1
|
Xie Y, Zhang W, Wu Z, Huang K, Geng Y, Yang H, Feng L. Non-classical event-related potentials reveal attention network alteration in patients with temporal lobe epilepsy. Int J Psychophysiol 2024; 206:112456. [PMID: 39427754 DOI: 10.1016/j.ijpsycho.2024.112456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
OBJECTIVE To explore the characteristic changes of multiple ERP components associated with attention impairments in patients with temporal lobe epilepsy (TLE). METHODS A total of 92 patients diagnosed with TLE at Xiangya Hospital during May 2022 and January 2023 and 85 healthy controls were included in this study. Participants were asked to complete attention network test with recording of electroencephalogram. RESULTS Compared with healthy controls, significant lower amplitudes (cue-related N1, N2 and CNV) and longer latencies (target-related N2) were found in TLE patients. Besides classical components, other components could also reveal the impairments of attention function. Cue-related N1 (p ≤ 0.007) and N2 (p ≤ 0.01) components indicated impaired alerting and orienting network in TLE. And cue-related CNV-E component (p = 0.003) promoted the alerting network was damaged and target-related N2 component (p = 0.008) indicated the executive control network was impaired. CONCLUSION These findings consummate the non-classical ERP features of attention impairments in TLE patients. SIGNIFICANCE The above findings have strong clinical guiding significance for early identification and intervention.
Collapse
Affiliation(s)
- Yuanyuan Xie
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Weina Zhang
- Department of Neurology, Laizhou People's Hospital, Yantai, Shandong, China
| | - Zhongling Wu
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Clinical Nursing Teaching and Research Section, Xiangya Hospital, Central South University, Changsha, China
| | - Kailing Huang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yiyuan Geng
- Xiangya School of Medicine, Central South University, China
| | - Haojun Yang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Li Feng
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
2
|
Mi W, Gao Y, Lin H, Deng S, Mu Y, Zhang H. Morinda officinalis oligosaccharides modulate the default-mode network homogeneity in major depressive disorder at rest. Psychiatry Res Neuroimaging 2024; 343:111847. [PMID: 38968754 DOI: 10.1016/j.pscychresns.2024.111847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/22/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND While prior studies have explored the efficacy of Morinda officinalis oligosaccharides (MOs) as a treatment for patients with major depressive disorder (MDD), the mechanistic basis for the effects of MOs on brain function or the default-mode network (DMN) has yet to be characterized. The objective of this was to examine the effects of MOs treatment on functional connectivity in different regions of the DMN. METHODS In total, 27 MDD patients and 29 healthy control subjects (HCs) underwent resting-state functional magnetic resonance imaging. The patients were then treated with MOs for 8 weeks, and scanning was performed at baseline and the end of the 8-week treatment period. Changes in DMN homogeneity associated with MOs treatment were assessed using network homogeneity (NH) analyses of the imaging data, and pattern classification approaches were employed to determine whether abnormal baseline NH deficits could differentiate between MDD patients and controls. The ability of NH abnormalities to predict patient responses to MOs treatment was also evaluated. RESULTS Relative to HCs, patients exhibited a baseline reduction in NH values in the right precuneus (PCu). At the end of the 8-week treatment period, the MDD patients showed reduced and increased NH values in the right PCu and left superior medial frontal gyrus (SMFG), respectively. Compared to these patients at baseline, the 8-week MOs treatment was associated with reduced NH values in the right angular gyrus and increased NH values in the left middle temporal gyrus and the right PCu. Support vector machine (SVM) analyses revealed that NH abnormalities in the right PCu and left SMFG were the most accurate (87.50%) for differentiating between MDD patients and HCs. CONCLUSION These results indicated that MOs treatment could alter default-mode NH in patients with MDD. The results provide a foundation for elucidation of the effects of MOs on brain function and suggest that the distinctive NH patterns observed in this study may be useful as imaging biomarkers for distinguishing between patients with MDD and healthy subjects.
