1
|
Aygun H, Akin AT, Kızılaslan N, Sumbul O, Karabulut D. Electrophysiological, histopathological, and biochemical evaluation of the protective effect of probiotic supplementation against pentylenetetrazole-induced seizures in rats. Eur J Neurol 2023; 30:3540-3550. [PMID: 35429204 DOI: 10.1111/ene.15359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND PURPOSE Research on the relationship between the gut microbiome and epilepsy is accumulating. The present study was conducted to evaluate the effect of probiotic supplementation on pentylenetetrazole (PTZ)-induced seizures in rats. METHODS Twenty-one adult male Wistar albino rats were included. The animals were divided into three groups of seven rats. Group 1 was a control group, whereas Group 2 rats received PTZ treatment and Group 3 rats had PTZ+PB (probiotic) treatment. For 6 weeks, Groups 1 and 2 were given saline (1 ml), whereas Group 3 had probiotic supplement. In the 5th week, tripolar electrodes were attached to the rats. Electrophysiological, behavioral, biochemical, and immunohistochemical evaluations were performed in the 6 weeks after the treatment. RESULTS PB treatment significantly reduced seizures. In the PTZ group, expression levels of brain-derived neurotrophic factor, nerve growth factor (NGF), and Sox2 (SRY sex-determining region Y-box 2) in rat brains decreased significantly compared to the control group, whereas the expression levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), total oxidant status (TOS), and nitric oxide (NO) levels increased. In the PTZ+PB group, NGF expression increased significantly compared to the PTZ group, whereas TNF-α, IL-6, TOS, and NO levels decreased. In histopathological examination, an abundance of necrotic neurons was notable in the PTZ group, which was less in the PTZ+PB group. In addition, body weight of the group supplemented with probiotics decreased after the treatment. CONCLUSIONS Our results suggest that probiotic supplementation may alleviate seizure severity and exert neuroprotective effects by reducing neuroinflammation and oxidative stress and altering the expression of neurotrophins in epileptogenic brains.
Collapse
Affiliation(s)
- Hatice Aygun
- Department of Physiology, Faculty of Medicine, University of Tokat Gaziosmanpasa, Tokat, Turkey
| | - Ali Tuğrul Akin
- Department of Biology, Faculty of Science and Literature, University of Erciyes, Kayseri, Turkey
| | - Nildem Kızılaslan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, University of Tokat Gaziosmanpasa, Tokat, Turkey
| | - Orhan Sumbul
- Department of Neurology, Faculty of Medicine, University of Tokat Gaziosmanpasa, Tokat, Turkey
| | - Derya Karabulut
- Department of Histology-Embryology, Faculty of Medicine, University of Erciyes, Kayseri, Turkey
| |
Collapse
|
2
|
Tallarico M, Pisano M, Leo A, Russo E, Citraro R, De Sarro G. Antidepressant Drugs for Seizures and Epilepsy: Where do we Stand? Curr Neuropharmacol 2023; 21:1691-1713. [PMID: 35761500 PMCID: PMC10514547 DOI: 10.2174/1570159x20666220627160048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022] Open
Abstract
People with epilepsy (PWE) are more likely to develop depression and both these complex chronic diseases greatly affect health-related quality of life (QOL). This comorbidity contributes to the deterioration of the QOL further than increasing the severity of epilepsy worsening prognosis. Strong scientific evidence suggests the presence of shared pathogenic mechanisms. The correct identification and management of these factors are crucial in order to improve patients' QOL. This review article discusses recent original research on the most common pathogenic mechanisms of depression in PWE and highlights the effects of antidepressant drugs (ADs) against seizures in PWE and animal models of seizures and epilepsy. Newer ADs, such as selective serotonin reuptake inhibitors (SRRI) or serotonin-noradrenaline reuptake inhibitors (SNRI), particularly sertraline, citalopram, mirtazapine, reboxetine, paroxetine, fluoxetine, escitalopram, fluvoxamine, venlafaxine, duloxetine may lead to improvements in epilepsy severity whereas the use of older tricyclic antidepressant (TCAs) can increase the occurrence of seizures. Most of the data demonstrate the acute effects of ADs in animal models of epilepsy while there is a limited number of studies about the chronic antidepressant effects in epilepsy and epileptogenesis or on clinical efficacy. Much longer treatments are needed in order to validate the effectiveness of these new alternatives in the treatment and the development of epilepsy, while further clinical studies with appropriate protocols are warranted in order to understand the real potential contribution of these drugs in the management of PWE (besides their effects on mood).
