M, Panjwani N, Ghaus N, Sudarsan N, Said N, Pickrell O, Easton P, Frattaroli P, McAlinden P, Harrison R, Swingler R, Wane R, Ramsay R, Møller RS, McDowall R, Clegg R, Uka S, White S, Truscott S, Francis S, Tittensor S, Sharman SJ, Chung SK, Patel S, Ellawela S, Begum S, Kempson S, Raj S, Bayley S, Warriner S, Kilroy S, MacFarlane S, Brown T, Samakomva T, Nortcliffe T, Calder V, Collins V, Parker V, Richmond V, Stern W, Haslam Z, Šobíšková Z, Agrawal A, Whiting A, Pratico A, Desurkar A, Saraswatula A, MacDonald B, Fong CY, Beier CP, Andrade D, Pauldhas D, Greenberg DA, Deekollu D, Pal DK, Jayachandran D, Lozsadi D, Galizia E, Scott F, Rubboli G, Angus-Leppan H, Talvik I, Takon I, Zarubova J, Koht J, Aram J, Lanyon K, Irwin K, Hamandi K, Yeung L, Strug LJ, Rees M, Reuber M, Kirkpatrick M, Taylor M, Maguire M, Koutroumanidis M, Khan M, Moran N, Striano P, Bala P, Bharat R, Pandey R, Mohanraj R, Thomas R, Belderbos R, Slaght SJ, Delamont S, Sastry S, Mariguddi S, Kumar S, Kumar S, Majeed T, Jegathasan U, Whitehouse W. Heterogeneity of resting-state EEG features in juvenile myoclonic epilepsy and controls. Brain Commun 2022; 4:fcac180. [PMID: 35873918 PMCID: PMC9301584 DOI: 10.1093/braincomms/fcac180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/18/2022] [Accepted: 07/07/2022] [Indexed: 11/12/2022] Open
Abstract
Abnormal EEG features are a hallmark of epilepsy, and abnormal frequency and network features are apparent in EEGs from people with idiopathic generalized epilepsy in both ictal and interictal states. Here, we characterize differences in the resting-state EEG of individuals with juvenile myoclonic epilepsy and assess factors influencing the heterogeneity of EEG features. We collected EEG data from 147 participants with juvenile myoclonic epilepsy through the Biology of Juvenile Myoclonic Epilepsy study. Ninety-five control EEGs were acquired from two independent studies [Chowdhury et al. (2014) and EU-AIMS Longitudinal European Autism Project]. We extracted frequency and functional network-based features from 10 to 20 s epochs of resting-state EEG, including relative power spectral density, peak alpha frequency, network topology measures and brain network ictogenicity: a computational measure of the propensity of networks to generate seizure dynamics. We tested for differences between epilepsy and control EEGs using univariate, multivariable and receiver operating curve analysis. In addition, we explored the heterogeneity of EEG features within and between cohorts by testing for associations with potentially influential factors such as age, sex, epoch length and time, as well as testing for associations with clinical phenotypes including anti-seizure medication, and seizure characteristics in the epilepsy cohort. P-values were corrected for multiple comparisons. Univariate analysis showed significant differences in power spectral density in delta (2-5 Hz) (P = 0.0007, hedges' g = 0.55) and low-alpha (6-9 Hz) (P = 2.9 × 10-8, g = 0.80) frequency bands, peak alpha frequency (P = 0.000007, g = 0.66), functional network mean degree (P = 0.0006, g = 0.48) and brain network ictogenicity (P = 0.00006, g = 0.56) between epilepsy and controls. Since age (P = 0.009) and epoch length (P = 1.7 × 10-8) differed between the two groups and were potential confounders, we controlled for these covariates in multivariable analysis where disparities in EEG features between epilepsy and controls remained. Receiver operating curve analysis showed low-alpha power spectral density was optimal at distinguishing epilepsy from controls, with an area under the curve of 0.72. Lower average normalized clustering coefficient and shorter average normalized path length were associated with poorer seizure control in epilepsy patients. To conclude, individuals with juvenile myoclonic epilepsy have increased power of neural oscillatory activity at low-alpha frequencies, and increased brain network ictogenicity compared with controls, supporting evidence from studies in other epilepsies with considerable external validity. In addition, the impact of confounders on different frequency-based and network-based EEG features observed in this study highlights the need for careful consideration and control of these factors in future EEG research in idiopathic generalized epilepsy particularly for their use as biomarkers.