Collapse
Affiliation(s)
- Weifeng Mi
- Peking University Institute of Mental Health, National Health Commission Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yujun Gao
- Department of Psychiatry, Wuhan Wuchang Hospital, Wuhan University of Science and Technology, Wuhan 430063, China; Clinical and Translational Sciences Lab, The Douglas Research Centre, McGill University, Montreal, Canada; Yichang Mental Health Center, Hubei, China; Institute of Mental Health, Three Gorges University, Hubei, China; Yichang City Clinical Research Center for Mental Disorders, Hubei, China
| | - Hang Lin
- Yichang Mental Health Center, Hubei, China; Institute of Mental Health, Three Gorges University, Hubei, China; Yichang City Clinical Research Center for Mental Disorders, Hubei, China; Department of Nephrology, Xiaogan Central Hospital, Xiaogan, China
| | - Shuo Deng
- Department of Psychiatry, Bejing Minkang Hospital, Beijing, 102206, China
| | - Yonggang Mu
- Shanghai Changning Mental Health Center, Shanghai, 200335, China
| | - Hongyan Zhang
- Peking University Institute of Mental Health, National Health Commission Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
3
|
Gao Y, Guo X, Wang S, Huang Z, Zhang B, Hong J, Zhong Y, Weng C, Wang H, Zha Y, Sun J, Lu L, Wang G. Frontoparietal network homogeneity as a biomarker for mania and remitted bipolar disorder and a predictor of early treatment response in bipolar mania patient. J Affect Disord 2023; 339:486-494. [PMID: 37437732 DOI: 10.1016/j.jad.2023.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/13/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
OBJECTIVE Previous studies have revealed the frontoparietal network (FPN) plays a key role in the imaging pathophysiology of bipolar disorder (BD). However, network homogeneity (NH) in the FPN among bipolar mania (BipM), remitted bipolar disorder (rBD), and healthy controls (HCs) remains unknown. The present study aimed to explore whether NH within the FPN can be used as an imaging biomarker to differentiate BipM from rBD and to predict treatment efficacy for patients with BipM. METHODS Sixty-six patients with BD (38 BipM and 28 rBD) and 60 HCs participated in resting-state functional magnetic resonance imaging and neuropsychological tests. Independent component analysis and NH analysis were applied to analyze the imaging data. RESULTS Relative to HCs, BipM patients displayed increased NH in the left middle frontal gyrus (MFG), and rBD patients displayed increased NH in the right inferior parietal lobule (IPL). Compared to rBD patients, BipM patients displayed reduced NH in the right IPL. Furthermore, support vector machine results exhibited that NH values in the right IPL could distinguish BipM patients from rBD patients with 69.70 %, 57.89 %, and 91.67 % for accuracy, sensitivity, and specificity, respectively, and support vector regression results exhibited a significant association between predicted and actual symptomatic improvement based on the reduction ratio of the Young` Mania Rating Scale total scores (r = 0.466, p < 0.01). CONCLUSION The study demonstrated distinct NH values in the FPN could serve as a valuable neuroimaging biomarker capable of differentiating patients with BipM and rBD, and NH values of the left MFG as a potential predictor of early treatment response in patients with BipM.
Collapse
Affiliation(s)
- Yujun Gao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China; Clinical and Translational Sciences Lab, The Douglas Research Centre, McGill University, Montreal, Canada
| | - Xin Guo
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sanwang Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhengyuan Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baoli Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiayu Hong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Zhong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China; Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Chao Weng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Haibo Wang
- Department of Medical Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunfei Zha
- Department of Medical Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Sun
- Pain Medicine Center, Peking University Third Hospital, Peking University, Beijing, China.
| | - Lin Lu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China; Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China; National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Gao Y, Guo X, Zhong Y, Liu X, Tian S, Deng J, Lin X, Bao Y, Lu L, Wang G. Decreased dorsal attention network homogeneity as a potential neuroimaging biomarker for major depressive disorder. J Affect Disord 2023; 332:136-142. [PMID: 36990286 DOI: 10.1016/j.jad.2023.03.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Gaining insight into abnormal functional brain network homogeneity (NH) has the potential to aid efforts to target or otherwise study major depressive disorder (MDD). The NH of the dorsal attention network (DAN) in first-episode treatment-naive MDD patients, however, has yet to be studied. As such, the present study was developed to explore the NH of the DAN in order to determine the ability of this parameter to differentiate between MDD patients and healthy control (HC) individuals. METHODS This study included 73 patients with first-episode treatment-naive MDD and 73 age-, gender-, and educational level-matched healthy controls. All participants completed the attentional network test (ANT), Hamilton Rating Scale for Depression (HRSD), and resting-state functional magnetic resonance imaging (rs-fMRI) analyses. A group independent component analysis (ICA) was used to identify the DAN and to compute the NH of the DAN in patients with MDD. Spearman's rank correlation analyses were used to explore relationships between significant NH abnormalities in MDD patients, clinical parameters, and executive control reaction time. RESULTS Relative to HCs, patients exhibited reduced NH in the left supramarginal gyrus (SMG). Support vector machine (SVM) analyses and receiver operating characteristic curves indicated that the NH of the left SMG could be used to differentiate between HCs and MDD patients with respective accuracy, specificity, sensitivity, and AUC values of 92.47 %, 91.78 %, 93.15 %, and 65.39 %. A significant positive correlation was observed between the left SMG NH values and HRSD scores among MDD patients. CONCLUSIONS These results suggest that NH changes in the DAN may offer value as a neuroimaging biomarker capable of differentiating between MDD patients and healthy individuals.