Collapse
Affiliation(s)
- Martina Tallarico
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Maria Pisano
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Antonio Leo
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Emilio Russo
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Rita Citraro
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Giovambattista De Sarro
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
3
|
Kızılaslan N, Sumbul O, Aygun H. The Beneficial Effect of Probiotics Supplementation on Penicillin-Induced Focal Seizure in Rats. Neurochem Res 2022; 47:1395-1404. [PMID: 35084660 DOI: 10.1007/s11064-022-03539-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
The focal epilepsy is a chronic neurological brain disorder which affects millions of people in the world. There is emerging evidence that changes in the gut microbiota may have effects on epileptic seizures. In the present study, we examined the effect of probiotics on penicillin-induced focal seizure model in rats. Male Wistar Albino rats (n: 21) were randomly divided into three groups: control (no medication), penicillin and penicillin + probiotic. Probiotic VSL#3 (12.86 bn living bacteria/kg/day) was given by gavage for 30 days. The seizures were induced by intracortical injection of penicillin G (500 IU) into the cortex. An ECoG recordings were made for 180 min after penicillin G application. The spike frequency and the amplitude were used to assess the severity of seizures. Tumor necrosis factor (TNF-α), nitric oxide (NO) and interleukin (IL-6) levels in the brain were studied biochemically. Our results indicated that probiotic supplementation improved focal seizures through increasing the latency (p < 0.001) and decreasing the spike frequency (p < 0.01) compared to the penicillin group. Penicillin-induced seizure in rats significantly enhanced TNF-α (p < 0.01), NO (p < 0.01) and IL-6 (p < 0.05) compared to the control. Probiotic supplementation significantly decreased IL-6 (p < 0.05), TNF-α (p < 0.01) and NO (p < 0.001) compared to the penicillin group. When the body weights were compared before and after the experiment, there was no difference between the control and penicillin groups, but it was observed that the body weight decreased after probiotic supplementation in the penicillin + probiotic group. Probiotic supplementation may have anti-seizure effect by reducing proinflammatory cytokine and NO levels in epileptic rat brain.
Collapse
Affiliation(s)
- Nildem Kızılaslan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, University of Tokat Gaziosmanpasa, Tokat, Turkey
| | - Orhan Sumbul
- Department of Neurology, Faculty of Medicine, University of Tokat Gaziosmanpasa, Tokat, Turkey
| | - Hatice Aygun
- Department of Physiology, Faculty of Medicine, University of Tokat Gaziosmanpasa, Tokat, 60030, Turkey.