Collapse
Affiliation(s)
- Amy Shakeshaft
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK,MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Petroula Laiou
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Eugenio Abela
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | | | - Mark P Richardson
- Correspondence may also be addressed to: Professor Mark P Richardson Maurice Wohl Clinical Neurosciences Institute Institute of Psychiatry, Psychology & Neuroscience King’s College London, 5 Cutcombe Road, London SE5 9RX, UK E-mail:
| | - Deb K Pal
- Correspondence to: Professor Deb K Pal Maurice Wohl Clinical Neurosciences Institute Institute of Psychiatry, Psychology & Neuroscience King’s College London 5 Cutcombe Road, London SE5 9RX, UK E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Drug-resistant focal epilepsy in children is associated with increased modal controllability of the whole brain and epileptogenic regions. Commun Biol 2022; 5:394. [PMID: 35484213 PMCID: PMC9050895 DOI: 10.1038/s42003-022-03342-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 04/06/2022] [Indexed: 02/06/2023] Open
Abstract
Network control theory provides a framework by which neurophysiological dynamics of the brain can be modelled as a function of the structural connectome constructed from diffusion MRI. Average controllability describes the ability of a region to drive the brain to easy-to-reach neurophysiological states whilst modal controllability describes the ability of a region to drive the brain to difficult-to-reach states. In this study, we identify increases in mean average and modal controllability in children with drug-resistant epilepsy compared to healthy controls. Using simulations, we purport that these changes may be a result of increased thalamocortical connectivity. At the node level, we demonstrate decreased modal controllability in the thalamus and posterior cingulate regions. In those undergoing resective surgery, we also demonstrate increased modal controllability of the resected parcels, a finding specific to patients who were rendered seizure free following surgery. Changes in controllability are a manifestation of brain network dysfunction in epilepsy and may be a useful construct to understand the pathophysiology of this archetypical network disease. Understanding the mechanisms underlying these controllability changes may also facilitate the design of network-focussed interventions that seek to normalise network structure and function.
Collapse
|
17
|
Liu G, Zheng W, Liu H, Guo M, Ma L, Hu W, Ke M, Sun Y, Zhang J, Zhang Z. Aberrant dynamic structure-function relationship of rich-club organization in treatment-naïve newly diagnosed juvenile myoclonic epilepsy. Hum Brain Mapp 2022; 43:3633-3645. [PMID: 35417064 PMCID: PMC9294302 DOI: 10.1002/hbm.25873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/28/2022] [Accepted: 04/03/2022] [Indexed: 11/25/2022] Open
Abstract
Neuroimaging studies have shown that juvenile myoclonic epilepsy (JME) is characterized by impaired brain networks. However, few studies have investigated the potential disruptions in rich‐club organization—a core feature of the brain networks. Moreover, it is unclear how structure–function relationships dynamically change over time in JME. Here, we quantify the anatomical rich‐club organization and dynamic structural and functional connectivity (SC–FC) coupling in 47 treatment‐naïve newly diagnosed patients with JME and 40 matched healthy controls. Dynamic functional network efficiency and its association with SC–FC coupling were also calculated to examine the supporting of structure–function relationship to brain information transfer. The results showed that the anatomical rich‐club organization was disrupted in the patient group, along with decreased connectivity strength among rich‐club hub nodes. Furthermore, reduced SC–FC coupling in rich‐club organization of the patients was found in two functionally independent dynamic states, that is the functional segregation state (State 1) and the strong somatomotor‐cognitive control interaction state (State 5); and the latter was significantly associated with disease severity. In addition, the relationships between SC–FC coupling of hub nodes connections and functional network efficiency in State 1 were found to be absent in patients. The aberrant dynamic SC–FC coupling of rich‐club organization suggests a selective influence of densely interconnected network core in patients with JME at the early phase of the disease, offering new insights and potential biomarkers into the underlying neurodevelopmental basis of behavioral and cognitive impairments observed in JME.
