1
|
Ailion A, Duong P, Maiman M, Tsuboyama M, Smith ML. Clinical recommendations for conducting pediatric functional language and memory mapping during the phase I epilepsy presurgical workup. Clin Neuropsychol 2024; 38:1060-1084. [PMID: 37985747 DOI: 10.1080/13854046.2023.2281708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Objective: Pediatric epilepsy surgery effectively controls seizures but may risk cognitive, language, or memory decline. Historically, the intra-carotid anesthetic procedure (IAP or Wada Test) was pivotal for language and memory function. However, advancements in noninvasive mapping, notably functional magnetic resonance imaging (fMRI), have transformed clinical practice, reducing IAP's role in presurgical evaluations. Method: We conducted a critical narrative review on mapping technologies, including factors to consider for discordance. Results: Neuropsychological findings suggest that if pre-surgery function remains intact and the surgery targets the eloquent cortex, there is a high chance for decline. Memory and language decline are particularly pronounced post-left anterior temporal lobe resection (ATL), making presurgical cognitive assessment crucial for predicting postoperative outcomes. However, the risk of functional decline is not always clear - particularly with higher rates of atypical organization in pediatric epilepsy patients and discordant findings from cognitive mapping. We found little research to date on the use of IAP and other newer technologies for lateralization/localization in pediatric epilepsy. Based on this review, we introduce an IAP decision tree to systematically navigate discordance in IAP decisions for epilepsy presurgical workup. Conclusions: Future research should be aimed at pediatric populations to improve the precision of functional mapping, determine which methods predict post-surgical deficits and then create evidence-based practice guidelines to standardize mapping procedures. Explicit directives are needed for resolving conflicts between developing mapping procedures and established clinical measures. The proposed decision tree is the first step to standardize when to consider IAP or invasive mapping, in coordination with the multidisciplinary epilepsy surgical team.
Collapse
Affiliation(s)
- Alyssa Ailion
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School
- Department of Neurology, Boston Children's Hospital, Harvard Medical School
| | - Priscilla Duong
- Department of Psychiatry, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University School of Medicine
| | - Moshe Maiman
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School
| | - Melissa Tsuboyama
- Department of Neurology, Boston Children's Hospital, Harvard Medical School
| | - Mary Lou Smith
- Department of Psychology, The Hospital for Sick Children, University of Toronto Mississauga
| |
Collapse
|
2
|
Noorizadeh N, Rezaie R, Varner JA, Wheless JW, Fulton SP, Mudigoudar BD, Nevill L, Holder CM, Narayana S. Concordance between Wada, Transcranial Magnetic Stimulation, and Magnetoencephalography for Determining Hemispheric Dominance for Language: A Retrospective Study. Brain Sci 2024; 14:336. [PMID: 38671988 PMCID: PMC11047819 DOI: 10.3390/brainsci14040336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Determination of language hemispheric dominance (HD) in patients undergoing evaluation for epilepsy surgery has traditionally relied on the sodium amobarbital (Wada) test. The emergence of non-invasive methods for determining language laterality has increasingly shown to be a viable alternative. In this study, we assessed the efficacy of transcranial magnetic stimulation (TMS) and magnetoencephalography (MEG), compared to the Wada test, in determining language HD in a sample of 12 patients. TMS-induced speech errors were classified as speech arrest, semantic, or performance errors, and the HD was based on the total number of errors in each hemisphere with equal weighting of all errors (classic) and with a higher weighting of speech arrests and semantic errors (weighted). Using MEG, HD for language was based on the spatial extent of long-latency activity sources localized to receptive language regions. Based on the classic and weighted language laterality index (LI) in 12 patients, TMS was concordant with the Wada in 58.33% and 66.67% of patients, respectively. In eight patients, MEG language mapping was deemed conclusive, with a concordance rate of 75% with the Wada test. Our results indicate that TMS and MEG have moderate and strong agreement, respectively, with the Wada test, suggesting they could be used as non-invasive substitutes.
Collapse
Affiliation(s)
- Negar Noorizadeh
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (N.N.); (R.R.); (J.W.W.); (S.P.F.); (B.D.M.); (C.M.H.)
- Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA; (J.A.V.); (L.N.)
| | - Roozbeh Rezaie
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (N.N.); (R.R.); (J.W.W.); (S.P.F.); (B.D.M.); (C.M.H.)
- Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA; (J.A.V.); (L.N.)
| | - Jackie A. Varner
- Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA; (J.A.V.); (L.N.)
| | - James W. Wheless
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (N.N.); (R.R.); (J.W.W.); (S.P.F.); (B.D.M.); (C.M.H.)
- Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA; (J.A.V.); (L.N.)
| | - Stephen P. Fulton
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (N.N.); (R.R.); (J.W.W.); (S.P.F.); (B.D.M.); (C.M.H.)
- Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA; (J.A.V.); (L.N.)
| | - Basanagoud D. Mudigoudar
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (N.N.); (R.R.); (J.W.W.); (S.P.F.); (B.D.M.); (C.M.H.)
- Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA; (J.A.V.); (L.N.)
| | - Leigh Nevill
- Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA; (J.A.V.); (L.N.)
| | - Christen M. Holder
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (N.N.); (R.R.); (J.W.W.); (S.P.F.); (B.D.M.); (C.M.H.)
- Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA; (J.A.V.); (L.N.)
| | - Shalini Narayana
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (N.N.); (R.R.); (J.W.W.); (S.P.F.); (B.D.M.); (C.M.H.)
- Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA; (J.A.V.); (L.N.)
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
3
|
Qu X, Wang Z, Cheng Y, Xue Q, Li Z, Li L, Feng L, Hartwigsen G, Chen L. Neuromodulatory effects of transcranial magnetic stimulation on language performance in healthy participants: Systematic review and meta-analysis. Front Hum Neurosci 2022; 16:1027446. [PMID: 36545349 PMCID: PMC9760723 DOI: 10.3389/fnhum.2022.1027446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Background The causal relationships between neural substrates and human language have been investigated by transcranial magnetic stimulation (TMS). However, the robustness of TMS neuromodulatory effects is still largely unspecified. This study aims to systematically examine the efficacy of TMS on healthy participants' language performance. Methods For this meta-analysis, we searched PubMed, Web of Science, PsycINFO, Scopus, and Google Scholar from database inception until October 15, 2022 for eligible TMS studies on language comprehension and production in healthy adults published in English. The quality of the included studies was assessed with the Cochrane risk of bias tool. Potential publication biases were assessed by funnel plots and the Egger Test. We conducted overall as well as moderator meta-analyses. Effect sizes were estimated using Hedges'g (g) and entered into a three-level random effects model. Results Thirty-seven studies (797 participants) with 77 effect sizes were included. The three-level random effects model revealed significant overall TMS effects on language performance in healthy participants (RT: g = 0.16, 95% CI: 0.04-0.29; ACC: g = 0.14, 95% CI: 0.04-0.24). Further moderator analyses indicated that (a) for language tasks, TMS induced significant neuromodulatory effects on semantic and phonological tasks, but didn't show significance for syntactic tasks; (b) for cortical targets, TMS effects were not significant in left frontal, temporal or parietal regions, but were marginally significant in the inferior frontal gyrus in a finer-scale analysis; (c) for stimulation parameters, stimulation sites extracted from previous studies, rTMS, and intensities calibrated to the individual resting motor threshold are more prone to induce robust TMS effects. As for stimulation frequencies and timing, both high and low frequencies, online and offline stimulation elicited significant effects; (d) for experimental designs, studies adopting sham TMS or no TMS as the control condition and within-subject design obtained more significant effects. Discussion Overall, the results show that TMS may robustly modulate healthy adults' language performance and scrutinize the brain-and-language relation in a profound fashion. However, due to limited sample size and constraints in the current meta-analysis approach, analyses at a more comprehensive level were not conducted and results need to be confirmed by future studies. Systematic review registration [https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=366481], identifier [CRD42022366481].
Collapse
Affiliation(s)
- Xingfang Qu
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Zichao Wang
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Yao Cheng
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Qingwei Xue
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Zimu Li
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Lu Li
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Liping Feng
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Luyao Chen
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| |
Collapse
|
4
|
Natalizi F, Piras F, Vecchio D, Spalletta G, Piras F. Preoperative Navigated Transcranial Magnetic Stimulation: New Insight for Brain Tumor-Related Language Mapping. J Pers Med 2022; 12:1589. [PMID: 36294728 PMCID: PMC9604795 DOI: 10.3390/jpm12101589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 08/30/2023] Open
Abstract
Preoperative brain mapping methods are particularly important in modern neuro-oncology when a tumor affects eloquent language areas since damage to parts of the language circuits can cause significant impairments in daily life. This narrative review examines the literature regarding preoperative and intraoperative language mapping using repetitive navigated transcranial magnetic stimulation (rnTMS) with or without direct electrical stimulation (DES) in adult patients with tumors in eloquent language areas. The literature shows that rnTMS is accurate in detecting preexisting language disorders and positive intraoperative mapping regions. In terms of the region extent and clinical outcomes, rnTMS has been shown to be accurate in identifying positive sites to guide resection, reducing surgery duration and craniotomy size and thus improving clinical outcomes. Before incorporating rnTMS into the neurosurgical workflow, the refinement of protocols and a consensus within the neuro-oncology community are required.
Collapse
Affiliation(s)
- Federica Natalizi
- Laboratory of Neurophychiatry, IRCSS Santa Lucia Fundation, Via Ardeatina 306, 00134 Rome, Italy
- Department of Psychology, “Sapienza” University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- PhD Program in Behavioral Neuroscience, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Piras
- Laboratory of Neurophychiatry, IRCSS Santa Lucia Fundation, Via Ardeatina 306, 00134 Rome, Italy
| | - Daniela Vecchio
- Laboratory of Neurophychiatry, IRCSS Santa Lucia Fundation, Via Ardeatina 306, 00134 Rome, Italy
| | - Gianfranco Spalletta
- Laboratory of Neurophychiatry, IRCSS Santa Lucia Fundation, Via Ardeatina 306, 00134 Rome, Italy
| | - Fabrizio Piras
- Laboratory of Neurophychiatry, IRCSS Santa Lucia Fundation, Via Ardeatina 306, 00134 Rome, Italy
| |
Collapse
|