| |
Collapse
|
4
|
Siwek M, Gorostowicz A, Bosak M, Dudek D. Case Report: Vortioxetine in the Treatment of Depressive Symptoms in Patients With Epilepsy-Case Series. Front Pharmacol 2022; 13:852042. [PMID: 35431973 PMCID: PMC9009204 DOI: 10.3389/fphar.2022.852042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/11/2022] [Indexed: 12/25/2022] Open
Abstract
Epilepsy and depression are both serious and potentially disabling conditions which often coexist-bidirectional relationship between the two disorders has been observed. Comorbidity between depression and epilepsy can be attributed to: underlying common pathophysiological mechanisms, psychiatric side effect of antiepileptic medications and psychological response to stress in people with chronic, neurological condition. Despite high prevalence of depressive symptoms in patients with epilepsy, current evidence of the effectiveness of antidepressant therapy in this group of patients is very limited. Vortioxetine is an antidepressant with multimodal activity, very good treatment tolerability, low risk of inducing pharmacokinetic interactions, relative safety of treatment in patients with somatic comorbidities, low risk of causing: sedation, sexual dysfunctions and metabolic side effects. Vortioxetine seems to be a promising treatment option for depressed patients with cognitive dysfunctions, anhedonia and anxiety. In this case series, we report nine cases of patients with epilepsy and depressive symptoms treated with vortioxetine. Seven cases are patients with secondary focal and generalized epilepsy and two with unclassified epilepsy. Three patients presented with depressive episode in the course of bipolar disorder and six patients had depressive symptoms due to organic mood disorder. The dose range of vortioxetine was between 10 and 20 mg. In all of the presented cases effectiveness and tolerability of treatment were very good. Remission of depressive symptoms was achieved in all patients. No epilepsy seizures after switch to vortioxetine were observed in seven cases. In two patients seizures occurred during the first months of vortioxetine treatment but this most probably was due to suboptimal antiepileptic treatment-satisfactory seizure control was achieved after optimization of antiepileptic pharmacotherapy. Vortioxetine was discontinued in two of the presented cases due to pregnancy planning. The duration of observation period during vortioxetine therapy ranged from 2 to 48 months. In conclusion, vortioxetine can be a promising treatment option in patients with epilepsy and comorbid depressive symptoms.
Collapse
Affiliation(s)
- Marcin Siwek
- Department of Affective Disorders, Jagiellonian University Medical College, Kraków, Poland
| | | | - Magdalena Bosak
- Department of Neurology, Jagiellonian University Medical College, Krakow, Poland
| | - Dominika Dudek
- Department of Psychiatry, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
5
|
Aygun H, Akin AT, Kızılaslan N, Sumbul O, Karabulut D. Probiotic supplementation alleviates absence seizures and anxiety- and depression-like behavior in WAG/Rij rat by increasing neurotrophic factors and decreasing proinflammatory cytokines. Epilepsy Behav 2022; 128:108588. [PMID: 35152169 DOI: 10.1016/j.yebeh.2022.108588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/22/2022] [Accepted: 01/22/2022] [Indexed: 01/15/2023]
Abstract
AIM Epilepsy is one of the most common chronic brain disorders that affect millions of people worldwide. In the present study, we investigated the effects of probiotic supplementation on absence epilepsy and anxiety-and depression-like behavior in WAG/Rij rats. MATERIAL AND METHOD Fourteen male WAG/Rij rats (absence-epileptic) and seven male Wistar rats (nonepileptic) were used. The effects of probiotic VSL#3 (12.86 bn living bacteria/kg/day for 30 day/gavage) on absence seizures, and related psychiatric comorbidities were evaluated in WAG/Rij rats. Anxiety-like behavior was evaluated by the open-field test and depression-like behavior by the forced swimming test. In addition, the brain tissues of rats were evaluated histopathologically for nerve growth factor [NGF], brain-derived neurotrophic factor [BDNF], SRY sex-determining region Y-box 2 [SOX2] and biochemically for nitric oxide [NO], tumor necrosis factor-alpha [TNF-α] ,and Interleukin-6 [IL-6]. RESULTS Compared to Wistar rats, WAG/Rij rats exhibited anxiety- and depression-like behavior, and had lower BDNF, NGF and SOX2 immunoreactivity, and higher TNF-α, IL-6 levels in brain tissue. VSL#3 supplementation reduced the duration and number of spike-wave discharges (SWDs) and exhibited anxiolytic or anti-depressive effect. VSL#3 supplement also increased the NGF immunoreactivity while decreasing IL-6, TNF-α and NO levels in WAG/Rij rat brain. CONCLUSION The findings of the present study showed that neurotrophins, SOX2 deficiency, and pro-inflammatory cytokines may play a role in the pathogenesis of absence epilepsy. Our data support the hypothesis that the probiotics have anti-inflammatory effect. The present study is the first to show the positive effects of probiotic bacteria on absence seizures and anxiety- and depression-like behavior.
