1
|
Burdette D, Patra S, Johnson L. Corticothalamic Responsive Neurostimulation for Focal Epilepsy: A Single-Center Experience. J Clin Neurophysiol 2024; 41:630-639. [PMID: 38194631 PMCID: PMC11520339 DOI: 10.1097/wnp.0000000000001060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
PURPOSE Owing to its extensive, reciprocal connectivity with the cortex and other subcortical structures, the thalamus is considered an important target for neuromodulation in drug-resistant focal epilepsy. Using corticothalamic stimulation, it is possible to modulate both the thalamus and the cortical seizure onset zone. Limited published clinical experience describes corticothalamic stimulation with depth leads targeting one of the anterior (ANT), centromedian (centromedian nucleus), or pulvinar (PUL) thalamic nuclei. However, it is not clear which of these nuclei is the "best" therapeutic target. METHODS This study comprised a single-center experience with corticothalamic responsive neurostimulation using the RNS System to target these three thalamic nuclei. Presented here are the methods for target selection and device programming as well as clinical outcomes and a comparison of ictal and nonictal electrophysiological features. RESULTS In this small retrospective study ( N = 19), responsive corticothalamic neurostimulation was an effective therapy for 79% of patients (≥50% reduction in disabling seizure frequency), regardless of whether the thalamic lead was implanted in the ANT ( N = 2), PUL ( N = 6), or centromedian nucleus ( N = 11). Twenty-six percent of patients reported a reduction in disabling seizure frequency ≥90%. Both high frequency (≥100 Hz) and low (≤20 Hz) frequency were used to stimulate the thalamus depending on the patient's response and ability to tolerate higher charge densities. In all patients, a longer burst duration (2000-5000 ms) was ultimately implemented on the thalamic leads. Across patients, peaks in the intracranial EEG were observed at theta, beta, gamma, and sleep spindle frequencies. Changes in frequency content and distribution were observed over time in all three nuclei. CONCLUSIONS These results indicate that both high frequency and low frequency corticothalamic responsive neurostimulation can potentially be an effective adjunctive therapy in drug-resistant focal epilepsy. These data can also contribute to a broader understanding of thalamic electrophysiology in the context of focal epilepsy.
Collapse
Affiliation(s)
- David Burdette
- Corewell Health and Michigan State University College of Human Medicine, Grand Rapids, Michigan, U.S.A.; and
| | - Sanjay Patra
- Corewell Health and Michigan State University College of Human Medicine, Grand Rapids, Michigan, U.S.A.; and
| | | |
Collapse
|
2
|
Tatum WO, Freund B, Middlebrooks EH, Lundstrom BN, Feyissa AM, Van Gompel JJ, Grewal SS. CM-Pf deep brain stimulation in polyneuromodulation for epilepsy. Epileptic Disord 2024; 26:626-637. [PMID: 39078093 DOI: 10.1002/epd2.20255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/09/2024] [Indexed: 07/31/2024]
Abstract
OBJECTIVE Neuromodulation is a viable option for patients with drug-resistant epilepsies. We reviewed the management of patients with two deep brain neurostimulators. In addition, patients implanted with a device targeting the centromedian-parafascicular (CM-Pf) nuclear complex supplements this report to provide an illustrative case to implantation and programming a patient with three active devices. METHODS A narrative review using PubMed and Embase identified patients with drug-resistant epilepsy implanted with more than one neurostimulator was performed. Combinations of vagus nerve stimulation (VNS), deep brain stimulation (DBS), and responsive neurostimulation (RNS) were identified. We provide a background of a newly reported case of an adult with a triple implant eventually responding to CM-Pf DBS as the third implant following suboptimal benefit from VNS and RNS. RESULTS In review of the literature, dual-device therapy is increasing in reports of use with combinations of VNS, RNS, and DBS to treat patients with drug-resistant epilepsy. We review dual-device implants with thalamic DBS device combinations, functional neural networks, and programming patients with dual devices. CM-Pf is a new target for DBS and has shown a variable response in focal epilepsy. We report the unique case of 28-year-old male with drug-resistant focal epilepsy who experienced a 75% seizure reduction with CM-Pf DBS as his third device after suboptimal responses to VNS and RNS. After 9 months, he also experienced seizure freedom from recurrent focal to bilateral tonic-clonic seizures. No medical or surgical complications or safety issues were encountered. CONCLUSION We demonstrate safety and feasibility in an adult combining active VNS, RNS, and CM-Pf DBS. Patients with dual-device therapy who experience a suboptimal response to initial device use at optimized settings should not be considered a neuromodulation "failure." Strategies to combine devices require a working knowledge of brain networks.
Collapse
Affiliation(s)
- W O Tatum
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - B Freund
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - E H Middlebrooks
- Department of Radiology, Division of Neuroradiology, Mayo Clinic, Jacksonville, Florida, USA
| | - B N Lundstrom
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - A M Feyissa
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - J J Van Gompel
- Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota, USA
| | - S S Grewal
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
3
|
Samanta D, Aungaroon G, Albert GW, Karakas C, Joshi CN, Singh RK, Oluigbo C, Perry MS, Naik S, Reeders PC, Jain P, Abel TJ, Pati S, Shaikhouni A, Haneef Z. Advancing thalamic neuromodulation in epilepsy: Bridging adult data to pediatric care. Epilepsy Res 2024; 205:107407. [PMID: 38996686 DOI: 10.1016/j.eplepsyres.2024.107407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Thalamic neuromodulation has emerged as a treatment option for drug-resistant epilepsy (DRE) with widespread and/or undefined epileptogenic networks. While deep brain stimulation (DBS) and responsive neurostimulation (RNS) depth electrodes offer means for electrical stimulation of the thalamus in adult patients with DRE, the application of thalamic neuromodulation in pediatric epilepsy remains limited. To address this gap, the Neuromodulation Expert Collaborative was established within the Pediatric Epilepsy Research Consortium (PERC) Epilepsy Surgery Special Interest Group. In this expert review, existing evidence and recommendations for thalamic neuromodulation modalities using DBS and RNS are summarized, with a focus on the anterior (ANT), centromedian(CMN), and pulvinar nuclei of the thalamus. To-date, only DBS of the ANT is FDA approved for treatment of DRE in adult patients based on the results of the pivotal SANTE (Stimulation of the Anterior Nucleus of Thalamus for Epilepsy) study. Evidence for other thalamic neurmodulation indications and targets is less abundant. Despite the lack of evidence, positive responses to thalamic stimulation in adults with DRE have led to its off-label use in pediatric patients. Although caution is warranted due to differences between pediatric and adult epilepsy, the efficacy and safety of pediatric neuromodulation appear comparable to that in adults. Indeed, CMN stimulation is increasingly accepted for generalized and diffuse onset epilepsies, with recent completion of one randomized trial. There is also growing interest in using pulvinar stimulation for temporal plus and posterior quadrant epilepsies with one ongoing clinical trial in Europe. The future of thalamic neuromodulation holds promise for revolutionizing the treatment landscape of childhood epilepsy. Ongoing research, technological advancements, and collaborative efforts are poised to refine and improve thalamic neuromodulation strategies, ultimately enhancing the quality of life for children with DRE.
Collapse
Affiliation(s)
- Debopam Samanta
- Division of Child Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Gewalin Aungaroon
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gregory W Albert
- Department of Neurosurgery, University of Arkansas for Medical Sciences, USA
| | - Cemal Karakas
- Division of Pediatric Neurology, Department of Neurology, Norton Children's Hospital, University of Louisville, Louisville, KY 40202, USA
| | - Charuta N Joshi
- Division of Pediatric Neurology, Childrens Medical Center Dallas, UTSW, USA
| | - Rani K Singh
- Department of Pediatrics, Atrium Health-Levine Children's; Wake Forest University School of Medicine, USA
| | - Chima Oluigbo
- Department of Neurosurgery, Children's National Hospital, Washington, DC, USA
| | - M Scott Perry
- Jane and John Justin Institute for Mind Health, Cook Children's Medical Center, Ft Worth, TX, USA
| | - Sunil Naik
- Department of Pediatrics and Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Puck C Reeders
- Brain Institute, Nicklaus Children's Hospital, Miami, FL, USA
| | - Puneet Jain
- Epilepsy Program, Division of Neurology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Taylor J Abel
- Department of Neurological Surgery, University of Pittsburgh School of Medicine and Department of Bioengineering, University of Pittsburgh
| | - Sandipan Pati
- The University of Texas Health Science Center at Houston, USA
| | - Ammar Shaikhouni
- Department of Pediatric Neurosurgery, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Zulfi Haneef
- Neurology Care Line, VA Medical Center, Houston, TX 77030, USA; Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
4
|
Nathan CL, Gavvala JR, Chaitanya G, Cunningham E, Lee JJ, Adney S, Rosenow J, Schuele S, Gerard E. High-Frequency Stimulation of the Centromedian Thalamic Nucleus Aborts Seizures and Ictal Apnea. J Clin Neurophysiol 2024; 41:570-574. [PMID: 38916942 DOI: 10.1097/wnp.0000000000001098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Abstract
SUMMARY A 32-year-old right-handed woman presented with medically and surgically refractory left temporal neocortical epilepsy secondary to focal cortical dysplasia who underwent stereoelectroencephalography involving the centromedian nucleus of the thalamus. With the use of real-time stereoelectroencephalography monitoring, four electroclinical seizures were aborted by administering high-frequency stimulation at the centromedian nucleus at seizure onset. Seizures before stimulation were all associated with ictal apnea, while those with stimulation had no ictal apnea. This case demonstrates how providing high-frequency stimulation to the centromedian nucleus of the thalamus can abort electroclinical seizures and ictal apnea.
