1
|
Wong CYJ, Baldelli A, Hoyos CM, Tietz O, Ong HX, Traini D. Insulin Delivery to the Brain via the Nasal Route: Unraveling the Potential for Alzheimer's Disease Therapy. Drug Deliv Transl Res 2024; 14:1776-1793. [PMID: 38441832 PMCID: PMC11153287 DOI: 10.1007/s13346-024-01558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 06/06/2024]
Abstract
This comprehensive review delves into the potential of intranasal insulin delivery for managing Alzheimer's Disease (AD) while exploring the connection between AD and diabetes mellitus (DM). Both conditions share features of insulin signalling dysregulation and oxidative stress that accelerate inflammatory response. Given the physiological barriers to brain drug delivery, including the blood-brain barrier, intranasal administration emerges as a non-invasive alternative. Notably, intranasal insulin has shown neuroprotective effects, impacting Aβ clearance, tau phosphorylation, and synaptic plasticity. In preclinical studies and clinical trials, intranasally administered insulin achieved rapid and extensive distribution throughout the brain, with optimal formulations exhibiting minimal systemic circulation. The detailed mechanism of insulin transport through the nose-to-brain pathway is elucidated in the review, emphasizing the role of olfactory and trigeminal nerves. Despite promising prospects, challenges in delivering protein drugs from the nasal cavity to the brain remain, including enzymes, tight junctions, mucociliary clearance, and precise drug deposition, which hinder its translation to clinical settings. The review encompasses a discussion of the strategies to enhance the intranasal delivery of therapeutic proteins, such as tight junction modulators, cell-penetrating peptides, and nano-drug carrier systems. Moreover, successful translation of nose-to-brain drug delivery necessitates a holistic understanding of drug transport mechanisms, brain anatomy, and nasal formulation optimization. To date, no intranasal insulin formulation has received regulatory approval for AD treatment. Future research should address challenges related to drug absorption, nasal deposition, and the long-term effects of intranasal insulin. In this context, the evaluation of administration devices for nose-to-brain drug delivery becomes crucial in ensuring precise drug deposition patterns and enhancing bioavailability.
Collapse
Affiliation(s)
- Chun Yuen Jerry Wong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW, 2037, Australia
- Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Alberto Baldelli
- Faculty of Land and Food Systems, The University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Camilla M Hoyos
- Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW, 2037, Australia
| | - Ole Tietz
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW, 2037, Australia.
- Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW, 2037, Australia.
- Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
2
|
Penovich PE, Rao VR, Long L, Carrazana E, Rabinowicz AL. Benzodiazepines for the Treatment of Seizure Clusters. CNS Drugs 2024; 38:125-140. [PMID: 38358613 PMCID: PMC10881644 DOI: 10.1007/s40263-023-01060-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 02/16/2024]
Abstract
Patients with epilepsy may experience seizure clusters, which are described by the US Food and Drug Administration (FDA) as intermittent, stereotypic episodes of frequent seizure activity that are distinct from a patient's usual seizure pattern. Untreated seizure clusters may increase the risk for status epilepticus, as well as decrease quality of life and increase burden on patients and care partners. Benzodiazepine therapies are the mainstay for acute treatment of seizure clusters and are often administered by nonmedical care partners outside a healthcare facility. Three rescue therapies are currently FDA-approved for this indication, with diazepam rectal gel being the first in 1997, for patients aged ≥ 2 years. Limitations of rectal administration (e.g., positioning and disrobing the patient, which may affect ease of use and social acceptability; interpatient variation in bioavailability) led to the investigation of the potential for nasal administration as an alternative. Midazolam nasal spray (MDS) was approved by the FDA in 2019 for patients aged ≥ 12 years and diazepam nasal spray (DNS) in 2020 for patients aged ≥ 6 years; these two intranasal therapies have differences in their formulations [e.g., organic solvents (MDS) vs. Intravail and vitamin E for absorption and solubility (DNS)], effectiveness (e.g., proportion of seizure clusters requiring only one dose), and safety profiles. In clinical studies, the proportion of seizure clusters for which only one dose of medication was used varied between the three approved rescue therapies with the highest single-dose rate for any time period for DNS; however, although studies for all three preparations enrolled patients with highly intractable epilepsy, inclusion and exclusion criteria varied, so the three cannot be directly compared. Treatments that have been used off-label for seizure clusters in the USA include midazolam for injection as an intranasal spray (indicated for sedation/anxiolysis/amnesia and anesthesia) and tablet forms of clonazepam (indicated for treatment for seizure disorders) and lorazepam (indicated for anxiety). In the European Union, buccal and intranasal midazolam are used for treating the indication of prolonged, acute convulsive seizures and rectal diazepam solution for the indication of epileptic and febrile convulsions; duration of effectiveness for these medications for the treatment of seizure clusters has not been established. This paper examines the literature context for understanding seizure clusters and their treatment and provides effectiveness, safety, and administration details for the three FDA-approved rescue therapies. Additionally, other medications that are used for rescue therapy in the USA and globally are discussed. Finally, the potential benefits of seizure action plans and candidates for their use are addressed. This paper is intended to provide details about the unique characteristics of rescue therapies for seizure clusters to help clarify appropriate treatment for individual patients.
