1
|
Aleksandrova EP, Ivlev AP, Kulikov AA, Naumova AA, Glazova MV, Chernigovskaya EV. Aging of Krushinsky-Molodkina audiogenic rats is accompanied with pronounced neurodegeneration and dysfunction of the glutamatergic system in the hippocampus. Brain Res 2024; 1846:149294. [PMID: 39461667 DOI: 10.1016/j.brainres.2024.149294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/30/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
Advancing age strongly correlates with an increased risk of epilepsy development. On the other hand, epilepsy may exacerbate the negative effects of aging making it pathological. In turn, the possible link between aging and epileptogenesis is dysregulation of glutamatergic transmission. In the present study, we analyzed the functional state of the glutamatergic system in the hippocampus of aging (18-month-old) Krushinsky-Molodkina (KM) audiogenic rats to disclose alterations associated with aging on the background of inherited predisposition to audiogenic seizures (AGS). Naïve KM rats with no AGS experience were recruited in the experiments. Wistar rats of the corresponding age were used as a control. First of all, aging KM rats demonstrated a significant decrease in cell population and synaptopodin expression in the hippocampus indicating enhanced loss of cells and synapses. Meanwhile, elevated phosphorylation of ERK1/2 and CREB and increased glutamate in the neuronal perikarya were revealed indicating increased activity of the rest hippocampal cells and increased glutamate production. However, glutamate in the fibers and synapses was mainly unchanged, and the proteins regulating glutamate exocytosis showed variable changes which could compensate each other and maintain glutamate release at the unchanged level. In addition, we revealed downregulation of NMDA-receptor subunit GluN2B and upregulation of AMPA-receptor GluA2 subunit, which could also prevent overexcitation and support cell survival in the hippocampus of aging KM rats. Nevertheless, abnormally high glutamate production, observed in aging KM rats, may provide the basis for hyperexcitability of the hippocampus and increased seizure susceptibility in old age.
Collapse
Affiliation(s)
- Ekaterina P Aleksandrova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, the Russian Academy of Sciences, St. Petersburg, Russian Federation.
| | - Andrey P Ivlev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, the Russian Academy of Sciences, St. Petersburg, Russian Federation.
| | - Alexey A Kulikov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, the Russian Academy of Sciences, St. Petersburg, Russian Federation.
| | - Alexandra A Naumova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, the Russian Academy of Sciences, St. Petersburg, Russian Federation.
| | - Margarita V Glazova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, the Russian Academy of Sciences, St. Petersburg, Russian Federation.
| | - Elena V Chernigovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, the Russian Academy of Sciences, St. Petersburg, Russian Federation.
| |
Collapse
|
2
|
Demyashkin G, Blinova E, Grigoryan M, Parshenkov M, Skovorodko P, Ius V, Lebed A, Shegay P, Kaprin A. Neuroprotective Effects of Myricetin on PTZ-Induced Seizures in Mice: Evaluation of Oxidation, Neuroinflammation and Metabolism, and Apoptosis in the Hippocampus. Curr Issues Mol Biol 2024; 46:8914-8944. [PMID: 39194744 DOI: 10.3390/cimb46080527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Epilepsy is one of the most frequently diagnosed neurological diseases, but the neurobiological basis of the disease remains poorly understood. Immunophenotyping CBA mice brain (NeuN and caspase-8) in parallel with hippocampal neurons' functional status and survival rate assessment during acute epileptic PTZ-induced seizures is of particular interest. The aims of this study were to investigate the involvement of NeuN and caspase-8 in cell cycle regulation and the death of hippocampal neurons during PTZ-induced seizures in mice and to assess the therapeutic efficacy of Myricetin in the aforementioned experimental settings. Male CBA mice (n = 340) were divided into six groups to investigate the neuroprotective and antiepileptic effects of Myricetin and Valproic Acid in the PTZ-induced seizure model. Group I (control, n = 20) received a single intraperitoneal injection of NaCl 0.9% solution. Group II (PTZ only, n = 110) received a single intraperitoneal 45 mg/kg PTZ to induce seizures. Group III (Myricetin + PTZ, n = 90) was administered Myricetin orally at 200 mg/kg for 5 days, followed by a PTZ injection. Group IV (Valproic Acid + PTZ, n = 80) received intraperitoneal Valproic Acid at 100 mg/kg for 5 days, followed by PTZ. Group V (Myricetin + NaCl, n = 20) received Myricetin and NaCl. Group