Collapse
Affiliation(s)
- Yujun Gao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Xin Guo
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Yi Zhong
- Peking University, Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, Peking University, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - Xiaoxin Liu
- Peking University, Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, Peking University, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - Shanshan Tian
- Peking University, Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, Peking University, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - Jiahui Deng
- Peking University, Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, Peking University, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - Xiao Lin
- Peking University, Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, Peking University, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - Yanpin Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China.
| | - Lin Lu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430000, China; Peking University, Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, Peking University, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing 100191, China; National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430000, China.
| |
Collapse
|
5
|
Wang X, Lin D, Zhao C, Li H, Fu L, Huang Z, Xu S. Abnormal metabolic connectivity in default mode network of right temporal lobe epilepsy. Front Neurosci 2023; 17:1011283. [PMID: 37034164 PMCID: PMC10076532 DOI: 10.3389/fnins.2023.1011283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Aims Temporal lobe epilepsy (TLE) is a common neurological disorder associated with the dysfunction of the default mode network (DMN). Metabolic connectivity measured by 18F-fluorodeoxyglucose Positron Emission Computed Tomography (18F-FDG PET) has been widely used to assess cumulative energy consumption and provide valuable insights into the pathophysiology of TLE. However, the metabolic connectivity mechanism of DMN in TLE is far from fully elucidated. The present study investigated the metabolic connectivity mechanism of DMN in TLE using 18F-FDG PET. Method Participants included 40 TLE patients and 41 health controls (HC) who were age- and gender-matched. A weighted undirected metabolic network of each group was constructed based on 14 primary volumes of interest (VOIs) in the DMN, in which Pearson's correlation coefficients between each pair-wise of the VOIs were calculated in an inter-subject manner. Graph theoretic analysis was then performed to analyze both global (global efficiency and the characteristic path length) and regional (nodal efficiency and degree centrality) network properties. Results Metabolic connectivity in DMN showed that regionally networks changed in the TLE group, including bilateral posterior cingulate gyrus, right inferior parietal gyrus, right angular gyrus, and left precuneus. Besides, significantly decreased (P < 0.05, FDR corrected) metabolic connections of DMN in the TLE group were revealed, containing bilateral hippocampus, bilateral posterior cingulate gyrus, bilateral angular gyrus, right medial of superior frontal gyrus, and left inferior parietal gyrus. Conclusion Taken together, the present study demonstrated the abnormal metabolic connectivity in DMN of TLE, which might provide further insights into the understanding the dysfunction mechanism and promote the treatment for TLE patients.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Department of Medical Imaging, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
- Department of Medical Imaging, Affiliated Dongfang Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Dandan Lin
- Department of Clinical Medicine, Fujian Health College, Fuzhou, Fujian, China
| | - Chunlei Zhao
- Department of Medical Imaging, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
- Department of Medical Imaging, Affiliated Dongfang Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Hui Li
- Department of Medical Imaging, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
| | - Liyuan Fu
- Department of Medical Imaging, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
- Department of Medical Imaging, Affiliated Dongfang Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Zhifeng Huang
- Department of Medical Imaging, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
- Department of Medical Imaging, Affiliated Dongfang Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Shangwen Xu
- Department of Medical Imaging, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
- Department of Medical Imaging, Affiliated Dongfang Hospital, Xiamen University, Fuzhou, Fujian, China
| |
Collapse
|
6
|
Wang Q, Gao Y, Zhang Y, Wang X, Li X, Lin H, Xiong L, Huang C. Decreased degree centrality values as a potential neuroimaging biomarker for migraine: A resting-state functional magnetic resonance imaging study and support vector machine analysis. Front Neurol 2023; 13:1105592. [PMID: 36793799 PMCID: PMC9922777 DOI: 10.3389/fneur.2022.1105592] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/30/2022] [Indexed: 02/02/2023] Open
Abstract