Collapse
Affiliation(s)
- Cody L Nathan
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, U.S.A
| | - Jay R Gavvala
- Department of Neurology, UT Health Houston McGovern School of Medicine, Houston, Texas, U.S.A
| | - Ganne Chaitanya
- Department of Neurology, UT Health Houston McGovern School of Medicine, Houston, Texas, U.S.A
| | - Elizabeth Cunningham
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, U.S.A
| | - Jungwha Julia Lee
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, U.S.A.; and
| | - Scott Adney
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, U.S.A
| | - Joshua Rosenow
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, U.S.A
| | - Stephan Schuele
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, U.S.A
| | - Elizabeth Gerard
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, U.S.A
| |
Collapse
|
5
|
Panchavati S, Daida A, Edmonds B, Miyakoshi M, Oana S, Ahn SS, Arnold C, Salamon N, Sankar R, Fallah A, Speier W, Nariai H. Uncovering spatiotemporal dynamics of the corticothalamic network at ictal onset. Epilepsia 2024; 65:1989-2003. [PMID: 38662128 PMCID: PMC11251868 DOI: 10.1111/epi.17990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVE Although the clinical efficacy of deep brain stimulation targeting the anterior nucleus (AN) and centromedian nucleus (CM) of the thalamus has been actively investigated for the treatment of medication-resistant epilepsy, few studies have investigated dynamic ictal changes in corticothalamic connectivity in human electroencephalographic (EEG) recording. This study aims to establish the complex spatiotemporal dynamics of the ictal corticothalamic network associated with various seizure foci. METHODS We analyzed 10 patients (aged 2.7-28.1 years) with medication-resistant focal epilepsy who underwent stereotactic EEG evaluation with thalamic sampling. We examined both undirected and directed connectivity, incorporating coherence and spectral Granger causality analysis (GCA) between the diverse seizure foci and thalamic nuclei (AN and CM) at ictal onset. RESULTS In our analysis of 36 seizures, coherence between seizure onset and thalamic nuclei increased across all frequencies, especially in slower bands (delta, theta, alpha). GCA showed increased information flow from seizure onset to the thalamus across all frequency bands, but outflows from the thalamus were mainly in slower frequencies, particularly delta. In the subgroup analysis based on various seizure foci, the delta coherence showed a more pronounced increase at CM than at AN during frontal lobe seizures. Conversely, in limbic seizures, the delta coherence increase was greater at AN compared to CM. SIGNIFICANCE It appears that the delta frequency plays a pivotal role in modulating the corticothalamic network during seizures. Our results underscore the significance of comprehending the spatiotemporal dynamics of the corticothalamic network at ictal onset, and this knowledge could guide personalized responsive neuromodulation treatment strategies.
Collapse
Affiliation(s)
- Saarang Panchavati
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- Department of Radiological Sciences, University of California, Los Angeles, CA, USA
| | - Atsuro Daida
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Benjamin Edmonds
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Makoto Miyakoshi
- Department of Psychiatry and Behavioral Neuroscience, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Shingo Oana
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Samuel S. Ahn
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Corey Arnold
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- Department of Radiological Sciences, University of California, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiology, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Raman Sankar
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
- The UCLA Children’s Discovery and Innovation Institute, Los Angeles, CA, USA
| | - Aria Fallah
- Department of Neurosurgery, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| | - William Speier
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- Department of Radiological Sciences, University of California, Los Angeles, CA, USA
| | - Hiroki Nariai
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
- Department of Radiology, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
6
|
Neimat JS, Bina RW, Koenig SC, Demirors E, Guida R, Burke R, Melodia T, Jimenez J. A Novel Closed-Loop Electrical Brain Stimulation Device Featuring Wireless Low-Energy Ultrasound Power and Communication. Neuromodulation 2024:S1094-7159(24)00071-0. [PMID: 38819342 PMCID: PMC11607176 DOI: 10.1016/j.neurom.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/27/2024] [Accepted: 02/13/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVES This study aimed to indicate the feasibility of a prototype electrical neuromodulation system using a closed-loop energy-efficient ultrasound-based mechanism for communication, data transmission, and recharging. MATERIALS AND METHODS Closed-loop deep brain stimulation (DBS) prototypes were designed and fabricated with ultrasonic wideband (UsWB) communication technology and miniaturized custom electronics. Two devices were implanted short term in anesthetized Göttingen minipigs (N = 2). Targeting was performed using preoperative magnetic resonance imaging, and locations were confirmed postoperatively by computerized tomography. DBS systems were tested over a wide range of stimulation settings to mimic minimal, typical, and/or aggressive clinical settings, and evaluated for their ability to transmit data through scalp tissue and to recharge the DBS system using UsWB. RESULTS Stimulation, communication, reprogramming, and recharging protocols were successfully achieved in both subjects for amplitude (1V-6V), frequency (50-250 Hz), and pulse width (60-200 μs) settings and maintained for ≥six hours. The precision of pulse settings was verified with <5% error. Communication rates of 64 kbit/s with an error rate of 0.05% were shown, with no meaningful throughput degradation observed. Time to recharge to 80% capacity was <9 minutes. Two DBS systems also were implanted in the second test animal, and independent bilateral stimulation was successfully shown. CONCLUSIONS The system performed at clinically relevant implant depths and settings. Independent bilateral stimulation for the duration of the study with a 4F energy storage and full rapid recharge were achieved. Continuous function extrapolates to six days of continuous stimulation in future design iterations implementing application specific integrated circuit level efficiency and 15F storage capacitance. UsWB increases energy efficiency, reducing storage requirements and thereby enabling device miniaturization. The device can enable intelligent closed-loop stimulation, remote system monitoring, and optimization and can serve as a power/data gateway to interconnect the intrabody network with the Internet of Medical Things.
Collapse
Affiliation(s)
- Joseph S Neimat
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA.
| | - Robert W Bina
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA
| | - Steven C Koenig
- Department of Bioengineering, University of Louisville, Louisville, KY, USA; Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, KY, USA
| | | | | | | | | | | |
Collapse
|
7
|
Warren AEL, Butson CR, Hook MP, Dalic LJ, Archer JS, Macdonald-Laurs E, Schaper FLWVJ, Hart LA, Singh H, Johnson L, Bullinger KL, Gross RE, Morrell MJ, Rolston JD. Targeting thalamocortical circuits for closed-loop stimulation in Lennox-Gastaut syndrome. Brain Commun 2024; 6:fcae161. [PMID: 38764777 PMCID: PMC11099664 DOI: 10.1093/braincomms/fcae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/26/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024] Open
Abstract
This paper outlines the therapeutic rationale and neurosurgical targeting technique for bilateral, closed-loop, thalamocortical stimulation in Lennox-Gastaut syndrome, a severe form of childhood-onset epilepsy. Thalamic stimulation can be an effective treatment for Lennox-Gastaut syndrome, but complete seizure control is rarely achieved. Outcomes may be improved by stimulating areas beyond the thalamus, including cortex, but the optimal targets are unknown. We aimed to identify a cortical target by synthesizing prior neuroimaging studies, and to use this knowledge to advance a dual thalamic (centromedian) and cortical (frontal) approach for closed-loop stimulation. Multi-modal brain network maps from three group-level studies of Lennox-Gastaut syndrome were averaged to define the area of peak overlap: simultaneous EEG-functional MRI of generalized paroxysmal fast activity, [18F]fluorodeoxyglucose PET of cortical hypometabolism and diffusion MRI structural connectivity associated with clinical efficacy in a previous trial of thalamic deep brain stimulation. The resulting 'hotspot' was used as a seed in a normative functional MRI connectivity analysis to identify connected networks. Intracranial electrophysiology was reviewed in the first two trial patients undergoing bilateral implantations guided by this hotspot. Simultaneous recordings from cortex and thalamus were analysed for presence and synchrony of epileptiform activity. The peak overlap was in bilateral premotor cortex/caudal middle frontal gyrus. Functional connectivity of this hotspot revealed a distributed network of frontoparietal cortex resembling the diffuse abnormalities seen on EEG-functional MRI and PET. Intracranial electrophysiology showed characteristic epileptiform activity of Lennox-Gastaut syndrome in both the cortical hotspot and thalamus; most detected events occurred first in the cortex before appearing in the thalamus. Premotor frontal cortex shows peak involvement in Lennox-Gastaut syndrome and functional connectivity of this region resembles the wider epileptic brain network. Thus, it may be an optimal target for a range of neuromodulation therapies, including thalamocortical stimulation and emerging non-invasive treatments like focused ultrasound or transcranial magnetic stimulation. Compared to thalamus-only approaches, the addition of this cortical target may allow more rapid detections of seizures, more diverse stimulation paradigms and broader modulation of the epileptic network. A prospective, multi-centre trial of closed-loop thalamocortical stimulation for Lennox-Gastaut syndrome is currently underway.
Collapse
Affiliation(s)
- Aaron E L Warren
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher R Butson
- Normal Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32608, USA
| | - Matthew P Hook
- Normal Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32608, USA
| | - Linda J Dalic
- University of Melbourne, Parkville, VIC 3052, Australia
- Department of Neurology, Austin Health, Heidelberg, VIC 3084, Australia
| | - John S Archer
- University of Melbourne, Parkville, VIC 3052, Australia
- Department of Neurology, Austin Health, Heidelberg, VIC 3084, Australia
| | - Emma Macdonald-Laurs
- University of Melbourne, Parkville, VIC 3052, Australia
- Department of Neurology, Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Frederic L W V J Schaper
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lauren A Hart
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hargunbir Singh
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Katie L Bullinger
- Department of Neurology, Emory University Hospital, Atlanta, GA 30322, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University Hospital, Atlanta, GA 30322, USA
| | - Martha J Morrell
- NeuroPace, Mountain View, CA 94043, USA
- Department of Neurology and Neurological Science, Stanford University, Palo Alto, CA 94304, USA
| | - John D Rolston
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Zagorchev L, Hyde DE, Li C, Wenzel F, Fläschner N, Ewald A, O'Donoghue S, Hancock K, Lim RX, Choi DC, Kelly E, Gupta S, Wilden J. Shape-constrained deformable brain segmentation: Methods and quantitative validation. Neuroimage 2024; 289:120542. [PMID: 38369167 DOI: 10.1016/j.neuroimage.2024.120542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024] Open
Abstract
MRI-guided neuro interventions require rapid, accurate, and reproducible segmentation of anatomical brain structures for identification of targets during surgical procedures and post-surgical evaluation of intervention efficiency. Segmentation algorithms must be validated and cleared for clinical use. This work introduces a methodology for shape-constrained deformable brain segmentation, describes the quantitative validation used for its clinical clearance, and presents a comparison with manual expert segmentation and FreeSurfer, an open source software for neuroimaging data analysis. ClearPoint Maestro is software for fully-automatic brain segmentation from T1-weighted MRI that combines a shape-constrained deformable brain model with voxel-wise tissue segmentation within the cerebral hemispheres and the cerebellum. The performance of the segmentation was validated in terms of accuracy and reproducibility. Segmentation accuracy was evaluated with respect to training data and independently traced ground truth. Segmentation reproducibility was quantified and compared with manual expert segmentation and FreeSurfer. Quantitative reproducibility analysis indicates superior performance compared to both manual expert segmentation and FreeSurfer. The shape-constrained methodology results in accurate and highly reproducible segmentation. Inherent point based-correspondence provides consistent target identification ideal for MRI-guided neuro interventions.