Collapse
Affiliation(s)
- Hatice Aygun
- Department of Physiology, Faculty of Medicine, University of Tokat Gaziosmanpasa, Tokat, Turkey.
| | - Ali Tugrul Akin
- Department of Biology, Faculty of Science and Literature, University of Erciyes, Kayseri, Turkey
| | - Nildem Kızılaslan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, University of Tokat Gaziosmanpasa Tokat, Turkey
| | - Orhan Sumbul
- Department of Neurology Faculty of Medicine University of Tokat Gaziosmanpasa, Tokat, Turkey
| | - Derya Karabulut
- Department of Histology-Embryology, Faculty of Medicine, University of Erciyes, Kayseri, Turkey
| |
Collapse
|
6
|
Sere P, Zsigri N, Raffai T, Furdan S, Győri F, Crunelli V, Lőrincz ML. Activity of the Lateral Hypothalamus during Genetically Determined Absence Seizures. Int J Mol Sci 2021; 22:ijms22179466. [PMID: 34502374 PMCID: PMC8431596 DOI: 10.3390/ijms22179466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Absence seizures (ASs) are sudden, transient lapses of consciousness associated with lack of voluntary movements and generalized 2.5–4 Hz spike-wave discharges (SWDs) in the EEG. In addition to the thalamocortical system, where these pathological oscillations are generated, multiple neuronal circuits have been involved in their modulation and associated comorbidities including the serotonergic system. Neuronal activity in one of the major synaptic input structures to the brainstem dorsal raphé nucleus (DRN), the lateral hypothalamus (LH), has not been characterized. (2) Methods: We used viral tract tracing and optogenetics combined with in vitro and in vivo electrophysiology to assess the involvement of the LH in absence epilepsy in a genetic rodent model. (3) Results: We found that a substantial fraction of LH neurons project to the DRN of which a minority is GABAergic. The LH to DRN projection can lead to monosynaptic iGluR mediated excitation in DRN 5-HT neurons. Neuronal activity in the LH is coupled to SWDs. (4) Conclusions: Our results indicate that a brain area involved in the regulation of autonomic functions and heavily innervating the RN is involved in ASs. The decreased activity of LH neurons during SWDs could lead to both a decreased excitation and disinhibition in the DRN. These results support a long-range subcortical regulation of serotonergic neuromodulation during ASs and further our understanding of the state-dependence of these seizures and some of their associated comorbidities.
Collapse
Affiliation(s)
- Péter Sere
- Department of Physiology, Anatomy and Neuroscience, Faculty of Sciences University of Szeged, 6726 Szeged, Hungary; (P.S.); (N.Z.); (T.R.); (S.F.); (F.G.)
- Department of Physiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Nikolett Zsigri
- Department of Physiology, Anatomy and Neuroscience, Faculty of Sciences University of Szeged, 6726 Szeged, Hungary; (P.S.); (N.Z.); (T.R.); (S.F.); (F.G.)
- Department of Physiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Timea Raffai
- Department of Physiology, Anatomy and Neuroscience, Faculty of Sciences University of Szeged, 6726 Szeged, Hungary; (P.S.); (N.Z.); (T.R.); (S.F.); (F.G.)
- Department of Physiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Szabina Furdan
- Department of Physiology, Anatomy and Neuroscience, Faculty of Sciences University of Szeged, 6726 Szeged, Hungary; (P.S.); (N.Z.); (T.R.); (S.F.); (F.G.)
| | - Fanni Győri
- Department of Physiology, Anatomy and Neuroscience, Faculty of Sciences University of Szeged, 6726 Szeged, Hungary; (P.S.); (N.Z.); (T.R.); (S.F.); (F.G.)
| | - Vincenzo Crunelli
- Neuroscience Division, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK;
| | - Magor L. Lőrincz
- Department of Physiology, Anatomy and Neuroscience, Faculty of Sciences University of Szeged, 6726 Szeged, Hungary; (P.S.); (N.Z.); (T.R.); (S.F.); (F.G.)
- Department of Physiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
- Neuroscience Division, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK;
- Correspondence:
| |
Collapse
|