Collapse
Affiliation(s)
- Guangyao Liu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China.,Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Weihao Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Hong Liu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China.,Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Man Guo
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Laiyang Ma
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China.,Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Wanjun Hu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China.,Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Ming Ke
- College of Computer and Communication, Lanzhou University of Technology, Lanzhou, China
| | - Yu Sun
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China.,Zhejiang Lab, Hangzhou, China
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China.,Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Zhe Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China.,School of Physics, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
18
|
Hsieh H, Xu Q, Yang F, Zhang Q, Hao J, Liu G, Liu R, Yu Q, Zhang Z, Xing W, Bernhardt BC, Lu G, Zhang Z. Distinct Functional Cortico-Striato-Thalamo-Cerebellar Networks in Genetic Generalized and Focal Epilepsies with Generalized Tonic-Clonic Seizures. J Clin Med 2022; 11:jcm11061612. [PMID: 35329938 PMCID: PMC8951449 DOI: 10.3390/jcm11061612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/18/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed to delineate cortico-striato-thalamo-cerebellar network profiles based on static and dynamic connectivity analysis in genetic generalized and focal epilepsies with generalized tonic-clonic seizures, and to evaluate its potential for distinguishing these two epilepsy syndromes. A total of 342 individuals participated in the study (114 patients with genetic generalized epilepsy with generalized tonic-clonic seizures (GE-GTCS), and 114 age- and sex-matched patients with focal epilepsy with focal to bilateral tonic-clonic seizure (FE-FBTS), 114 healthy controls). Resting-state fMRI data were examined through static and dynamic functional connectivity (dFC) analyses, constructing cortico-striato-thalamo-cerebellar networks. Network patterns were compared between groups, and were correlated to epilepsy duration. A pattern-learning algorithm was applied to network features for classifying both epilepsy syndromes. FE-FBTS and GE-GTCS both presented with altered functional connectivity in subregions of the motor/premotor and somatosensory networks. Among these two groups, the connectivity within the cerebellum increased in the static, while the dFC variability decreased; conversely, the connectivity of the thalamus decreased in FE-FBTS and increased in GE-GTCS in the static state. Connectivity differences between patient groups were mainly located in the thalamus and cerebellum, and correlated with epilepsy duration. Support vector machine (SVM) classification had accuracies of 66.67%, 68.42%, and 77.19% when using static, dynamic, and combined approaches to categorize GE-GTCS and FE-GTCS. Network features with high discriminative ability predominated in the thalamic and cerebellar connectivities. The network embedding of the thalamus and cerebellum likely plays an important differential role in GE-GTCS and FE-FBTS, and could serve as an imaging biomarker for differential diagnosis.
Collapse
Affiliation(s)
- Hsinyu Hsieh
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210093, China; (H.H.); (Q.X.); (F.Y.); (Q.Z.); (J.H.); (G.L.); (R.L.); (Q.Y.); (Z.Z.); (G.L.)
| | - Qiang Xu
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210093, China; (H.H.); (Q.X.); (F.Y.); (Q.Z.); (J.H.); (G.L.); (R.L.); (Q.Y.); (Z.Z.); (G.L.)
| | - Fang Yang
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210093, China; (H.H.); (Q.X.); (F.Y.); (Q.Z.); (J.H.); (G.L.); (R.L.); (Q.Y.); (Z.Z.); (G.L.)
| | - Qirui Zhang
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210093, China; (H.H.); (Q.X.); (F.Y.); (Q.Z.); (J.H.); (G.L.); (R.L.); (Q.Y.); (Z.Z.); (G.L.)
| | - Jingru Hao
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210093, China; (H.H.); (Q.X.); (F.Y.); (Q.Z.); (J.H.); (G.L.); (R.L.); (Q.Y.); (Z.Z.); (G.L.)
| | - Gaoping Liu
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210093, China; (H.H.); (Q.X.); (F.Y.); (Q.Z.); (J.H.); (G.L.); (R.L.); (Q.Y.); (Z.Z.); (G.L.)
| | - Ruoting Liu
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210093, China; (H.H.); (Q.X.); (F.Y.); (Q.Z.); (J.H.); (G.L.); (R.L.); (Q.Y.); (Z.Z.); (G.L.)
| | - Qianqian Yu
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210093, China; (H.H.); (Q.X.); (F.Y.); (Q.Z.); (J.H.); (G.L.); (R.L.); (Q.Y.); (Z.Z.); (G.L.)
| | - Zixuan Zhang
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210093, China; (H.H.); (Q.X.); (F.Y.); (Q.Z.); (J.H.); (G.L.); (R.L.); (Q.Y.); (Z.Z.); (G.L.)
| | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Soochow University/Changzhou First People’s Hospital, Changzhou 213004, China;
| | - Boris C. Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada;
| | - Guangming Lu
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210093, China; (H.H.); (Q.X.); (F.Y.); (Q.Z.); (J.H.); (G.L.); (R.L.); (Q.Y.); (Z.Z.); (G.L.)
| | - Zhiqiang Zhang
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210093, China; (H.H.); (Q.X.); (F.Y.); (Q.Z.); (J.H.); (G.L.); (R.L.); (Q.Y.); (Z.Z.); (G.L.)