Collapse
Affiliation(s)
- Lyubomir Zagorchev
- ClearPoint Neuro, Clinical Science and Applications, 120 S. Sierra Ave., Suite 100, Solana Beach, 92075, CA, USA.
| | - Damon E Hyde
- ClearPoint Neuro, Clinical Science and Applications, 120 S. Sierra Ave., Suite 100, Solana Beach, 92075, CA, USA
| | - Chen Li
- ClearPoint Neuro, Clinical Science and Applications, 120 S. Sierra Ave., Suite 100, Solana Beach, 92075, CA, USA
| | - Fabian Wenzel
- Philips Research Hamburg, Medical Image Processing and Analytics, Röntgenstraße 24-26, Hamburg, 22335, Germany
| | - Nick Fläschner
- Philips Research Hamburg, Medical Image Processing and Analytics, Röntgenstraße 24-26, Hamburg, 22335, Germany
| | - Arne Ewald
- Philips Research Hamburg, Medical Image Processing and Analytics, Röntgenstraße 24-26, Hamburg, 22335, Germany
| | - Stefani O'Donoghue
- ClearPoint Neuro, Clinical Science and Applications, 120 S. Sierra Ave., Suite 100, Solana Beach, 92075, CA, USA
| | - Kelli Hancock
- ClearPoint Neuro, Clinical Science and Applications, 120 S. Sierra Ave., Suite 100, Solana Beach, 92075, CA, USA
| | - Ruo Xuan Lim
- ClearPoint Neuro, Clinical Science and Applications, 120 S. Sierra Ave., Suite 100, Solana Beach, 92075, CA, USA
| | - Dennis C Choi
- ClearPoint Neuro, Clinical Science and Applications, 120 S. Sierra Ave., Suite 100, Solana Beach, 92075, CA, USA
| | - Eddie Kelly
- ClearPoint Neuro, Clinical Science and Applications, 120 S. Sierra Ave., Suite 100, Solana Beach, 92075, CA, USA
| | - Shruti Gupta
- ClearPoint Neuro, Clinical Science and Applications, 120 S. Sierra Ave., Suite 100, Solana Beach, 92075, CA, USA
| | - Jessica Wilden
- ClearPoint Neuro, Clinical Science and Applications, 120 S. Sierra Ave., Suite 100, Solana Beach, 92075, CA, USA
| |
Collapse
|
9
|
Warren AEL, Tobochnik S, Chua MMJ, Singh H, Stamm MA, Rolston JD. Neurostimulation for Generalized Epilepsy: Should Therapy be Syndrome-specific? Neurosurg Clin N Am 2024; 35:27-48. [PMID: 38000840 PMCID: PMC10676463 DOI: 10.1016/j.nec.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Current applications of neurostimulation for generalized epilepsy use a one-target-fits-all approach that is agnostic to the specific epilepsy syndrome and seizure type being treated. The authors describe similarities and differences between the 2 "archetypes" of generalized epilepsy-Lennox-Gastaut syndrome and Idiopathic Generalized Epilepsy-and review recent neuroimaging evidence for syndrome-specific brain networks underlying seizures. Implications for stimulation targeting and programming are discussed using 5 clinical questions: What epilepsy syndrome does the patient have? What brain networks are involved? What is the optimal stimulation target? What is the optimal stimulation paradigm? What is the plan for adjusting stimulation over time?
Collapse
Affiliation(s)
- Aaron E L Warren
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Steven Tobochnik
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Melissa M J Chua
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hargunbir Singh
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michaela A Stamm
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - John D Rolston
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Edmonds B, Miyakoshi M, Gianmaria Remore L, Ahn S, Westley Phillips H, Daida A, Salamon N, Bari A, Sankar R, Matsumoto JH, Fallah A, Nariai H. Characteristics of ictal thalamic EEG in pediatric-onset neocortical focal epilepsy. Clin Neurophysiol 2023; 154:116-125. [PMID: 37595481 PMCID: PMC10529874 DOI: 10.1016/j.clinph.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 08/20/2023]
Abstract
OBJECTIVE To characterize ictal EEG change in the centromedian (CM) and anterior nucleus (AN) of the thalamus, using stereoelectroencephalography (SEEG) recordings. METHODS Forty habitual seizures were analyzed in nine patients with pediatric-onset neocortical drug-resistant epilepsy who underwent SEEG (age 2-25 y) with thalamic coverage. Both visual and quantitative analysis was used to evaluate ictal EEG signal in the cortex and thalamus. The amplitude and cortico-thalamic latencies of broadband frequencies at ictal onset were measured. RESULTS Visual analysis demonstrated consistent detection of ictal EEG changes in both the CM nucleus and AN nucleus with latency to thalamic ictal EEG changes of less than 400 ms in 95% of seizures, with low-voltage fast activity being the most common ictal pattern. Quantitative broadband amplitude analysis showed consistent power changes across the frequency bands, corresponding to ictal EEG onset, while while ictal EEG latency was variable from -18.0 seconds to 13.2 seconds. There was no significant difference between detection of CM and AN ictal activity on visual or amplitude analysis. Four patients with subsequent thalamic responsive neurostimulation (RNS) demonstrated ictal EEG changes consistent with SEEG findings. CONCLUSIONS Ictal EEG changes were consistently seen at the CM and AN of the thalamus during neocortical seizures. SIGNIFICANCE It may be feasible to use a closed-loop system in the thalamus to detect and modulate seizure activity for neocortical epilepsy.
Collapse
Affiliation(s)
- Benjamin Edmonds
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA.
| | - Makoto Miyakoshi
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, UCSD Medical Center, San Diego, CA, USA.
| | - Luigi Gianmaria Remore
- Department of Neurosurgery, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Samuel Ahn
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - H Westley Phillips
- Department of Neurosurgery, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Atsuro Daida
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiological Sciences, University of California, Los Angeles, CA, USA
| | - Ausaf Bari
- Department of Neurosurgery, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Raman Sankar
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA; The UCLA Children's Discovery and Innovation Institute, Los Angeles, CA, USA
| | - Joyce H Matsumoto
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Aria Fallah
- Department of Neurosurgery, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Hiroki Nariai
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA; The UCLA Children's Discovery and Innovation Institute, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Fields MC, Eka O, Schreckinger C, Dugan P, Asaad WF, Blum AS, Bullinger K, Willie JT, Burdette DE, Anderson C, Quraishi IH, Gerrard J, Singh A, Lee K, Yoo JY, Ghatan S, Panov F, Marcuse LV. A multicenter retrospective study of patients treated in the thalamus with responsive neurostimulation. Front Neurol 2023; 14:1202631. [PMID: 37745648 PMCID: PMC10516547 DOI: 10.3389/fneur.2023.1202631] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/19/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction For drug resistant epilepsy patients who are either not candidates for resective surgery or have already failed resective surgery, neuromodulation is a promising option. Neuromodulatory approaches include responsive neurostimulation (RNS), deep brain stimulation (DBS), and vagal nerve stimulation (VNS). Thalamocortical circuits are involved in both generalized and focal onset seizures. This paper explores the use of RNS in the centromedian nucleus of the thalamus (CMN) and in the anterior thalamic nucleus (ANT) of patients with drug resistant epilepsy. Methods This is a retrospective multicenter study from seven different epilepsy centers in the United States. Patients that had unilateral or bilateral thalamic RNS leads implanted in the CMN or ANT for at least 6 months were included. Primary objectives were to describe the implant location and determine changes in the frequency of disabling seizures at 6 months, 1 year, 2 years, and > 2 years. Secondary objectives included documenting seizure free periods, anti-seizure medication regimen changes, stimulation side effects, and serious adverse events. In addition, the global clinical impression scale was completed. Results Twelve patients had at least one lead placed in the CMN, and 13 had at least one lead placed in the ANT. The median baseline seizure frequency was 15 per month. Overall, the median seizure reduction was 33% at 6 months, 55% at 1 year, 65% at 2 years, and 74% at >2 years. Seizure free intervals of at least 3 months occurred in nine patients. Most patients (60%, 15/25) did not have a change in anti-seizure medications post RNS placement. Two serious adverse events were recorded, one related to RNS implantation. Lastly, overall functioning seemed to improve with 88% showing improvement on the global clinical impression scale. Discussion Meaningful seizure reduction was observed in patients who suffer from drug resistant epilepsy with unilateral or bilateral RNS in either the ANT or CMN of the thalamus. Most patients remained on their pre-operative anti-seizure medication regimen. The device was well tolerated with few side effects. There were rare serious adverse events. Most patients showed an improvement in global clinical impression scores.