Objective Misdiagnosis and missed diagnosis of migraine are common in clinical practice. Currently, the pathophysiological mechanism of migraine is not completely known, and its imaging pathological mechanism has rarely been reported. In this study, functional magnetic resonance imaging (fMRI) technology combined with a support vector machine (SVM) was employed to study the imaging pathological mechanism of migraine to improve the diagnostic accuracy of migraine. Methods We randomly recruited 28 migraine patients from Taihe Hospital. In addition, 27 healthy controls were randomly recruited through advertisements. All patients had undergone the Migraine Disability Assessment (MIDAS), Headache Impact Test - 6 (HIT-6), and 15 min magnetic resonance scanning. We ran DPABI (RRID: SCR_010501) on MATLAB (RRID: SCR_001622) to preprocess the data and used REST (RRID: SCR_009641) to calculate the degree centrality (DC) value of the brain region and SVM (RRID: SCR_010243) to classify the data. Results Compared with the healthy controls (HCs), the DC value of bilateral inferior temporal gyrus (ITG) in patients with migraine was significantly lower and that of left ITG showed a positive linear correlation with MIDAS scores. The SVM results showed that the DC value of left ITG has the potential to be a diagnostic biomarker for imaging, with the highest diagnostic accuracy, sensitivity, and specificity for patients with migraine of 81.82, 85.71, and 77.78%, respectively. Conclusion Our findings demonstrate abnormal DC values in the bilateral ITG among patients with migraine, and the present results provide insights into the neural mechanism of migraines. The abnormal DC values can be used as a potential neuroimaging biomarker for the diagnosis of migraine.
Collapse
Affiliation(s)
- Qian Wang
- Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Yujun Gao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuandong Zhang
- Medical College of Wuhan University of Science and Technology, Wuhan, China
| | - Xi Wang
- Department of Sleep and Psychosomatic Medicine Center, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan, China
| | - Xuying Li
- Department of Sleep and Psychosomatic Medicine Center, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan, China
| | - Hang Lin
- Clinical College of Wuhan University of Science and Technology, Wuhan, China
| | - Ling Xiong
- Department of Anesthesia, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Anesthesia, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Department of Anesthesia, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Chunyan Huang
- Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Bacon EJ, Jin C, He D, Hu S, Wang L, Li H, Qi S. Functional and effective connectivity analysis of drug-resistant epilepsy: a resting-state fMRI analysis. Front Neurosci 2023; 17:1163111. [PMID: 37152592 PMCID: PMC10157077 DOI: 10.3389/fnins.2023.1163111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Objective Epilepsy is considered as a neural network disorder. Seizure activity in epilepsy may disturb brain networks and damage brain functions. We propose using resting-state functional magnetic resonance imaging (rs-fMRI) data to characterize connectivity patterns in drug-resistant epilepsy. Methods This study enrolled 47 participants, including 28 with drug-resistant epilepsy and 19 healthy controls. Functional and effective connectivity was employed to assess drug-resistant epilepsy patients within resting state networks. The resting state functional connectivity (FC) analysis was performed to assess connectivity between each patient and healthy controls within the default mode network (DMN) and the dorsal attention network (DAN). In addition, dynamic causal modeling was used to compute effective connectivity (EC). Finally, a statistical analysis was performed to evaluate our findings. Results The FC analysis revealed significant connectivity changes in patients giving 64.3% (18/28) and 78.6% (22/28) for DMN and DAN, respectively. Statistical analysis of FC was significant between the medial prefrontal cortex, posterior cingulate cortex, and bilateral inferior parietal cortex for DMN. For DAN, it was significant between the left and the right intraparietal sulcus and the frontal eye field. For the DMN, the patient group showed significant EC connectivity in the right inferior parietal cortex and the medial prefrontal cortex for the DMN. There was also bilateral connectivity between the medial prefrontal cortex and the posterior cingulate cortex, as well as between the left and right inferior parietal cortex. For DAN, patients showed significant connectivity in the right frontal eye field and the right intraparietal sulcus. Bilateral connectivity was also found between the left frontal eye field and the left intraparietal sulcus, as well as between the right frontal eye field and the right intraparietal sulcus. The statistical analysis of the EC revealed a significant result in the medial prefrontal cortex and the right intraparietal cortex for the DMN. The DAN was found significant in the left frontal eye field, as well as the left and right intraparietal sulcus. Conclusion Our results provide preliminary evidence to support that the combination of functional and effective connectivity analysis of rs-fMRI can aid in diagnosing epilepsy in the DMN and DAN networks.