- Correspondence:
| |
Collapse
|
19
|
Genetic generalized epilepsies in adults - challenging assumptions and dogmas. Nat Rev Neurol 2022; 18:71-83. [PMID: 34837042 DOI: 10.1038/s41582-021-00583-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 01/16/2023]
Abstract
Genetic generalized epilepsy (GGE) syndromes start during childhood or adolescence, and four commonly persist into adulthood, making up 15-20% of all cases of epilepsy in adults. These four GGE syndromes are childhood absence epilepsy, juvenile absence epilepsy, juvenile myoclonic epilepsy and epilepsy with generalized tonic-clonic seizures alone. However, in ~20% of patients with GGE, characteristics of more than one syndrome are present. Novel insights into the genetic aetiology, comorbidities and prognosis of the GGE syndromes have emerged and challenge traditional concepts about these conditions. Evidence has shown that the mode of inheritance in GGE is mostly polygenic. Neuropsychological and imaging studies indicate similar abnormalities in unaffected relatives of patients with GGE, supporting the concept that underlying alterations in bilateral frontothalamocortical networks are genetically determined. Contrary to popular belief, first-line anti-seizure medication often fails to provide seizure freedom in combination with good tolerability. Nevertheless, long-term follow-up studies have shown that with advancing age, many patients can discontinue their anti-seizure medication without seizure relapses. Several outcome predictors have been identified, but prognosis across the syndromes is more homogeneous than previously assumed. Overall, overlap in pathophysiology, seizure types, treatment responses and outcomes support the idea that GGEs are not separate nosological entities but represent a neurobiological continuum.
Collapse
|
20
|
Different circuitry dysfunction in drug-naive patients with juvenile myoclonic epilepsy and juvenile absence epilepsy. Epilepsy Behav 2021; 125:108443. [PMID: 34837842 DOI: 10.1016/j.yebeh.2021.108443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022]
Abstract
RATIONALE Juvenile myoclonic epilepsy (JME) and juvenile absence epilepsy (JAE) are generalized epileptic syndromes presenting in the same age range. To explore whether uneven network dysfunctions may underlie the two different phenotypes, we examined drug-naive patients with JME and JAE at the time of their earliest presentation. METHODS Patients were recruited based on typical JME (n = 23) or JAE (n = 18) presentation and compared with 16 age-matched healthy subjects (HS). We analyzed their awake EEG signals by Partial Directed Coherence and graph indexes. RESULTS Out-density and betweenness centrality values were different between groups. With respect to both JAE and HS, JME showed unbalanced out-density and out-strength in alpha and beta bands on central regions and reduced alpha out-strength from fronto-polar to occipital regions, correlating with photosensitivity. With respect to HS, JAE showed enhanced alpha out-density and out-strength on fronto-polar regions. In gamma band, JAE showed reduced Global/Local Efficiency and Clustering Coefficient with respect to HS, while JME showed more scattered values. CONCLUSIONS Our data suggest that regional network changes in alpha and beta bands underlie the different presentation distinguishing JME and JAE resulting in motor vs non-motor seizures characterizing these two syndromes. Conversely, impaired gamma-activity within the network seems to be a non-local marker of defective inhibition.
Collapse
|
21
|
Slinger G, Otte WM, Braun KPJ, van Diessen E. An updated systematic review and meta-analysis of brain network organization in focal epilepsy: Looking back and forth. Neurosci Biobehav Rev 2021; 132:211-223. [PMID: 34813826 DOI: 10.1016/j.neubiorev.2021.11.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/23/2021] [Accepted: 11/17/2021] [Indexed: 01/10/2023]
Abstract
Abnormalities of the brain network organization in focal epilepsy have been extensively quantified. However, the extent and directionality of abnormalities are highly variable and subtype insensitive. We conducted meta-analyses to obtain a more accurate and epilepsy type-specific quantification of the interictal global brain network organization in focal epilepsy. By using random-effects models, we estimated differences in average clustering coefficient, average path length, and modularity between patients with focal epilepsy and controls, based on 45 studies with a total sample size of 1,468 patients and 1,021 controls. Structural networks had a significant lower level of integration in patients with epilepsy as compared to controls, with a standardized mean difference of -0.334 (95 % confidence interval -0.631 to -0.038; p-value 0.027). Functional networks did not differ between patients and controls, except for the beta band clustering coefficient. Our meta-analyses show that differences in the brain network organization are not as well defined as individual studies often propose. We discuss potential pitfalls and suggestions to enhance the yield and clinical value of network studies.
Collapse
Affiliation(s)
- Geertruida Slinger
- Department of Child Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands.