Collapse
Affiliation(s)
- Madeline C Fields
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Onome Eka
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Patricia Dugan
- Department of Neurology, Langone Medical Center, New York University, New York, NY, United States
| | - Wael F Asaad
- Department of Neurosurgery, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Andrew S Blum
- Department of Neurology, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Katie Bullinger
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Jon T Willie
- Department of Neurosurgery, School of Medicine, Washington University in St Louis, St. Louis, MO, United States
| | - David E Burdette
- Department of Neurosciences, Corewell Health, Grand Rapids, MI, United States
| | - Christopher Anderson
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Imran H Quraishi
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, United States
| | - Jason Gerrard
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States
| | - Anuradha Singh
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kyusang Lee
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ji Yeoun Yoo
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Saadi Ghatan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Fedor Panov
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lara V Marcuse
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
12
|
Edmonds B, Miyakoshi M, Remore LG, Ahn S, Phillips HW, Daida A, Salamon N, Bari A, Sankar R, Matsumoto JH, Fallah A, Nariai H. Characteristics of ictal thalamic EEG in pediatric-onset neocortical focal epilepsy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.22.23291714. [PMID: 37425697 PMCID: PMC10327240 DOI: 10.1101/2023.06.22.23291714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Objective To characterize ictal EEG change in the centromedian (CM) and anterior nucleus (AN) of the thalamus, using stereoelectroencephalography (SEEG) recordings. Methods Forty habitual seizures were analyzed in nine patients with pediatric-onset neocortical drug-resistant epilepsy who underwent SEEG (age 2-25 y) with thalamic coverage. Both visual and quantitative analysis was used to evaluate ictal EEG signal in the cortex and thalamus. The amplitude and cortico-thalamic latencies of broadband frequencies at ictal onset were measured. Results Visual analysis demonstrated consistent detection of ictal EEG changes in both the CM nucleus and AN nucleus with latency to thalamic ictal EEG changes of less than 400ms in 95% of seizures, with low-voltage fast activity being the most common ictal pattern. Quantitative broadband amplitude analysis showed consistent power changes across the frequency bands, corresponding to ictal EEG onset, while while ictal EEG latency was variable from -18.0 seconds to 13.2 seconds. There was no significant difference between detection of CM and AN ictal activity on visual or amplitude analysis. Four patients with subsequent thalamic responsive neurostimulation (RNS) demonstrated ictal EEG changes consistent with SEEG findings. Conclusions Ictal EEG changes were consistently seen at the CM and AN of the thalamus during neocortical seizures. Significance It may be feasible to use a closed-loop system in the thalamus to detect and modulate seizure activity for neocortical epilepsy.
Collapse
Affiliation(s)
- Benjamin Edmonds
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Makoto Miyakoshi
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, UCSD Medical Center, San Diego, CA, USA
| | - Luigi Gianmaria Remore
- Department of Neurosurgery, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Samuel Ahn
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - H. Westley Phillips
- Department of Neurosurgery, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Atsuro Daida
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiological Sciences, University of California, Los Angeles, CA, USA
| | - Ausaf Bari
- Department of Neurosurgery, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Raman Sankar
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
- The UCLA Children’s Discovery and Innovation Institute, Los Angeles, CA, USA
| | - Joyce H. Matsumoto
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Aria Fallah
- Department of Neurosurgery, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Hiroki Nariai
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
- The UCLA Children’s Discovery and Innovation Institute, Los Angeles, CA, USA
| |
Collapse
|
13
|
Karakas C, Houck K, Handoko M, Trandafir C, Coorg R, Haneef Z, Riviello JJ, Weiner HL, Curry D, Ali I. Responsive Neurostimulation for the Treatment of Children With Drug-Resistant Epilepsy in Tuberous Sclerosis Complex. Pediatr Neurol 2023; 145:97-101. [PMID: 37302216 DOI: 10.1016/j.pediatrneurol.2023.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/17/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND To review seizure outcomes in children with tuberous sclerosis complex (TSC) and drug-resistant epilepsy (DRE) treated with the responsive neurostimulation (RNS) System. METHODS We retrospectively reviewed children (<21 years old) with TSC implanted with the RNS System at Texas Children's Hospital between July 2016 and May 2022. RESULTS Five patients meeting the search criteria were identified (all female). The median age of the RNS implantation was 13 years (range: 5 to 20 years). The median epilepsy duration before the RNS implantation was 13 years (range: 5 to 20 years). Surgeries before RNS implantation included vagus nerve stimulator placement (n = 2), left parietal resection (n = 1), and corpus callosotomy (n = 1). The median number of antiseizure medications tried before RNS was 8 (range: 5 to 12). The rationale for the RNS System implantation included seizure onset in eloquent cortex (n = 3) and multifocal seizures (n = 2). The maximum current density for each patient ranged between 1.8 and 3.5 μC/cm2, with an average daily stimulation of 2240 (range: 400 to 4200). There was an 86% median seizure reduction (range 0% to 99%) at a median follow-up duration of 25 months (range: 17 to 25 months). No patient experienced implantation or stimulation-related complications. CONCLUSIONS We observed a favorable improvement in seizure frequency in pediatric patients with DRE secondary to TSC treated with the RNS System. The RNS System may be a safe and effective treatment for DRE in children with TSC.
Collapse
Affiliation(s)
- Cemal Karakas
- Norton Children's Medical Group, The University of Louisville, Louisville, Kentucky
| | - Kimberly Houck
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Maureen Handoko
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Cristina Trandafir
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Rohini Coorg
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Zulfi Haneef
- Neurology Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | - James J Riviello
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Howard L Weiner
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Daniel Curry
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Irfan Ali
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
14
|
Fisher RS. Deep brain stimulation of thalamus for epilepsy. Neurobiol Dis 2023; 179:106045. [PMID: 36809846 DOI: 10.1016/j.nbd.2023.106045] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Neuromodulation (neurostimulation) is a relatively new and rapidly growing treatment for refractory epilepsy. Three varieties are approved in the US: vagus nerve stimulation (VNS), deep brain stimulation (DBS) and responsive neurostimulation (RNS). This article reviews thalamic DBS for epilepsy. Among many thalamic sub-nuclei, DBS for epilepsy has been targeted to the anterior nucleus (ANT), centromedian nucleus (CM), dorsomedial nucleus (DM) and pulvinar (PULV). Only ANT is FDA-approved, based upon a controlled clinical trial. Bilateral stimulation of ANT reduced seizures by 40.5% at three months in the controlled phase (p = .038) and 75% by 5 years in the uncontrolled phase. Side effects related to paresthesias, acute hemorrhage, infection, occasional increased seizures, and usually transient effects on mood and memory. Efficacy was best documented for focal onset seizures in temporal or frontal lobe. CM stimulation may be useful for generalized or multifocal seizures and PULV for posterior limbic seizures. Mechanisms of DBS for epilepsy are largely unknown, but animal work points to changes in receptors, channels, neurotransmitters, synapses, network connectivity and neurogenesis. Personalization of therapies, in terms of connectivity of the seizure onset zone to the thalamic sub- nucleus and individual characteristics of the seizures, might lead to improved efficacy. Many questions remain about DBS, including the best candidates for different types of neuromodulation, the best targets, the best stimulation parameters, how to minimize side effects and how to deliver current noninvasively. Despite the questions, neuromodulation provides useful new opportunities to treat people with refractory seizures not responding to medicines and not amenable to resective surgery.
Collapse
Affiliation(s)
- Robert S Fisher
- Department of Neurology and Neurological Sciences and Neurosurgery by Courtesy, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 213 Quarry Road, Room 4865, Palo Alto, CA 94304, USA.
| |
Collapse
|
15
|
Lundstrom BN, Osman GM, Starnes K, Gregg NM, Simpson HD. Emerging approaches in neurostimulation for epilepsy. Curr Opin Neurol 2023; 36:69-76. [PMID: 36762660 PMCID: PMC9992108 DOI: 10.1097/wco.0000000000001138] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
PURPOSE OF REVIEW Neurostimulation is a quickly growing treatment approach for epilepsy patients. We summarize recent approaches to provide a perspective on the future of neurostimulation. RECENT FINDINGS Invasive stimulation for treatment of focal epilepsy includes vagus nerve stimulation, responsive neurostimulation of the cortex and deep brain stimulation of the anterior nucleus of the thalamus. A wide range of other targets have been considered, including centromedian, central lateral and pulvinar thalamic nuclei; medial septum, nucleus accumbens, subthalamic nucleus, cerebellum, fornicodorsocommissure and piriform cortex. Stimulation for generalized onset seizures and mixed epilepsies as well as increased efforts focusing on paediatric populations have emerged. Hardware with more permanently implanted lead options and sensing capabilities is emerging. A wider variety of programming approaches than typically used may improve patient outcomes. Finally, noninvasive brain stimulation with its favourable risk profile offers the potential to treat increasingly diverse epilepsy patients. SUMMARY Neurostimulation for the treatment of epilepsy is surprisingly varied. Flexibility and reversibility of neurostimulation allows for rapid innovation. There remains a continued need for excitability biomarkers to guide treatment and innovation. Neurostimulation, a part of bioelectronic medicine, offers distinctive benefits as well as unique challenges.
Collapse
Affiliation(s)
| | | | - Keith Starnes
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Hugh D Simpson
- Department of Neurology, Alfred Health
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Zheng B, Liu DD, Theyel BB, Abdulrazeq H, Kimata AR, Lauro PM, Asaad WF. Thalamic neuromodulation in epilepsy: A primer for emerging circuit-based therapies. Expert Rev Neurother 2023; 23:123-140. [PMID: 36731858 DOI: 10.1080/14737175.2023.2176752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Epilepsy is a common, often debilitating disease of hyperexcitable neural networks. While medically intractable cases may benefit from surgery, there may be no single, well-localized focus for resection or ablation. In such cases, approaching the disease from a network-based perspective may be beneficial. AREAS COVERED Herein, the authors provide a narrative review of normal thalamic anatomy and physiology and propose general strategies for preventing and/or aborting seizures by modulating this structure. Additionally, they make specific recommendations for targeting the thalamus within different contexts, motivated by a more detailed discussion of its distinct nuclei and their respective connectivity. By describing important principles governing thalamic function and its involvement in seizure networks, the authors aim to provide a primer for those now entering this fast-growing field of thalamic neuromodulation for epilepsy. EXPERT OPINION The thalamus is critically involved with the function of many cortical and subcortical areas, suggesting it may serve as a compelling node for preventing or aborting seizures, and so it has increasingly been targeted for the surgical treatment of epilepsy. As various thalamic neuromodulation strategies for seizure control are developed, there is a need to ground such interventions in a mechanistic, circuit-based framework.