Collapse
Affiliation(s)
- Eric Jacob Bacon
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| | - Chaoyang Jin
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Dianning He
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Shuaishuai Hu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lanbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Han Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Han Li,
| | - Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
- Shouliang Qi,
| |
Collapse
|
8
|
Ricci L, Croce P, Pulitano P, Boscarino M, Zappasodi F, Narducci F, Lanzone J, Sancetta B, Mecarelli O, Di Lazzaro V, Tombini M, Assenza G. Levetiracetam Modulates EEG Microstates in Temporal Lobe Epilepsy. Brain Topogr 2022; 35:680-691. [PMID: 36098891 DOI: 10.1007/s10548-022-00911-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022]
Abstract
To determine the effects of Levetiracetam (LEV) therapy using EEG microstates analysis in a population of newly diagnosed Temporal Lobe Epilepsy (TLE) patients. We hypothesized that the impact of LEV therapy on the electrical activity of the brain can be globally explored using EEG microstates. Twenty-seven patients with TLE were examined. We performed resting-state microstate EEG analysis and compared microstate metrics between the EEG performed at baseline (EEGpre) and after 3 months of LEV therapy (EEGpost). The microstates A, B, C and D emerged as the most stable. LEV induced a reduction of microstate B and D mean duration and occurrence per second (p < 0.01). Additionally, LEV treatment increased the directional predominance of microstate A to C and microstate B to D (p = 0.01). LEV treatment induces a modulation of resting-state EEG microstates in newly diagnosed TLE patients. Microstates analysis has the potential to identify a neurophysiological indicator of LEV therapeutic activity. This study of EEG microstates in people with epilepsy opens an interesting path to identify potential LEV activity biomarkers that may involve increased neuronal inhibition of the epileptic network.
Collapse
Affiliation(s)
- Lorenzo Ricci
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, via Álvaro del Portillo, 21, 00128, Rome, Italy
| | - Pierpaolo Croce
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.
| | - Patrizia Pulitano
- Department of Human Neurosciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Marilisa Boscarino
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, via Álvaro del Portillo, 21, 00128, Rome, Italy
| | - Filippo Zappasodi
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Flavia Narducci
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, via Álvaro del Portillo, 21, 00128, Rome, Italy
| | - Jacopo Lanzone
- Neurorehabilitation Department, IRCCS Salvatore Maugeri Foundation, Institute of Milan, Milan, Italy
| | - Biagio Sancetta
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, via Álvaro del Portillo, 21, 00128, Rome, Italy
| | - Oriano Mecarelli
- Department of Human Neurosciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, via Álvaro del Portillo, 21, 00128, Rome, Italy
| | - Mario Tombini
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, via Álvaro del Portillo, 21, 00128, Rome, Italy
| | - Giovanni Assenza
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, via Álvaro del Portillo, 21, 00128, Rome, Italy
| |
Collapse
|
9
|
Huang C, Zhou Y, Zhong Y, Wang X, Zhang Y. The Bilateral Precuneus as a Potential Neuroimaging Biomarker for Right Temporal Lobe Epilepsy: A Support Vector Machine Analysis. Front Psychiatry 2022; 13:923583. [PMID: 35782449 PMCID: PMC9240203 DOI: 10.3389/fpsyt.2022.923583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Objective While evidence has demonstrated that the default-mode network (DMN) plays a key role in the broad-scale cognitive problems that occur in right temporal lobe epilepsy (rTLE), little is known about alterations in the network homogeneity (NH) of the DMN in TLE. In this study, we used the NH method to investigate the NH of the DMN in TLE at rest, and an support vector machine (SVM) method for the diagnosis of rTLE. Methods A total of 43 rTLE cases and 42 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging (rs-fMRI). Imaging data were analyzed with the NH and SVM methods. Results rTLE patients have a decreased NH in the right inferior temporal gyrus (ITG) and left middle temporal gyrus (MTG), but increased NH in the bilateral precuneus (PCu) and right inferior parietal lobe (IPL), compared with HCs. We found that rTLE had a longer performance reaction time (RT). No significant correlation was found between abnormal NH values and clinical variables of the patients. The SVM results showed that increased NH in the bilateral PCu as a diagnostic biomarker distinguished rTLE from HCs with an accuracy of 74.12% (63/85), a sensitivity 72.01% (31/43), and a specificity 72.81% (31/42). Conclusion These findings suggest that abnormal NH of the DMN exists in rTLE, and highlights the significance of the DMN in the pathophysiology of cognitive problems occurring in rTLE, and the bilateral PCu as a neuroimaging diagnostic biomarker for rTLE.