| | - Willem M Otte
- Department of Child Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands; Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Kees P J Braun
- Department of Child Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Eric van Diessen
- Department of Child Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
22
|
Dharan AL, Bowden SC, Lai A, Peterson ADH, Cheung MWL, Woldman W, D'Souza WJ. Resting-state functional connectivity in the idiopathic generalized epilepsies: A systematic review and meta-analysis of EEG and MEG studies. Epilepsy Behav 2021; 124:108336. [PMID: 34607215 DOI: 10.1016/j.yebeh.2021.108336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 11/20/2022]
Abstract
For idiopathic generalized epilepsies (IGE), brain network analysis is emerging as a biomarker for potential use in clinical care. To determine whether people with IGE show alterations in resting-state brain connectivity compared to healthy controls, and to quantify these differences, we conducted a systematic review and meta-analysis of EEG and magnetoencephalography (MEG) functional connectivity and network studies. The review was conducted according to PRISMA guidelines. Twenty-two studies were eligible for inclusion. Outcomes from individual studies supported hypotheses for interictal, resting-state brain connectivity alterations in IGE patients compared to healthy controls. In contrast, meta-analysis from six studies of common network metrics clustering coefficient, path length, mean degree and nodal strength showed no significant differences between IGE and control groups (effect sizes ranged from -0.151 -1.78). The null findings of the meta-analysis and the heterogeneity of the included studies highlights the importance of developing standardized, validated methodologies for future research. Network neuroscience has significant potential as both a diagnostic and prognostic biomarker in epilepsy, though individual variability in network dynamics needs to be better understood and accounted for.
Collapse
Affiliation(s)
- Anita L Dharan
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Stephen C Bowden
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia; Department of Clinical Neurosciences, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Alan Lai
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Andre D H Peterson
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Mike W-L Cheung
- Department of Psychology, National University of Singapore, Singapore
| | - Wessel Woldman
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Edgbaston, United Kingdom
| | - Wendyl J D'Souza
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
23
|
Pegg EJ, McKavanagh A, Bracewell RM, Chen Y, Das K, Denby C, Kreilkamp BAK, Laiou P, Marson A, Mohanraj R, Taylor JR, Keller SS. Functional network topology in drug resistant and well-controlled idiopathic generalized epilepsy: a resting state functional MRI study. Brain Commun 2021; 3:fcab196. [PMID: 34514400 PMCID: PMC8417840 DOI: 10.1093/braincomms/fcab196] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2021] [Indexed: 11/23/2022] Open
Abstract
Despite an increasing number of drug treatment options for people with idiopathic generalized epilepsy (IGE), drug resistance remains a significant issue and the mechanisms underlying it remain poorly understood. Previous studies have largely focused on potential cellular or genetic explanations for drug resistance. However, epilepsy is understood to be a network disorder and there is a growing body of literature suggesting altered topology of large-scale resting networks in people with epilepsy compared with controls. We hypothesize that network alterations may also play a role in seizure control. The aim of this study was to compare resting state functional network structure between well-controlled IGE (WC-IGE), drug resistant IGE (DR-IGE) and healthy controls. Thirty-three participants with IGE (10 with WC-IGE and 23 with DR-IGE) and 34 controls were included. Resting state functional MRI networks were constructed using the Functional Connectivity Toolbox (CONN). Global graph theoretic network measures of average node strength (an equivalent measure to mean degree in a network that is fully connected), node strength distribution variance, characteristic path length, average clustering coefficient, small-world index and average betweenness centrality were computed. Graphs were constructed separately for positively weighted connections and for absolute values. Individual nodal values of strength and betweenness centrality were also measured and ‘hub nodes’ were compared between groups. Outcome measures were assessed across the three groups and between both groups with IGE and controls. The IGE group as a whole had a higher average node strength, characteristic path length and average betweenness centrality. There were no clear differences between groups according to seizure control. Outcome metrics were sensitive to whether negatively correlated connections were included in network construction. There were no clear differences in the location of ‘hub nodes’ between groups. The results suggest that, irrespective of seizure control, IGE interictal network topology is more regular and has a higher global connectivity compared to controls, with no alteration in hub node locations. These alterations may produce a resting state network that is more vulnerable to transitioning to the seizure state. It is possible that the lack of apparent influence of seizure control on network topology is limited by challenges in classifying drug response. It is also demonstrated that network topological features are influenced by the sign of connectivity weights and therefore future methodological work is warranted to account for anticorrelations in graph theoretic studies.