Collapse
Affiliation(s)
- Bryan Zheng
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - David D Liu
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Brian B Theyel
- Department of Psychiatry, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Hael Abdulrazeq
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - Anna R Kimata
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - Peter M Lauro
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Wael F Asaad
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA.,The Carney Institute for Brain Science, Brown University, Providence, RI, USA.,The Norman Prince Neurosciences Institute, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
17
|
Kundu B, Arain A, Davis T, Charlebois CM, Rolston JD. Using chronic recordings from a closed-loop neurostimulation system to capture seizures across multiple thalamic nuclei. Ann Clin Transl Neurol 2022; 10:136-143. [PMID: 36480536 PMCID: PMC9852392 DOI: 10.1002/acn3.51701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 12/13/2022] Open
Abstract
We report the case of a patient with unilateral diffuse frontotemporal epilepsy in whom we implanted a responsive neurostimulation system with leads spanning the anterior and centromedian nucleus of the thalamus. During chronic recording, ictal activity in the centromedian nucleus consistently preceded the anterior nucleus, implying a temporally organized seizure network involving the thalamus. With stimulation, the patient had resolution of focal impaired awareness seizures and secondarily generalized seizures. This report describes chronic recordings of seizure activity from multiple thalamic nuclei within a hemisphere and demonstrates the potential efficacy of closed-loop neurostimulation of multiple thalamic nuclei to control seizures.
Collapse
Affiliation(s)
- Bornali Kundu
- Department of Neurosurgery, Clinical Neurosciences CenterUniversity of UtahSalt Lake CityUtahUSA
| | - Amir Arain
- Department of NeurologyUniversity of UtahSalt Lake CityUtahUSA
| | - Tyler Davis
- Department of Neurosurgery, Clinical Neurosciences CenterUniversity of UtahSalt Lake CityUtahUSA
| | | | - John D. Rolston
- Department of NeurosurgeryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
18
|
Kusyk DM, Meinert J, Stabingas KC, Yin Y, Whiting AC. Systematic Review and Meta-Analysis of Responsive Neurostimulation in Epilepsy. World Neurosurg 2022; 167:e70-e78. [PMID: 35948217 DOI: 10.1016/j.wneu.2022.07.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Neuromodulatory implants provide promising alternatives for patients with drug-resistant epilepsy (DRE) in whom resective or ablative surgery is not an option. Responsive neurostimulation (RNS) operates a unique "closed-loop" system of electrocorticography-triggered stimulation for seizure control. A comprehensive review of the current literature would be valuable to guide clinical decision-making regarding RNS. METHODS Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocols, a systematic PubMed literature review was performed to identify appropriate studies involving patients undergoing RNS for DRE. Full texts of included studies were analyzed and extracted data regarding demographics, seizure reduction rate, responder rate (defined as patients with >50% seizure reduction), and complications were compiled for comprehensive statistical analysis. RESULTS A total of 313 studies were screened, and 17 studies were included in the final review, representative of 541 patients. Mean seizure reduction rate was 68% (95% confidence interval 61%-76%), and the mean responder rate was 68% (95% confidence interval 60%-75%). Complications occurred in 102 of 541 patients, for a complication rate of 18.9%. A strong publication bias toward greater seizure reduction rate and increased responder rate was demonstrated among included literature. CONCLUSIONS A meta-analysis of recent RNS for DRE literature demonstrates seizure reduction and responder rates comparable with other neuromodulatory implants for epilepsy, demonstrating both the value of this intervention and the need for further research to delineate the optimal patient populations. This analysis also demonstrates a strong publication bias toward positive primary outcomes, highlighting the limitations of current literature. Currently, RNS data are optimistic for the treatment of DRE but should be interpreted cautiously.
Collapse
Affiliation(s)
- Dorian M Kusyk
- Department of Neurosurgery, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Justin Meinert
- College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | | | - Yue Yin
- Allegheny-Singer Research Institute, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Alexander C Whiting
- Department of Neurosurgery, Allegheny Health Network, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
19
|
Simpson HD, Schulze-Bonhage A, Cascino GD, Fisher RS, Jobst BC, Sperling MR, Lundstrom BN. Practical considerations in epilepsy neurostimulation. Epilepsia 2022; 63:2445-2460. [PMID: 35700144 PMCID: PMC9888395 DOI: 10.1111/epi.17329] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/02/2023]
Abstract
Neuromodulation is a key therapeutic tool for clinicians managing patients with drug-resistant epilepsy. Multiple devices are available with long-term follow-up and real-world experience. The aim of this review is to give a practical summary of available neuromodulation techniques to guide the selection of modalities, focusing on patient selection for devices, common approaches and techniques for initiation of programming, and outpatient management issues. Vagus nerve stimulation (VNS), deep brain stimulation of the anterior nucleus of the thalamus (DBS-ANT), and responsive neurostimulation (RNS) are all supported by randomized controlled trials that show safety and a significant impact on seizure reduction, as well as a suggestion of reduction in the risk of sudden unexplained death in epilepsy (SUDEP). Significant seizure reductions are observed after 3 months for DBS, RNS, and VNS in randomized controlled trials, and efficacy appears to improve with time out to 7 to 10 years of follow-up for all modalities, albeit in uncontrolled follow-up or retrospective studies. A significant number of patients experience seizure-free intervals of 6 months or more with all three modalities. Number and location of epileptogenic foci are important factors affecting efficacy, and together with comorbidities such as severe mood or sleep disorders, may influence the choice of modality. Programming has evolved-DBS is typically initiated at lower current/voltage than used in the pivotal trial, whereas target charge density is lower with RNS, however generalizable optimal parameters are yet to be defined. Noninvasive brain stimulation is an emerging stimulation modality, although it is currently not used widely. In summary, clinical practice has evolved from those established in pivotal trials. Guidance is now available for clinicians who wish to expand their approach, and choice of neuromodulation technique may be tailored to individual patients based on their epilepsy characteristics, risk tolerance, and preferences.
Collapse
Affiliation(s)
- Hugh D. Simpson
- Division of Epilepsy, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Gregory D. Cascino
- Division of Epilepsy, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Robert S. Fisher
- Department of Neurology, Stanford Neuroscience Health Center, Palo Alto, CA, USA
| | - Barbara C. Jobst
- Geisel School of Medicine at Dartmouth, Department of Neurology, Dartmouth-Hitchcock Medical Center, NH, USA
| | - Michael R. Sperling
- Division of Epilepsy, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Brian N. Lundstrom
- Division of Epilepsy, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
20
|
Paulo DL, Ball TJ, Englot DJ. Emerging Technologies for Epilepsy Surgery. Neurol Clin 2022; 40:849-867. [DOI: 10.1016/j.ncl.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
21
|
Zillgitt AJ, Haykal MA, Chehab A, Staudt MD. Centromedian thalamic neuromodulation for the treatment of idiopathic generalized epilepsy. Front Hum Neurosci 2022; 16:907716. [PMID: 35992953 PMCID: PMC9381751 DOI: 10.3389/fnhum.2022.907716] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/13/2022] [Indexed: 11/20/2022] Open
Abstract
Idiopathic generalized epilepsy (IGE) is a common type of epilepsy and despite an increase in the number of available anti-seizure medications, approximately 20–30% of people with IGE continue to experience seizures despite adequate medication trials. Unlike focal epilepsy, resective surgery is not a viable treatment option for IGE; however, neuromodulation may be an effective surgical treatment for people with IGE. Thalamic stimulation through deep brain stimulation (DBS) and responsive neurostimulation (RNS) have been explored for the treatment of generalized and focal epilepsies. Although the data regarding DBS and RNS in IGE is limited to case reports and case series, the results of the published studies have been promising. The current manuscript will review the published literature of DBS and RNS within the centromedian nucleus of the thalamus for the treatment of IGE, as well as highlight an illustrative case.
Collapse
Affiliation(s)
- Andrew J. Zillgitt
- Department of Neurology, Beaumont Health Adult Comprehensive Epilepsy Center, Neuroscience Center, Royal Oak, MI, United States
| | - M. Ayman Haykal
- Department of Neurology, Beaumont Health Adult Comprehensive Epilepsy Center, Neuroscience Center, Royal Oak, MI, United States
| | - Ahmad Chehab
- Department of Neurosurgery, Beaumont Neuroscience Center, Royal Oak, MI, United States
| | - Michael D. Staudt
- Department of Neurosurgery, Beaumont Neuroscience Center, Royal Oak, MI, United States
- Department of Neurosurgery, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
- Michigan Head and Spine Institute, Southfield, MI, United States
- *Correspondence: Michael D. Staudt,
| |
Collapse
|
22
|
Roa JA, Abramova M, Fields M, Vega-Talbott ML, Yoo J, Marcuse L, Wolf S, McGoldrick P, Ghatan S, Panov F. Responsive Neurostimulation of the Thalamus for the Treatment of Refractory Epilepsy. Front Hum Neurosci 2022; 16:926337. [PMID: 35911594 PMCID: PMC9334749 DOI: 10.3389/fnhum.2022.926337] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction One-third of patients with epilepsy continue to have seizures despite antiepileptic medications. Some of these refractory patients may not be candidates for surgical resection primarily because the seizure onset zones (SOZs) involve both hemispheres or are located in eloquent areas. The NeuroPace Responsive Neurostimulation System (RNS) is a closed-loop device that uses programmable detection and stimulation to tailor therapy to a patient's individual neurophysiology. Here, we present our single-center experience with the use of RNS in thalamic nuclei to provide long-term seizure control in patients with refractory epilepsy. Methods We performed a prospective single-center study of consecutive refractory epilepsy patients who underwent RNS system implantation in the anterior (ANT) and centromedian (CM) thalamic nuclei from September 2015 to December 2020. Patients were followed postoperatively to evaluate seizure freedom and complications. Results Twenty-three patients underwent placement of 36 RNS thalamic leads (CM = 27 leads, ANT = 9 leads). Mean age at implant was 18.8 ± 11.2 years (range 7.8–62 years-old). Two patients (8.7%) developed infections: 1 improved with antibiotic treatments alone, and 1 required removal with eventual replacement of the system to recover the therapeutic benefit. Mean time from RNS implantation to last follow-up was 22.3 months. Based on overall reduction of seizure frequency, 2 patients (8.7%) had no- to <25% improvement, 6 patients (26.1%) had 25–49% improvement, 14 patients (60.9%) had 50–99% improvement, and 1 patient (4.3%) became seizure-free. All patients reported significant improvement in seizure duration and severity, and 17 patients (74%) reported improved post-ictal state. There was a trend for subjects with SOZs located in the temporal lobe to achieve better outcomes after thalamic RNS compared to those with extratemporal SOZs. Of note, seizure etiology was syndromic in 12 cases (52.2%), and 7 patients (30.4%) had undergone resection/disconnection surgery prior to thalamic RNS therapy. Conclusion Thalamic RNS achieved ≥50% seizure control in ~65% of patients. Infections were the most common complication. This therapeutic modality may be particularly useful for patients affected by aggressive epilepsy syndromes since a young age, those whose seizure foci are located in the mesial temporal lobe, and those who have failed prior surgical interventions.