VI (Valproic Acid + NaCl, n = 20) received Valproic Acid and NaCl. Seizure severity was monitored using the modified Racine scale. Behavioral assessments included sensorimotor function tests, motor coordination using the rotarod test, and cognitive function via the Morris water maze. Brain tissues were collected and analyzed for oxidative stress markers, including malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH). Blood samples were analyzed for cytokine levels (IL-1β, IL-6, and TNF-α). Histological studies involved H&E and Nissl staining to evaluate general histopathology and neuronal density. Immunohistochemical analysis was conducted using antibodies against NeuN and caspase-8 to assess neuronal cell cycle regulation and apoptosis. PTZ-induced seizures caused significant oxidative stress and inflammation, leading to neuronal damage. Biochemical analyses showed elevated levels of MDA, SOD, GSH, IL-1β, IL-6, and TNF-α. Histological and immunohistochemical evaluations revealed a significant increase in caspase-8-positive neurons and a decrease in NeuN-positive neurons in the hippocampus and other brain regions, correlating with seizure severity. Myricetin and Valproic Acid treatments reduced oxidative stress markers and neuronal damage. Both treatments resulted in moderate neuronal protection, with fewer damaged neurons observed in the hippocampus, dentate gyrus, and other brain areas compared to the PTZ-only group. Summarizing, Myricetin administration showed promising neuroprotective effects. It significantly reduced oxidative stress markers, including MDA, and restored antioxidant enzyme activities (SOD and GSH), suggesting its antioxidative potential. Myricetin also effectively attenuated the elevation of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α, indicating strong anti-inflammatory properties. Behavioral assessments revealed that Myricetin improved cognitive and motor functions in PTZ-treated mice, with notable reductions in seizure severity and mortality rates. Histological analyses supported these behavioral findings, with Nissl staining showing reduced neuronal damage and NeuN staining indicating better preservation of neuronal integrity in Myricetin-treated groups. Additionally, caspase-8 staining suggested a significant reduction in neuronal apoptosis.
Collapse
Affiliation(s)
- Grigory Demyashkin
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Ekaterina Blinova
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia
| | - Migran Grigoryan
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia
| | - Mikhail Parshenkov
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia
| | - Polina Skovorodko
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia
| | - Vladimir Ius
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia
| | - Anastasia Lebed
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia
| | - Petr Shegay
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Andrei Kaprin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
- Department of Urology and Operative Nephrology, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Str.6, 117198 Moscow, Russia
| |
Collapse
|
3
|
Ivlev AP, Naumova AA. Postnatal development of the hippocampal GABAergic system in rats genetically prone to audiogenic seizures. Int J Dev Neurosci 2023; 83:703-714. [PMID: 37655366 DOI: 10.1002/jdn.10298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 09/02/2023] Open
Abstract
Epileptogenesis can be associated with altered genetic control of the GABAergic system. Here we analyzed Krushinsky-Molodkina (KM) rats genetically prone to audiogenic epilepsy. KM rats express fully formed audiogenic seizures (AGSs) not early, then they reach 3 months. At the age of 1-2 months, KM rats either do not express AGS or demonstrate an incomplete pattern of seizure. Such long-term development of AGS susceptibility makes KM rats an especially convenient model to investigate the mechanisms and dynamics of the development of inherited epilepsy. The analysis of the GABAergic system of the hippocampus of KM rats was done during postnatal development at the 15th, 60th, and 120th postnatal days. Wistar rats of corresponding ages were used as a control. In the hippocampus of KM pups, we observed a decrease in the expression of glutamic acid decarboxylase 67 (GAD67) and parvalbumin (PV), which points to a decrease in the activity of GABAergic neurons. Analysis of the 2-month-old KM rats showed an increase in GAD67 and PV expression while synapsin I and vesicular GABA transporter (VGAT) were decreased. In adult KM rats, the expression of GAD67, PV, and synapsin I was upregulated. Altogether, the obtained data indicate significant alterations in GABAergic transmission in the hippocampus of audiogenic KM rats during the first postnatal months.