Collapse
Affiliation(s)
- Emily J Pegg
- Department of Neurology, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK.,Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Andrea McKavanagh
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | | | - Yachin Chen
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Kumar Das
- The Walton Centre NHS Foundation Trust, Liverpool, UK
| | | | - Barbara A K Kreilkamp
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Petroula Laiou
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Anthony Marson
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Rajiv Mohanraj
- Department of Neurology, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK.,Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jason R Taylor
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Simon S Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
24
|
Hirosawa T, An KM, Soma D, Shiota Y, Sano M, Kameya M, Hino S, Naito N, Tanaka S, Yaoi K, Iwasaki S, Yoshimura Y, Kikuchi M. Epileptiform discharges relate to altered functional brain networks in autism spectrum disorders. Brain Commun 2021; 3:fcab184. [PMID: 34541529 PMCID: PMC8440646 DOI: 10.1093/braincomms/fcab184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/23/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Many individuals with autism spectrum disorders have comorbid epilepsy. Even in the absence of observable seizures, interictal epileptiform discharges are common in individuals with autism spectrum disorders. However, how these interictal epileptiform discharges are related to autistic symptomatology remains unclear. This study used magnetoencephalography to investigate the relation between interictal epileptiform discharges and altered functional brain networks in children with autism spectrum disorders. Instead of particularly addressing individual brain regions, we specifically examine network properties. For this case-control study, we analysed 70 children with autism spectrum disorders (52 boys, 18 girls, 38-92 months old) and 19 typically developing children (16 boys, 3 girls, 48-88 months old). After assessing the participants' social reciprocity using the Social Responsiveness Scale, we constructed graphs of functional brain networks from frequency band separated task-free magnetoencephalography recordings. Nodes corresponded to Desikan-Killiany atlas-based 68 brain regions. Edges corresponded to phase lag index values between pairs of brain regions. To elucidate the effects of the existence of interictal epileptiform discharges on graph metrics, we matched each of three pairs from three groups (typically developing children, children with autism spectrum disorders who had interictal epileptiform discharges and those who did not) in terms of age and sex. We used a coarsened exact matching algorithm and applied adjusted regression analysis. We also investigated the relation between social reciprocity and the graph metric. Results show that, in children with autism spectrum disorders, the average clustering coefficient in the theta band was significantly higher in children who had interictal epileptiform discharges. Moreover, children with autism spectrum disorders who had no interictal epileptiform discharges had a significantly lower average clustering coefficient in the theta band than typically developing children had. However, the difference between typically developing children and children with autism spectrum disorder who had interictal epileptiform discharges was not significant. Furthermore, the higher average clustering coefficient in the theta band corresponded to severe autistic symptoms in children with autism spectrum disorder who had interictal epileptiform discharges. However, the association was not significant in children with autism spectrum disorders who had no interictal epileptiform discharge. In conclusion, results demonstrate that alteration of functional brain networks in children with autism spectrum disorders depends on the existence of interictal epileptiform discharges. Interictal epileptiform discharges might 'normalize' the deviation of altered brain networks in autism spectrum disorders, increasing the clustering coefficient. However, when the effect exceeds tolerance, it actually exacerbates autistic symptoms.
Collapse
Affiliation(s)
- Tetsu Hirosawa
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-0934, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8641, Japan
- Division of Socio-Cognitive-Neuroscience, Department of Child Development United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa 920-8640, Japan
| | - Kyung-min An
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8641, Japan
- Division of Socio-Cognitive-Neuroscience, Department of Child Development United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa 920-8640, Japan
| | - Daiki Soma
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-0934, Japan
| | - Yuka Shiota
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8641, Japan
- Division of Socio-Cognitive-Neuroscience, Department of Child Development United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa 920-8640, Japan
| | - Masuhiko Sano
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-0934, Japan
| | - Masafumi Kameya
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-0934, Japan
| | - Shoryoku Hino
- Department of Neuropsychiatry, Ishikawa Prefectural Takamatsu Hospital, Ishikawa 929-1214, Japan
| | - Nobushige Naito
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-0934, Japan
| | - Sanae Tanaka
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8641, Japan
- Division of Socio-Cognitive-Neuroscience, Department of Child Development United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa 920-8640, Japan
| | - Ken Yaoi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8641, Japan
- Division of Socio-Cognitive-Neuroscience, Department of Child Development United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa 920-8640, Japan
| | - Sumie Iwasaki
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8641, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8641, Japan
- Division of Socio-Cognitive-Neuroscience, Department of Child Development United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa 920-8640, Japan
- Faculty of Education, Institute of Human and Social Sciences, Kanazawa University, Kanazawa 920-1164, Japan
| | - Mitsuru Kikuchi
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-0934, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8641, Japan
- Division of Socio-Cognitive-Neuroscience, Department of Child Development United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa 920-8640, Japan
| |
Collapse
|
25
|
Faiman I, Smith S, Hodsoll J, Young AH, Shotbolt P. Resting-state EEG for the diagnosis of idiopathic epilepsy and psychogenic nonepileptic seizures: A systematic review. Epilepsy Behav 2021; 121:108047. [PMID: 34091130 DOI: 10.1016/j.yebeh.2021.108047] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022]
Abstract
Quantitative markers extracted from resting-state electroencephalogram (EEG) reveal subtle neurophysiological dynamics which may provide useful information to support the diagnosis of seizure disorders. We performed a systematic review to summarize evidence on markers extracted from interictal, visually normal resting-state EEG in adults with idiopathic epilepsy or psychogenic nonepileptic seizures (PNES). Studies were selected from 5 databases and evaluated using the Quality Assessment of Diagnostic Accuracy Studies-2. 26 studies were identified, 19 focusing on people with epilepsy, 6 on people with PNES, and one comparing epilepsy and PNES directly. Results suggest that oscillations along the theta frequency (4-8 Hz) may have a relevant role in idiopathic epilepsy, whereas in PNES there was no evident trend. However, studies were subject to a number of methodological limitations potentially introducing bias. There was often a lack of appropriate reporting and high heterogeneity. Results were not appropriate for quantitative synthesis. We identify and discuss the challenges that must be addressed for valid resting-state EEG markers of epilepsy and PNES to be developed.