Collapse
Affiliation(s)
- Jorge A. Roa
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Marina Abramova
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Madeline Fields
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Maite La Vega-Talbott
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jiyeoun Yoo
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lara Marcuse
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Steven Wolf
- Department of Neurology, Boston Children's Health Physicians, New York Medical College, New York, NY, United States
| | - Patricia McGoldrick
- Department of Neurology, Boston Children's Health Physicians, New York Medical College, New York, NY, United States
| | - Saadi Ghatan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Fedor Panov
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- *Correspondence: Fedor Panov
| |
Collapse
|
23
|
Feigen CM, Eskandar EN. Responsive Thalamic Neurostimulation: A Systematic Review of a Promising Approach for Refractory Epilepsy. Front Hum Neurosci 2022; 16:910345. [PMID: 35865353 PMCID: PMC9294465 DOI: 10.3389/fnhum.2022.910345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Responsive neurostimulation is an evolving therapeutic option for patients with treatment-refractory epilepsy. Open-loop, continuous stimulation of the anterior thalamic nuclei is the only approved modality, yet chronic stimulation rarely induces complete seizure remission and is associated with neuropsychiatric adverse effects. Accounts of off-label responsive stimulation in thalamic nuclei describe significant improvements in patients who have failed multiple drug regimens, vagal nerve stimulation, and other invasive measures. This systematic review surveys the currently available data supporting the use of responsive thalamic neurostimulation in primary and secondary generalized, treatment-refractory epilepsy. Materials and Methods A systematic review was performed using the following combination of keywords and controlled vocabulary: (“Seizures”[Mesh] AND “Thalamus”[Mesh] AND “Deep Brain Stimulation”[Mesh]) OR (responsive neurostim* AND (thalamus[MeSH])) OR [responsive neurostimulation AND thalamus AND (epilepsy OR seizures)]. In addition, a search of the publications listed under the PubMed “cited by” tab was performed for all publications that passed title/abstract screening in addition to manually searching their reference lists. Results Ten publications were identified describing a total of 29 subjects with a broad range of epilepsy disorders treated with closed-loop thalamic neurostimulation. The median age of subjects was 31 years old (range 10–65 years). Of the 29 subjects, 15 were stimulated in the anterior, 11 in the centromedian, and 3 in the pulvinar nuclei. Excluding 5 subjects who were treated for 1 month or less, median time on stimulation was 19 months (range 2.4–54 months). Of these subjects, 17/24 experienced greater than or equal to 50%, 11/24 least 75%, and 9/24 at least 90% reduction in seizures. Although a minority of patients did not exhibit significant clinical improvement by follow-up, there was a general trend of increasing treatment efficacy with longer periods on closed-loop thalamic stimulation. Conclusion The data supporting off-label closed-loop thalamic stimulation for refractory epilepsy is limited to 29 adult and pediatric patients, many of whom experienced significant improvement in seizure duration and frequency. This encouraging progress must be verified in larger studies.
Collapse
|
24
|
Qin Y, Li S, Yao D, Luo C. Causality Analysis to the Abnormal Subcortical–Cortical Connections in Idiopathic-Generalized Epilepsy. Front Neurosci 2022; 16:925968. [PMID: 35844218 PMCID: PMC9280354 DOI: 10.3389/fnins.2022.925968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Idiopathic generalized epilepsy (IGE) was characterized by 3–6 Hz generalized spike-wave discharges (GSWDs), and extensive altered interactions in subcortical-cortical circuit. However, the dynamics and the causal relationship among these interactions were less studied. Using resting-state functional magnetic resonance imaging (fMRI) data, the abnormal connections in the subcortical-cortical pathway in IGE were examined. Then, we proposed a novel method of granger causal analysis based on the dynamic functional connectivity, and the predictive effects among these abnormal connections were calculated. The results showed that the thalamus, and precuneus were key regions representing abnormal functional network connectivity (FNC) in the subcortical-cortical circuit. Moreover, the connectivity between precuneus and adjacent regions had a causal effect on the widespread dysfunction of the thalamocortical circuit. In addition, the connection between the striatum and thalamus indicated the modulation role on the cortical connection in epilepsy. These results described the causality of the widespread abnormality of the subcortical-cortical circuit in IGE in terms of the dynamics of functional connections, which provided additional evidence for understanding the potential modulation pattern of the abnormal epileptic pathway.
Collapse
Affiliation(s)
- Yun Qin
- Sichuan Provincial People’s Hospital, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Institute for Brain Science and Brain-Inspired Intelligence, Chengdu, China
| | - Sipei Li
- Glasgow College, University of Electronic Science and Technology of China, Chengdu, China
| | - Dezhong Yao
- Sichuan Provincial People’s Hospital, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Institute for Brain Science and Brain-Inspired Intelligence, Chengdu, China
| | - Cheng Luo
- Sichuan Provincial People’s Hospital, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Cheng Luo,
| |
Collapse
|
25
|
Beaudreault CP, Muh CR, Naftchi A, Spirollari E, Das A, Vazquez S, Sukul VV, Overby PJ, Tobias ME, McGoldrick PE, Wolf SM. Responsive Neurostimulation Targeting the Anterior, Centromedian and Pulvinar Thalamic Nuclei and the Detection of Electrographic Seizures in Pediatric and Young Adult Patients. Front Hum Neurosci 2022; 16:876204. [PMID: 35496067 PMCID: PMC9039390 DOI: 10.3389/fnhum.2022.876204] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/17/2022] [Indexed: 12/18/2022] Open
Abstract
BackgroundResponsive neurostimulation (RNS System) has been utilized as a treatment for intractable epilepsy. The RNS System delivers stimulation in response to detected abnormal activity, via leads covering the seizure foci, in response to detections of predefined epileptiform activity with the goal of decreasing seizure frequency and severity. While thalamic leads are often implanted in combination with cortical strip leads, implantation and stimulation with bilateral thalamic leads alone is less common, and the ability to detect electrographic seizures using RNS System thalamic leads is uncertain.ObjectiveThe present study retrospectively evaluated fourteen patients with RNS System depth leads implanted in the thalamus, with or without concomitant implantation of cortical strip leads, to determine the ability to detect electrographic seizures in the thalamus. Detailed patient presentations and lead trajectories were reviewed alongside electroencephalographic (ECoG) analyses.ResultsAnterior nucleus thalamic (ANT) leads, whether bilateral or unilateral and combined with a cortical strip lead, successfully detected and terminated epileptiform activity, as demonstrated by Cases 2 and 3. Similarly, bilateral centromedian thalamic (CMT) leads or a combination of one centromedian thalamic alongside a cortical strip lead also demonstrated the ability to detect electrographic seizures as seen in Cases 6 and 9. Bilateral pulvinar leads likewise produced reliable seizure detection in Patient 14. Detections of electrographic seizures in thalamic nuclei did not appear to be affected by whether the patient was pediatric or adult at the time of RNS System implantation. Sole thalamic leads paralleled the combination of thalamic and cortical strip leads in terms of preventing the propagation of electrographic seizures.ConclusionThalamic nuclei present a promising target for detection and stimulation via the RNS System for seizures with multifocal or generalized onsets. These areas provide a modifiable, reversible therapeutic option for patients who are not candidates for surgical resection or ablation.
Collapse
Affiliation(s)
| | - Carrie R. Muh
- New York Medical College, Valhalla, NY, United States
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, United States
| | | | | | - Ankita Das
- New York Medical College, Valhalla, NY, United States
| | - Sima Vazquez
- New York Medical College, Valhalla, NY, United States
| | - Vishad V. Sukul
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, United States
| | - Philip J. Overby
- New York Medical College, Valhalla, NY, United States
- Division of Pediatric Neurology, Department of Pediatrics, Maria Fareri Children’s Hospital, Valhalla, NY, United States
- Boston Children’s Hospital Physicians, Hawthorne, NY, United States
| | - Michael E. Tobias
- New York Medical College, Valhalla, NY, United States
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, United States
| | - Patricia E. McGoldrick
- New York Medical College, Valhalla, NY, United States
- Division of Pediatric Neurology, Department of Pediatrics, Maria Fareri Children’s Hospital, Valhalla, NY, United States
- Boston Children’s Hospital Physicians, Hawthorne, NY, United States
| | - Steven M. Wolf
- New York Medical College, Valhalla, NY, United States
- Division of Pediatric Neurology, Department of Pediatrics, Maria Fareri Children’s Hospital, Valhalla, NY, United States
- Boston Children’s Hospital Physicians, Hawthorne, NY, United States
- *Correspondence: Steven M. Wolf,
| |
Collapse
|
26
|
Yang JC, Bullinger KL, Isbaine F, Alwaki A, Opri E, Willie JT, Gross RE. Centromedian thalamic deep brain stimulation for drug-resistant epilepsy: single-center experience. J Neurosurg 2022; 137:1591-1600. [PMID: 35395630 DOI: 10.3171/2022.2.jns212237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/07/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Neuromodulation of the centromedian nucleus of the thalamus (CM) has unclear effectiveness in the treatment of drug-resistant epilepsy. Prior reports suggest that it may be more effective in the generalized epilepsies such as Lennox-Gastaut syndrome (LGS). The objective of this study was to determine the outcome of CM deep brain stimulation (DBS) at the authors' institution. METHODS Retrospective chart review was performed for all patients who underwent CM DBS at Emory University, which occurred between December 2018 and May 2021. CM DBS electrodes were implanted using three different surgical methods, including frame-based, robot-assisted, and direct MRI-guided. Seizure frequency, stimulation parameters, and adverse events were recorded from subsequent clinical follow-up visits. RESULTS Fourteen patients underwent CM DBS: 9 had symptomatic generalized epilepsy (including 5 with LGS), 3 had primary or idiopathic generalized epilepsy, and 2 had bifrontal focal epilepsy. At last follow-up (mean [± SEM] 19 ± 5 months, range 4.1-33 months, ≥ 6 months in 11 patients), the median seizure frequency reduction was 91%. Twelve patients (86%) were considered responders (≥ 50% decrease in seizure frequency), including 10 of 12 with generalized epilepsy and both patients with bifrontal epilepsy. Surgical adverse events were rare and included 1 patient with hardware breakage, 1 with a postoperative aspiration event, and 1 with a nonclinically significant intracranial hemorrhage. CONCLUSIONS CM DBS was an effective treatment for drug-resistant generalized and bifrontal epilepsies. Additional studies and analyses may investigate whether CM DBS is best suited for specific epilepsy types, and the relationship of lead location to outcome in different epilepsies.