Collapse
Affiliation(s)
- Andrey P Ivlev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexandra A Naumova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
4
|
Kulikov AA, Naumova AA, Aleksandrova EP, Glazova MV, Chernigovskaya EV. Audiogenic kindling stimulates aberrant neurogenesis, synaptopodin expression, and mossy fiber sprouting in the hippocampus of rats genetically prone to audiogenic seizures. Epilepsy Behav 2021; 125:108445. [PMID: 34837844 DOI: 10.1016/j.yebeh.2021.108445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022]
Abstract
Temporal lobe epilepsy is associated with considerable structural changes in the hippocampus. Pharmacological and electrical models of temporal lobe epilepsy in animals strongly suggest that hippocampal reorganization is based on seizure-stimulated aberrant neurogenesis but the data are often controversial and hard to interpret. The aim of the present study was to estimate neurogenesis and synaptic remodeling in the hippocampus of Krushinsky-Molodkina (KM) rats genetically prone to audiogenic seizures (AGS). In our experiments we exposed KM rats to audiogenic kindling of different durations (4, 14, and 21 AGS) to model different stages of epilepsy development. Naïve KM rats were used as a control. Our results showed that even 4 AGS stimulated proliferation in the subgranular layer of the dentate gyrus (DG) accompanied with increase in number of doublecortin (DCX)-positive immature granular cells. Elevated number of proliferating cells was also observed in the hilus indicating the enhancement of abnormal migration of neural progenitors. In contrast to the DG, all DCX-positive cells in the hilus expressed VGLUT1/2 and their number was increased indicating that seizure activity accelerates glutamatergic differentiation of ectopic hilar cells. 14-day kindling further stimulated proliferation, abnormal migration, and glutamatergic differentiation of new neurons both in the DG granular and subgranular layers and in the hilus. However, after 21 AGS increased proliferation was observed only in the DG, while the numbers of immature neurons expressed VGLUT1/2 were still enhanced in both hippocampal areas. Audiogenic kindling also stimulated sprouting of mossy fibers and enhanced expression of synaptopodin in the hippocampus indicating generation of new synaptic contacts between granular cells, mossy cells, and CA3 pyramid neurons. Thus, our data suggest that epilepsy progression is associated with exacerbation of aberrant neurogenesis and reorganization of hippocampal neural circuits that contribute to the enhancement and spreading of epileptiform activity.
Collapse
Affiliation(s)
- Alexey A Kulikov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Thorez pr., 194223 St. Petersburg, Russia
| | - Alexandra A Naumova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Thorez pr., 194223 St. Petersburg, Russia
| | - Ekaterina P Aleksandrova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Thorez pr., 194223 St. Petersburg, Russia
| | - Margarita V Glazova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Thorez pr., 194223 St. Petersburg, Russia.
| | - Elena V Chernigovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Thorez pr., 194223 St. Petersburg, Russia
| |
Collapse
|
5
|
Chuvakova LN, Funikov SY, Rezvykh AP, Davletshin AI, Evgen'ev MB, Litvinova SA, Fedotova IB, Poletaeva II, Garbuz DG. Transcriptome of the Krushinsky-Molodkina Audiogenic Rat Strain and Identification of Possible Audiogenic Epilepsy-Associated Genes. Front Mol Neurosci 2021; 14:738930. [PMID: 34803604 PMCID: PMC8600260 DOI: 10.3389/fnmol.2021.738930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
Audiogenic epilepsy (AE), inherent to several rodent strains is widely studied as a model of generalized convulsive epilepsy. The molecular mechanisms that determine the manifestation of AE are not well understood. In the present work, we compared transcriptomes from the corpora quadrigemina in the midbrain zone, which are crucial for AE development, to identify genes associated with the AE phenotype. Three rat strains without sound exposure were compared: Krushinsky-Molodkina (KM) strain (100% AE-prone); Wistar outbred rat strain (non-AE prone) and “0” strain (partially AE-prone), selected from F2 KM × Wistar hybrids for their lack of AE. The findings showed that the KM strain gene expression profile exhibited a number of characteristics that differed from those of the Wistar and “0” strain profiles. In particular, the KM rats showed increased expression of a number of genes involved in the positive regulation of the MAPK signaling cascade and genes involved in the positive regulation of apoptotic processes. Another characteristic of the KM strain which differed from that of the Wistar and “0” rats was a multi-fold increase in the expression level of the Ttr gene and a significant decrease in the expression of the Msh3 gene. Decreased expression of a number of oxidative phosphorylation-related genes and a few other genes was also identified in the KM strain. Our data confirm the complex multigenic nature of AE inheritance in rodents. A comparison with data obtained from other independently selected AE-prone rodent strains suggests some common causes for the formation of the audiogenic phenotype.
Collapse
Affiliation(s)
- Lyubov N Chuvakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergei Yu Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander P Rezvykh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Artem I Davletshin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Michael B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | - David G Garbuz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|