Collapse
Affiliation(s)
- Chunyan Huang
- Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Yang Zhou
- Wuhan Mental Health Center, Wuhan, China
- Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Yi Zhong
- NHC Key Laboratory of Mental Health (Peking University), Peking University Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
| | - Xi Wang
- Department of Sleep and Psychosomatic Medicine Center, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan, China
| | - Yunhua Zhang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Clinical Medical College of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
10
|
Luo L, Lei X, Zhu C, Wu J, Ren H, Zhan J, Qin Y. Decreased Connectivity in Precuneus of the Ventral Attentional Network in First-Episode, Treatment-Naïve Patients With Major Depressive Disorder: A Network Homogeneity and Independent Component Analysis. Front Psychiatry 2022; 13:925253. [PMID: 35693966 PMCID: PMC9184427 DOI: 10.3389/fpsyt.2022.925253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND OBJECTIVE The ventral attentional network (VAN) can provide quantitative information on cognitive problems in patients with major depressive disorder (MDD). Nevertheless, little is known about network homogeneity (NH) changes in the VAN of these patients. The aim of this study was to examine the NH values in the VAN by independent component analysis (ICA) and compare the NH values between MDD patients and the normal controls (NCs). METHODS Attentional network test and resting-state functional magnetic resonance imaging (rs-fMRI) data were collected from 73 patients, and 70 NCs matched by gender, age, and education years. ICA and NH were employed to evaluate the data. Moreover, the NH values were compared, and Spearman's rank correlation analysis was used to assess the correlations with the executive control reaction time (ECRT). RESULTS Our results showed that the first-episode, treatment-naive MDD patients had decreased NH in the right precuneus (PCu) and abnormal ECRT compared with NCs. However, no significant correlation was found between the NH values and measured clinical variables. CONCLUSION Our results highlight the potential importance of VAN in the pathophysiology of cognitive problems in MDD, thus offering new directions for future research on MDD.
Collapse
Affiliation(s)
- Liqiong Luo
- Department of Oncology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Xijun Lei
- Department of Oncology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Canmin Zhu
- Department of Neurology, The First People's Hospital of Jiangxia District, Wuhan, China
| | - Jun Wu
- Department of Neurosurgery, Wuhan Central Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongwei Ren
- Department of Medical Imaging, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jing Zhan
- Department of Oncology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Yongzhang Qin
- Department of Endocrinology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
11
|
Guo R, Zhao Y, Jin H, Jian J, Wang H, Jin S, Ren H. Abnormal hubs in global network as neuroimaging biomarker in right temporal lobe epilepsy at rest. Front Psychiatry 2022; 13:981728. [PMID: 35966487 PMCID: PMC9363580 DOI: 10.3389/fpsyt.2022.981728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
While abnormal neuroimaging features have been reported in patients suffering from right temporal lobe epilepsy (rTLE), the value of altered degree centrality (DC) as a diagnostic biomarker for rTLE has yet to be established. As such, the present study was designed to examine DC abnormalities in rTLE patients in order to gauge the diagnostic utility of these neuroimaging features. In total, 68 patients with rTLE and 73 healthy controls (HCs) participated in this study. Imaging data were analyzed using DC and receiver operating characteristic (ROC) methods. Ultimately, rTLE patients were found to exhibit reduced right caudate DC and increased left middle temporal gyrus, superior parietal gyrus, superior frontal gyrus, right precuneus, frontal gyrus Inferior gyrus, middle-superior frontal gyrus, and inferior parietal gyrus DC relative to HC. ROC analyses indicated that DC values in the right caudate nucleus could be used to differentiate between rTLE patients and HCs with a high degree of sensitivity and specificity. Together, these results thus suggest that rTLE is associated with abnormal DC values in the right caudate nucleus, underscoring the relevance of further studies of the underlying pathophysiology of this debilitating condition.