Collapse
Affiliation(s)
| | - Katie L Bullinger
- 2Neurology, Emory University School of Medicine, Atlanta, Georgia; and
| | | | | | - Enrico Opri
- 2Neurology, Emory University School of Medicine, Atlanta, Georgia; and
| | - Jon T Willie
- 3Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Robert E Gross
- Departments of1Neurosurgery and.,2Neurology, Emory University School of Medicine, Atlanta, Georgia; and
| |
Collapse
|
27
|
Abouelleil M, Deshpande N, Ali R. Emerging Trends in Neuromodulation for Treatment of Drug-Resistant Epilepsy. FRONTIERS IN PAIN RESEARCH 2022; 3:839463. [PMID: 35386582 PMCID: PMC8977768 DOI: 10.3389/fpain.2022.839463] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/21/2022] [Indexed: 01/12/2023] Open
Abstract
Epilepsy is a neurological disorder that affects more than 70 million people globally. A considerable proportion of epilepsy is resistant to anti-epileptic drugs (AED). For patients with drug-resistant epilepsy (DRE), who are not eligible for resective or ablative surgery, neuromodulation has been a palliative option. Since the approval of vagus nerve stimulation (VNS) in 1997, expansion to include other modalities, such as deep brain stimulation (DBS) and responsive neurostimulation (RNS), has led to improved seizure control in this population. In this article, we discuss the current updates and emerging trends on neuromodulation for epilepsy.
Collapse
Affiliation(s)
- Mohamed Abouelleil
- Division of Neurological Surgery, Spectrum Health, Grand Rapids, MI, United States
| | - Nachiket Deshpande
- College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Rushna Ali
- Division of Neurological Surgery, Spectrum Health, Grand Rapids, MI, United States
- *Correspondence: Rushna Ali
| |
Collapse
|
28
|
Richardson RM. Closed-Loop Brain Stimulation and Paradigm Shifts in Epilepsy Surgery. Neurol Clin 2022; 40:355-373. [PMID: 35465880 PMCID: PMC9271409 DOI: 10.1016/j.ncl.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Advances in device technology have created greater flexibility in treating seizures as emergent properties of networks that exist on a local to global continuum. All patients with drug-resistant epilepsy are potential surgical candidates, given that intracranial neuromodulation through deep brain stimulation and responsive neurostimulation can reduce seizures and improve quality of life, even in multifocal and generalized epilepsies. To achieve this goal, indications and strategies for diagnostic epilepsy surgery are evolving. This article describes the state-of-the-art in epilepsy surgery and related changes in how we define indications for diagnostic and therapeutic surgical intervention.
Collapse
|
29
|
Lesser RP, Webber W, Miglioretti DL. Pan-cortical coordination underlying mental effort. Clin Neurophysiol 2022; 136:130-137. [DOI: 10.1016/j.clinph.2021.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/11/2021] [Accepted: 12/19/2021] [Indexed: 11/03/2022]
|
30
|
Hect JL, Fernandez LD, Welch WP, Abel TJ. Deep brain stimulation of the centromedian thalamic nucleus for the treatment of FIRES. Epilepsia Open 2021; 7:187-193. [PMID: 34862854 PMCID: PMC8886094 DOI: 10.1002/epi4.12568] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/16/2021] [Accepted: 11/28/2021] [Indexed: 11/10/2022] Open
Abstract
Febrile infection‐related epilepsy syndrome (FIRES) is a rare, life‐threatening complication of febrile illness in previously healthy individuals followed by super‐refractory status epilepticus. Deep brain stimulation (DBS) has been demonstrated to be a promising therapy for the treatment of intractable epilepsy. Here, we present a pediatric patient with FIRES whose seizures were mitigated by acute DBS of the bilateral centromedian thalamic nucleus (CMTN). This is a previously healthy 11‐year‐old female who presented emergently with altered mental status, fever, and malaise after 1 week of lethargy, anorexia, fever, and abdominal pain. The patient began having seizures shortly after admission. After thorough workup for encephalitis and other potential etiologies, this patient was diagnosed with FIRES due to super‐refractory status epilepticus. Status epilepticus persisted despite pharmacologic management, immunotherapy, and vagus nerve stimulation. DBS of the bilateral CMTN (CM‐DBS) was pursued after 56 days of hospitalization, and she demonstrated considerable improvement in baseline mental status 30 days after DBS insertion. This report highlights application of CM‐DBS for super‐refractory status epilepticus in FIRES. This region is a diffusely connected brain region and has been shown to modulate neural networks contributing to seizure propagation and consciousness; therefore, neurostimulation is a potential therapeutic intervention for patients with super‐refractory status epilepticus.
Collapse
Affiliation(s)
- Jasmine L Hect
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Luis D Fernandez
- Division of Pediatric Neurology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - William P Welch
- Division of Pediatric Neurology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Taylor J Abel
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
31
|
Rao VR. Chronic electroencephalography in epilepsy with a responsive neurostimulation device: current status and future prospects. Expert Rev Med Devices 2021; 18:1093-1105. [PMID: 34696676 DOI: 10.1080/17434440.2021.1994388] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Implanted neurostimulation devices are gaining traction as therapeutic options for people with certain forms of drug-resistant focal epilepsy. Some of these devices enable chronic electroencephalography (cEEG), which offers views of the dynamics of brain activity in epilepsy over unprecedented time horizons. AREAS COVERED This review focuses on clinical insights and basic neuroscience discoveries enabled by analyses of cEEG from an exemplar device, the NeuroPace RNS® System. Applications of RNS cEEG covered here include counting and lateralizing seizures, quantifying medication response, characterizing spells, forecasting seizures, and exploring mechanisms of cognition. Limitations of the RNS System are discussed in the context of next-generation devices in development. EXPERT OPINION The wide temporal lens of cEEG helps capture the dynamism of epilepsy, revealing phenomena that cannot be appreciated with short duration recordings. The RNS System is a vanguard device whose diagnostic utility rivals its therapeutic benefits, but emerging minimally invasive devices, including those with subscalp recording electrodes, promise to be more applicable within a broad population of people with epilepsy. Epileptology is on the precipice of a paradigm shift in which cEEG is a standard part of diagnostic evaluations and clinical management is predicated on quantitative observations integrated over long timescales.
Collapse
Affiliation(s)
- Vikram R Rao
- Associate Professor of Clinical Neurology, Chief, Epilepsy Division, Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| |
Collapse
|
32
|
Foutz T, Wong M. Brain Stimulation Treatments in Epilepsy: Basic Mechanisms and Clinical Advances. Biomed J 2021; 45:27-37. [PMID: 34482013 PMCID: PMC9133258 DOI: 10.1016/j.bj.2021.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/28/2022] Open
Abstract
Drug-resistant epilepsy, characterized by ongoing seizures despite appropriate trials of anti-seizure medications, affects approximately one-third of people with epilepsy. Brain stimulation has recently become available as an alternative treatment option to reduce symptomatic seizures in short and long-term follow-up studies. Several questions remain on how to optimally develop patient-specific treatments and manage therapy over the long term. This review aims to discuss the clinical use and mechanisms of action of Responsive Neural Stimulation and Deep Brain Stimulation in the treatment of epilepsy and highlight recent advances that may both improve outcomes and present new challenges. Finally, a rational approach to device selection is presented based on current mechanistic understanding, clinical evidence, and device features.
Collapse
Affiliation(s)
- Thomas Foutz
- Department of Neurology, Washington University in St. Louis, USA.
| | - Michael Wong
- Department of Neurology, Washington University in St. Louis, USA.
| |
Collapse
|
33
|
Burdette D, Mirro EA, Lawrence M, Patra SE. Brain-responsive corticothalamic stimulation in the pulvinar nucleus for the treatment of regional neocortical epilepsy: A case series. Epilepsia Open 2021; 6:611-617. [PMID: 34268893 PMCID: PMC8408587 DOI: 10.1002/epi4.12524] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/16/2022] Open
Abstract
Drug‐resistant focal epilepsy with regional neocortical seizure onsets originating from the posterior quadrant can be particularly difficult to treat with resective surgery due to the overlap with eloquent cortex. Published reports indicate that corticothalamic treatment targeting the anterior or centromedian nucleus of the thalamus with direct brain‐responsive stimulation may be an effective approach to treat regional neocortical epilepsy. The pulvinar has remained largely unstudied as a neurostimulation target to treat refractory epilepsy. Because the pulvinar has connections with the posterior quadrant, neurostimulation may be effective if applied to seizures originating in this area. We performed a retrospective chart review of patients with regional neocortical seizure onsets in the posterior quadrant treated with the RNS System. Demographics, epilepsy history, clinical seizure frequencies, and neuropsychological testing results were obtained from the chart. Electrocorticogram (ECoG) records stored by the RNS System were reviewed to evaluate electrographic seizure onset patterns. Our patients were followed for 10, 12.5, and 15 months. All patients were responders (≥50% seizure reduction), and two of the three patients experienced a ≥90% reduction in seizures at the last follow‐up. Pre‐ and postsurgical neuropsychological evaluations were compared for two of the patients, and there was no evidence of cognitive decline found in either patient. Interestingly, mild cognitive improvements were reported. The third patient had only postimplant neuropsychological testing data available. Findings for this patient suggested executive dysfunction that was present prior to the RNS System which did not worsen with surgery. A visual inspection of ECoGs revealed near‐simultaneous seizure onsets in neocortical and pulvinar leads in two patients. Seizure onsets in the third patient were more variable. This is the first published report of brain‐responsive neurostimulation targeting the pulvinar to treat refractory regional onset epilepsy of posterior quadrant origin.