Collapse
Affiliation(s)
- Irene Faiman
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, Camberwell, London SE5 8AB, United Kingdom.
| | - Stuart Smith
- Department of Neurophysiology, Great Ormond Street Hospital, Great Ormond Street, London WC1N 3JH, United Kingdom.
| | - John Hodsoll
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, Camberwell, London SE5 8AB, United Kingdom.
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, Camberwell, London SE5 8AB, United Kingdom; South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, Kent BR3 3BX, United Kingdom.
| | - Paul Shotbolt
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, Camberwell, London SE5 8AB, United Kingdom.
| |
Collapse
|
26
|
Pegg EJ, Taylor JR, Laiou P, Richardson M, Mohanraj R. Interictal electroencephalographic functional network topology in drug-resistant and well-controlled idiopathic generalized epilepsy. Epilepsia 2021; 62:492-503. [PMID: 33501642 DOI: 10.1111/epi.16811] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 01/17/2023]
Abstract
OBJECTIVE The study aim was to compare interictal encephalographic (EEG) functional network topology between people with well-controlled idiopathic generalized epilepsy (WC-IGE) and drug-resistant IGE (DR-IGE). METHODS Nineteen participants with WC-IGE, 18 with DR-IGE, and 20 controls underwent a resting state, 64-channel EEG. An artifact-free epoch was bandpass filtered into the frequency range of high and low extended alpha. Weighted functional connectivity matrices were calculated. Mean degree, degree distribution variance, characteristic path length (L), clustering coefficient, small world index (SWI), and betweenness centrality were measured. A Kruskal-Wallis H-test assessed effects across groups. Where significant differences were found, Bonferroni-corrected Mann-Whitney pairwise comparisons were calculated. RESULTS In the low alpha band (6-9 Hz), there was a significant difference in L at the three-group level (p < .0001). This was lower in controls than both WC-IGE and DR-IGE (p < .0001 for both), with no difference in L between WC-IGE and DR-IGE. Mean degree (p = .031), degree distribution variance (p = .032), and SWI (p = .023) differed across the three groups in the high alpha band (10-12 Hz). Mean degree and degree distribution variance were lower in WC-IGE than controls (p = .029 for both), and SWI was higher in WC-IGE compared with controls (p = .038), with no differences in other pairwise comparisons. SIGNIFICANCE IGE network topology is more regular in the low alpha frequency band, potentially reflecting a more vulnerable structure. WC-IGE network topology is different from controls in the high alpha band. This may reflect drug-induced network changes that have stabilized the WC-IGE network by rendering it less likely to synchronize. These results are of potential importance in advancing the understanding of mechanisms of epilepsy drug resistance and as a possible basis for a biomarker of DR-IGE.
Collapse
Affiliation(s)
- Emily J Pegg
- Department of Neurology, Manchester Centre for Clinical Neurosciences, Salford, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Jason R Taylor
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, School of Biological Sciences, University of Manchester, Manchester, UK.,Manchester Academic Health Sciences Centre, Manchester, UK
| | - Petroula Laiou
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Mark Richardson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Rajiv Mohanraj
- Department of Neurology, Manchester Centre for Clinical Neurosciences, Salford, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
27
|
Xu Q, Zhang Q, Yang F, Weng Y, Xie X, Hao J, Qi R, Gumenyuk V, Stufflebeam SM, Bernhardt BC, Lu G, Zhang Z. Cortico-striato-thalamo-cerebellar networks of structural covariance underlying different epilepsy syndromes associated with generalized tonic-clonic seizures. Hum Brain Mapp 2020; 42:1102-1115. [PMID: 33372704 PMCID: PMC7856655 DOI: 10.1002/hbm.25279] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/16/2020] [Accepted: 10/31/2020] [Indexed: 01/05/2023] Open
Abstract
Generalized tonic-clonic seizures (GTCS) are the severest and most remarkable clinical expressions of human epilepsy. Cortical, subcortical, and cerebellar structures, organized with different network patterns, underlying the pathophysiological substrates of genetic associated epilepsy with GTCS (GE-GTCS) and focal epilepsy associated with focal to bilateral tonic-clonic seizure (FE-FBTS). Structural covariance analysis can delineate the features of epilepsy network related with long-term effects from seizure. Morphometric MRI data of 111 patients with GE-GTCS, 111 patients with FE-FBTS and 111 healthy controls were studied. Cortico-striato-thalao-cerebellar networks of structural covariance within the gray matter were constructed using a Winner-take-all strategy with five cortical parcellations. Comparisons of structural covariance networks were conducted using permutation tests, and module effects of disease duration on networks were conducted using GLM model. Both patient groups showed increased connectivity of structural covariance relative to controls, mainly within the striatum and thalamus, and mostly correlated with the frontal, motor, and somatosensory cortices. Connectivity changes increased as a function of epilepsy durations. FE-FBTS showed more intensive and extensive gray matter changes with volumetric loss and connectivity increment than GE-GTCS. Our findings implicated cortico-striato-thalamo-cerebellar network changes at a large temporal scale in GTCS, with FE-FBTS showing more severe network disruption. The study contributed novel imaging evidence for understanding the different epilepsy syndromes associated with generalized seizures.