Collapse
Affiliation(s)
- Ruimin Guo
- Department of Medical Imaging, Tianyou Hospital of Wuhan University of Science and Technology, Wuhan, China.,Key Laboratory of Occupational Hazards and Identification, Wuhan University of Science and Technology, Wuhan, China
| | - Yunfei Zhao
- Department of Neurosurgery, Tianyou Hospital of Wuhan University of Science and Technology, Wuhan, China
| | - Honghua Jin
- Department of Medical Imaging, Tianyou Hospital of Wuhan University of Science and Technology, Wuhan, China
| | - Jihua Jian
- Department of Medical Imaging, Tianyou Hospital of Wuhan University of Science and Technology, Wuhan, China
| | - Haibo Wang
- Department of Medical Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shengxi Jin
- Department of Neurosurgery, Tianyou Hospital of Wuhan University of Science and Technology, Wuhan, China
| | - Hongwei Ren
- Department of Medical Imaging, Tianyou Hospital of Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Chu Y, Wu J, Wang D, Huang J, Li W, Zhang S, Ren H. Altered voxel-mirrored homotopic connectivity in right temporal lobe epilepsy as measured using resting-state fMRI and support vector machine analyses. Front Psychiatry 2022; 13:958294. [PMID: 35958657 PMCID: PMC9360423 DOI: 10.3389/fpsyt.2022.958294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Prior reports revealed abnormalities in voxel-mirrored homotopic connectivity (VMHC) when analyzing neuroimaging data from patients with various psychiatric conditions, including temporal lobe epilepsy (TLE). Whether these VHMC changes can be leveraged to aid in the diagnosis of right TLE (rTLE), however, remains to be established. This study was thus developed to examine abnormal VMHC findings associated with rTLE to determine whether these changes can be used to guide rTLE diagnosis. METHODS The resultant imaging data of resting-state functional MRI (rs-fMRI) analyses of 59 patients with rTLE and 60 normal control individuals were analyzed using VMHC and support vector machine (SVM) approaches. RESULTS Relative to normal controls, patients with rTLE were found to exhibit decreased VMHC values in the bilateral superior and the middle temporal pole (STP and MTP), the bilateral middle and inferior temporal gyri (MTG and ITG), and the bilateral orbital portion of the inferior frontal gyrus (OrbIFG). These patients further exhibited increases in VMHC values in the bilateral precentral gyrus (PreCG), the postcentral gyrus (PoCG), and the supplemental motor area (SMA). The ROC curve of MTG VMHC values showed a great diagnostic efficacy in the diagnosis of rTLE with AUCs, sensitivity, specificity, and optimum cutoff values of 0.819, 0.831, 0.717, and 0.465. These findings highlight the value of the right middle temporal gyrus (rMTG) when differentiating between rTLE and control individuals, with a corresponding SVM analysis yielding respective accuracy, sensitivity, and specificity values of 70.59% (84/119), 78.33% (47/60), and 69.49% (41/59). CONCLUSION In summary, patients with rTLE exhibit various forms of abnormal functional connectivity, and SVM analyses support the potential value of abnormal VMHC values as a neuroimaging biomarker that can aid in the diagnosis of this condition.