Collapse
|
34
|
Mandloi S, Matias CM, Chengyuan W, Sharan A. The Impact of Responsive Neurostimulation on the Treatment of Epilepsy. Neurol India 2021; 68:S278-S281. [PMID: 33318362 DOI: 10.4103/0028-3886.302468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
There is a considerable number of patients with epilepsy that have drug resistant epilepsy (DRE). An additional option for these patients is resective surgery of ictal onset zones. However, a significant portion of DRE patients have unidentified or unresectable ictal zones. For these patients, RNS is a potential treatment option. The RNS system is a closed loop system that delivers stimulation in response to ECoG changes at seizure foci. It is programmed with an algorithm capable of detecting specific patterns of epileptogenic activity and triggers focal stimulation to interrupt seizures. The long term monitoring potential of the RNS system allows for a better understanding of the circadian rhythms behind epilepsy.
Collapse
Affiliation(s)
- Shreya Mandloi
- Drexel University College of Medicine Student, Philadelphia, PA, USA
| | - Caio M Matias
- Post-Doctoral Fellow, Department of Neurological Surgery, Thomas Jefferson University Hospitals, Philadelphia, PA, USA; Neurosurgeon, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Wu Chengyuan
- Assistant Professor, Department of Neurological Surgery, Thomas Jefferson University Hospitals, Philadelphia, PA, USA
| | - Ashwini Sharan
- Professor, Department of Neurological Surgery, Thomas Jefferson University Hospitals, Philadelphia, PA, USA
| |
Collapse
|
35
|
Yang JC, Harid NM, Nascimento FA, Kokkinos V, Shaughnessy A, Lam AD, Westover MB, Leslie-Mazwi TM, Hochberg LR, Rosenthal ES, Cole AJ, Richardson RM, Cash SS. Responsive neurostimulation for focal motor status epilepticus. Ann Clin Transl Neurol 2021; 8:1353-1361. [PMID: 33955717 PMCID: PMC8164849 DOI: 10.1002/acn3.51318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/09/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
No clear evidence‐based treatment paradigm currently exists for refractory and super‐refractory status epilepticus, which can result in significant mortality and morbidity. While patients are typically treated with antiepileptic drugs and anesthetics, neurosurgical neuromodulation techniques can also be considered. We present a novel case in which responsive neurostimulation was used to effectively treat a patient who had developed super‐refractory status epilepticus, later consistent with epilepsia partialis continua, that was refractory to antiepileptic drugs, immunomodulatory therapies, and transcranial magnetic stimulation. This case demonstrates how regional therapy provided by responsive neurostimulation can be effective in treating super‐refractory status epilepticus through neuromodulation of seizure networks.
Collapse
Affiliation(s)
- Jimmy C Yang
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nitish M Harid
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Fábio A Nascimento
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Vasileios Kokkinos
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Abigail Shaughnessy
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alice D Lam
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - M Brandon Westover
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thabele M Leslie-Mazwi
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Leigh R Hochberg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Eric S Rosenthal
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Andrew J Cole
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert M Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Welch WP, Hect JL, Abel TJ. Case Report: Responsive Neurostimulation of the Centromedian Thalamic Nucleus for the Detection and Treatment of Seizures in Pediatric Primary Generalized Epilepsy. Front Neurol 2021; 12:656585. [PMID: 33995254 PMCID: PMC8113700 DOI: 10.3389/fneur.2021.656585] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Up to 20% of pediatric patients with primary generalized epilepsy (PGE) will not respond effectively to medication for seizure control. Responsive neurostimulation (RNS) is a promising therapy for pediatric patients with drug-resistant epilepsy and has been shown to be an effective therapy for reducing seizure frequency and severity in adult patients. RNS of the centromedian nucleus of the thalamus may help to prevent loss of awareness during seizure activity in PGE patients with absence seizures. Here we present a 16-year-old male, with drug-resistant PGE with absence seizures, characterized by 3 Hz spike-and-slow-wave discharges on EEG, who achieved a 75% reduction in seizure frequency following bilateral RNS of the centromedian nuclei. At 6-months post-implant, this patient reported complete resolution of the baseline daily absence seizure activity, and decrease from 3-4 generalized convulsive seizures per month to 1 per month. RNS recordings showed well-formed 3 Hz spike-wave discharges in bilateral CM nuclei, further supporting the notion that clinically relevant ictal discharges in PGE can be detected in CM. This report demonstrates that CM RNS can detect PGE-related seizures in the CM nucleus and deliver therapeutic stimulation.
Collapse
Affiliation(s)
- William P Welch
- Division of Pediatric Neurology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jasmine L Hect
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Taylor J Abel
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, United States
| |
Collapse
|
37
|
Brain-responsive neurostimulation in adult-onset rasmussen's encephalitis. Epilepsy Behav Rep 2021; 15:100445. [PMID: 33912823 PMCID: PMC8063734 DOI: 10.1016/j.ebr.2021.100445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/24/2020] [Accepted: 01/20/2021] [Indexed: 12/21/2022] Open
Abstract
Treatment of Rasmussen’s encephalitis in adults is limted. Hemispherotomy is rarely performed in adults due to high morbidity. Immunotherapy in Adult onset rasmussen’s is rarely efficacious alone to control seizures. RNS system could be a therapeutic option for Rasmussen’s encephalitis patients with drug-resistant epilepsy.
Epilepsy associated with Rasmussen’s encephalitis (RE) is highly resistant to standard therapy and continues to present a therapeutic challenge. While epilepsy surgery remains the most effective management for patients with drug-resistant focal epilepsy and RE, hemispherotomy may debilitating consequences on adult patients. Here we present the outcome of a 32-year-old woman with adult-onset Rasmussen’s, who was treated with brain-responsive neurostimulation (RNS) after failure of several immunotherapeutic and anti-seizure medications.
Collapse
|
38
|
McDermott DS, Mirro EA, Fetrow K, Burdette DE, Chen S, Hopp J, Masel T, Johnson EA, Elefant FMK, Le S, Patra SE, Brown MG, Haneef Z. Brain-Responsive Neurostimulation for the treatment of adults with epilepsy in tuberous sclerosis complex: A case series. Epilepsia Open 2021; 6:419-424. [PMID: 34033253 PMCID: PMC8166788 DOI: 10.1002/epi4.12481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Tuberous sclerosis complex (TSC) is a genetic disorder primarily characterized by the development of multisystem benign tumors. Epilepsy is the most common neurologic manifestation, affecting 80%-90% of TSC patients. The diffuse structural brain abnormalities and the multifocal nature of epilepsy in TSC pose diagnostic challenges when evaluating patients for epilepsy surgery. METHODS We retrospectively reviewed the safety experience and efficacy outcomes of five adult TSC patients who were treated with direct brain-responsive neurostimulation (RNS System, NeuroPace, Inc). RESULTS The average follow-up duration was 20 months. All five patients were responders (≥50% disabling seizure reduction) at last follow-up. The median reduction in disabling seizures was 58% at 1 year and 88% at last follow-up. Three of the five patients experienced some period of seizure freedom ranging from 3 months to over 1 year. SIGNIFICANCE In this small case series, we report the first safety experience and efficacy outcomes in patients with TSC-associated drug-resistant focal epilepsy treated with direct brain-responsive neurostimulation.
Collapse
Affiliation(s)
| | | | - Kirsten Fetrow
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Stephanie Chen
- University of Maryland Medical Center, Baltimore, MD, USA
| | - Jennifer Hopp
- University of Maryland Medical Center, Baltimore, MD, USA
| | - Todd Masel
- University of Texas Medical Branch, Galveston, TX, USA
| | - Emily A Johnson
- Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | - Mesha-Gay Brown
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | |
Collapse
|
39
|
Centromedian thalamic nucleus with or without anterior thalamic nucleus deep brain stimulation for epilepsy in children and adults: A retrospective case series. Seizure 2020; 84:101-107. [PMID: 33310676 PMCID: PMC7856176 DOI: 10.1016/j.seizure.2020.11.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 01/19/2023] Open
Abstract
The centromedian (CM) and anterior nucleus of the thalamus (ANT) are deep brain stimulation (DBS) targets for management of generalized, and focal drug resistant epilepsy (DRE), respectively. We report on a single center retrospective case series of 16 children and adults with DRE who underwent CM with simultaneous ANT (69 %) or CM without simultaneous ANT DBS (31 %). Seizure frequency, epilepsy severity, life satisfaction, and quality of sleep before and after DBS were compared. Baseline median seizure frequency was 323 seizures per month (IQR, 71–563 sz/mo). Median follow up time was 80 months (IQR 37–97 mo). Median seizure frequency reduction was 58 % (IQR 13–87 %, p = 0.002). Ten patients (63 %) reported ≥50 % seizure frequency reduction. Median seizure frequency reduction and responder rate were not significantly different for CM + ANT versus CM only. Seizure severity and life satisfaction were significantly improved. Three patients (19 %) developed device-related side effects, 2 of them (12.5 %) required surgical intervention. In a heterogenous population of children and adults with generalized, multifocal, posterior onset, and poorly localized DRE, CM with or without ANT DBS is feasible, relatively safe and is associated with reduced seizure frequency and severity, as well as improved life satisfaction.
Collapse
|