Collapse
Affiliation(s)
- Qiang Xu
- Department of Medical Imaging, Jinling Hospital, Medical school of Nanjing University, Nanjing, China.,College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Qirui Zhang
- Department of Medical Imaging, Jinling Hospital, Medical school of Nanjing University, Nanjing, China
| | - Fang Yang
- Department of Neurology, Jinling Hospital, Medical school of Nanjing University, Nanjing, China
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Medical school of Nanjing University, Nanjing, China.,Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Xinyu Xie
- Department of Medical Imaging, Jinling Hospital, Medical school of Nanjing University, Nanjing, China
| | - Jingru Hao
- Department of Medical Imaging, Jinling Hospital, Medical school of Nanjing University, Nanjing, China
| | - Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Medical school of Nanjing University, Nanjing, China
| | - Valentina Gumenyuk
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Steven M Stufflebeam
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Medical school of Nanjing University, Nanjing, China.,College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical school of Nanjing University, Nanjing, China.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| |
Collapse
|
28
|
Anderson DE, Madhavan D, Swaminathan A. Global brain network dynamics predict therapeutic responsiveness to cannabidiol treatment for refractory epilepsy. Brain Commun 2020; 2:fcaa140. [PMID: 33376981 PMCID: PMC7751013 DOI: 10.1093/braincomms/fcaa140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/29/2020] [Accepted: 07/23/2020] [Indexed: 11/16/2022] Open
Abstract
Refractory epilepsy is a chronic brain network disorder characterized by unresponsiveness to multiple (>2) anti-epileptic drugs. Cannabidiol, a non-psychotropic neuroactive substance, is an emerging anti-epileptic treatment that was recently approved by the US Food and Drug Administration for the treatment of refractory epilepsy, especially Lennox Gastaut syndrome and Dravet syndrome. Here, we evaluated associations between global brain network dynamics and related changes and responsiveness to cannabidiol therapy using a combination of electroencephalography phase coherence and graph theoretical analyses. Refractory epilepsy patients with Lennox Gastaut syndrome or Dravet syndrome underwent serial electroencephalography testing prior to and during cannabidiol treatment. Patients showing greater than 70% seizure frequency reduction were classified as treatment responders for the purposes of this study. We calculated inter-electrode electroencephalography phase coherence in delta (1–3 Hz), theta (4–7 Hz), alpha (8–12 Hz) and beta (13–30 Hz) frequency bands. Graph theoretical analysis of brain network dynamics was extracted from phase coherence to evaluate measures of network integration (i.e. characteristic path length, global efficiency and degree) and segregation (i.e. modularity and transitivity). We found that responders, relative to non-responders, showed increased network integration—as indexed by relatively higher global efficiency and lower degree—and increased network segregation—as indexed by relatively higher modularity—exclusively in the beta-frequency band. We also found that larger cannabidiol dosages were associated with increased network integration—as indexed by higher global efficiency with increasing dose—and increased network segregation—as indexed by lower transitivity with increasing dose—in the delta, theta and alpha frequency bands. In summary, we demonstrate novel effects of cannabidiol on brain network dynamics with important implications for the treatment of refractory epilepsy and, possibly, across broader research applications in the future.
Collapse
Affiliation(s)
- David E Anderson
- Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198-5540, USA
| | - Deepak Madhavan
- Department of Pediatric Neurology, Boys Town National Research Hospital, Omaha, NE 68198-8440, USA
| | - Arun Swaminathan
- Department of Neurological Sciences, University of Nebraska Medical Center, Boys Town, NE 68010, USA
| |
Collapse
|