Collapse
Affiliation(s)
- Yongqiang Chu
- Department of Imaging Center, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China.,Key Laboratory of Occupational Hazards and Identification, Wuhan University of Science and Technology, Wuhan, China
| | - Jun Wu
- Department of Neurosurgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Du Wang
- Department of Imaging Center, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Junli Huang
- Department of Imaging Center, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Wei Li
- Department of Otolaryngology-Head and Neck Surgery, Wuhan Asia General Hospital, Wuhan, China
| | - Sheng Zhang
- Department of Psychiatry, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongwei Ren
- Department of Imaging Center, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Jiang Y, Zhu M, Hu Y, Wang K. Altered Resting-State Electroencephalography Microstates in Idiopathic Generalized Epilepsy: A Prospective Case-Control Study. Front Neurol 2021; 12:710952. [PMID: 34880822 PMCID: PMC8645577 DOI: 10.3389/fneur.2021.710952] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/01/2021] [Indexed: 11/20/2022] Open
Abstract
Objective: Idiopathic generalized epilepsy (IGE) involves aberrant organization and functioning of large-scale brain networks. This study aims to investigate whether the resting-state EEG microstate analysis could provide novel insights into the abnormal temporal and spatial properties of intrinsic brain activities in patients with IGE. Methods: Three groups of participants were chosen for this study (namely IGE-Seizure, IGE-Seizure Free, and Healthy Controls). EEG microstate analysis on the resting-state EEG datasets was conducted for all participants. The average duration (“Duration”), the average number of microstates per second (“Frequency”), as well as the percentage of total analysis time occupied in that state (“Coverage”) of the EEG microstate were compared among the three groups. Results: For microstate classes B and D, the differences in Duration, Frequency, and Coverage among the three groups were not statistically significant. Both Frequency and Coverage of microstate class A were statistically significantly larger in the IGE-Seizure group than in the other two groups. The Duration and Coverage of microstate class C were statistically significantly smaller in the IGE-Seizure group than those in the other two groups. Conclusions: The Microstate class A was regarded as a sensorimotor network and Microstate class C was mainly related to the salience network, this study indicated an altered sensorimotor and salience network in patients with IGE, especially in those who had experienced seizures in the past 2 years, while the visual and attention networks seemed to be intact. Significance: The temporal dynamics of resting-state networks were studied through EEG microstate analysis in patients with IGE, which is expected to generate indices that could be utilized in clinical researches of epilepsy.
Collapse
Affiliation(s)
- YuBao Jiang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - MingYu Zhu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Ying Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China.,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| |
Collapse
|
14
|
High prevalence of pathological alertness and wakefulness on maintenance of wakefulness test in adults with focal-onset epilepsy. Epilepsy Behav 2021; 125:108400. [PMID: 34800802 DOI: 10.1016/j.yebeh.2021.108400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Excessive daytime sleepiness (EDS) is a common complaint in adults with epilepsy (AWE), but objective evaluation is lacking. We used the maintenance of wakefulness test (MWT) to objectively measure the ability of adults with focal-onset epilepsy to maintain wakefulness in soporific conditions. METHODS Adults with epilepsy participating in a study investigating the effects of lacosamide on sleep and wakefulness underwent baseline ambulatory polysomnography (PSG)/EEG followed by MWT. Mean sleep latency (MSL) and mean percent sleep time (MST, mean percentage of non-wake EEG scored in 3-sec bins from lights out to sleep onset averaged over the 4 MWT trials) were quantified. Subjective sleepiness was assessed by the Epworth Sleepiness Scale (ESS). Spearman correlation and linear regression assessed relationships between MWT parameters, ESS and relevant sleep and epilepsy-related variables. RESULTS Maintenance of wakefulness test MSL in 51 AWE (mean age 43.5 ± 13 years, 69% female, mean BMI 24.6 ± 11.2 kg/m2) was 21.7 ± 11.9 min; 45.1% had an abnormally short MSL <19.4 min and 15.7% <8 min. MST was 9.3% [3.3, 19.1]. Mean ESS score was 8.8 ± 5.7; 39% had elevated ESS (>10). No correlation between subjective ESS and objective MSL (p = 0.67) or MST (p = 0.61) was found. MSL was significantly shorter in subjects with focal to bilateral tonic-clonic seizures (FBTCS; 7.9 min [13.6, 22.3]) compared to those without (27.4 min [21.2, 33.6], p = 0.013). Younger subjects had shorter MSL; MSL increased 3.2 min for every 10-year increase in age. CONCLUSION We found a high prevalence of objective sleepiness/difficulty maintaining wakefulness on the MWT and subjective sleepiness using the ESS in AWE without a correlation between the two. More severe objective sleepiness was found in subjects with a history of FBTCS and younger age. Further research is needed to determine mechanistic underpinnings and optimal measurements of pathological sleepiness in people with epilepsy given the burden of it on quality of life.
Collapse
|