Collapse
Affiliation(s)
| | - Vikram R Rao
- University of California, San Francisco, CA, USA
| | - Lucretia Long
- Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Enrique Carrazana
- Neurelis, Inc., San Diego, CA, USA
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | | |
Collapse
|
3
|
Madden S, Carrazana E, Rabinowicz AL. Optimizing Absorption for Intranasal Delivery of Drugs Targeting the Central Nervous System Using Alkylsaccharide Permeation Enhancers. Pharmaceutics 2023; 15:2119. [PMID: 37631332 PMCID: PMC10458890 DOI: 10.3390/pharmaceutics15082119] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/19/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Intranasal delivery of drugs offers several potential benefits related to ease of delivery, rapid onset, and patient experience, which may be of particular relevance to patients with central nervous system (CNS) conditions who experience acute events. Intranasal formulations must be adapted to address anatomical and physiological characteristics of the nasal cavity, including restricted dose volume, limited surface area, and barriers to mucosal absorption, in addition to constraints on the absorption window due to mucociliary clearance. Development of an effective formulation may utilize strategies including the addition of excipients to address the physicochemical properties of the drug within the constraints of nasal delivery. Dodecyl maltoside (DDM) and tetradecyl maltoside are alkylsaccharide permeation enhancers with well-established safety profiles, and studies have demonstrated transiently improved absorption and favorable bioavailability of several compounds in preclinical and clinical trials. Dodecyl maltoside is a component of three US Food and Drug Administration (FDA)-approved intranasal medications: diazepam for the treatment of seizure cluster in epilepsy, nalmefene for the treatment of acute opioid overdose, and sumatriptan for the treatment of migraine. Another drug product with DDM as an excipient is currently under FDA review, and numerous investigational drugs are in early-stage development. Here, we review factors related to the delivery of intranasal drugs and the role of alkylsaccharide permeation enhancers in the context of approved and future intranasal formulations of drugs for CNS conditions.
Collapse
Affiliation(s)
- Stuart Madden
- Neurelis, Inc., San Diego, CA 92121, USA; (E.C.); (A.L.R.)
| | - Enrique Carrazana
- Neurelis, Inc., San Diego, CA 92121, USA; (E.C.); (A.L.R.)
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | | |
Collapse
|
4
|
Tatum WO, Glauser T, Peters JM, Verma A, Weatherspoon S, Benbadis S, Becker DA, Puri V, Smith M, Misra SN, Rabinowicz AL, Carrazana E. Acute seizure therapies in people with epilepsy: Fact or fiction? A U.S. Perspective. Epilepsy Behav Rep 2023; 23:100612. [PMID: 37520180 PMCID: PMC10372156 DOI: 10.1016/j.ebr.2023.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/20/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
Patients with epilepsy (PWE) may experience seizure emergencies including acute repetitive seizures despite chronic treatment with daily antiseizure medications. Seizures may adversely impact routine daily activities and/or healthcare utilization and may impair the quality of life of patients with epilepsy and their caregivers. Seizures often occur at home, school, or work in a community setting. Appropriate treatment that is readily accessible for patients with seizure urgencies and emergencies is essential outside the hospital setting. When determining the best acute antiseizure therapy for PWE, clinicians need to consider all of the available rescue medications and their routes of administration including the safety and efficacy profiles. Benzodiazepines are a standard of care as a rescue therapy, yet there are several misconceptions about their use and safety. Reevaluating potential misconceptions and formulating best practices are necessary to maximize usage for each available option of acute therapy. We examine common beliefs associated with traditional use of acute seizure therapies to refute or support them based on the current level of evidence in the published literature.
Collapse
Affiliation(s)
- William O. Tatum
- Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224-1865, USA
| | - Tracy Glauser
- Comprehensive Epilepsy Center, Cincinnati Children’s Hospital, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Jurriaan M. Peters
- Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Amit Verma
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, 6560 Fannin St., Ste 802, Houston, TX 77030, USA
| | - Sarah Weatherspoon
- Le Bonheur Children's Hospital, University of Tennessee Health Science Center, 848 Adams Ave., Memphis, TN 38103, USA
| | - Selim Benbadis
- Comprehensive Epilepsy Program, University of South Florida & Tampa General Hospital, 2 Tampa General Cir., Tampa, FL 33606, USA
| | - Danielle A. Becker
- Department of Neurology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Vinay Puri
- Norton Children’s Neuroscience Institute, affiliated with University of Louisville, 411 E. Chestnut St., Suite 645, Louisville, KY 40202, USA
| | - Michael Smith
- Department of Neurology, Rush University, 1725 W. Harrison St., Ste 885, Chicago, IL 60612, USA
| | - Sunita N. Misra
- Neurelis Inc., 3430 Carmel Mountain Rd., Ste 300, San Diego, CA 92121, USA
| | | | - Enrique Carrazana
- Neurelis Inc., 3430 Carmel Mountain Rd., Ste 300, San Diego, CA 92121, USA
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI 96813, USA
| |
Collapse
|
5
|
Chung S, Peters JM, Detyniecki K, Tatum W, Rabinowicz AL, Carrazana E. The nose has it: Opportunities and challenges for intranasal drug administration for neurologic conditions including seizure clusters. Epilepsy Behav Rep 2022; 21:100581. [PMID: 36636458 PMCID: PMC9829802 DOI: 10.1016/j.ebr.2022.100581] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022] Open
Abstract
Nasal administration of treatments for neurologic conditions, including rescue therapies to treat seizure clusters among people with epilepsy, represents a meaningful advance in patient care. Nasal anatomy and physiology underpin the multiple advantages of nasal administration but also present challenges that must be addressed in any successful nasal formulation. Nasal cavity anatomy is complex, with a modest surface area for absorption that limits the dose volume of an intranasal formulation. The mucociliary clearance mechanism and natural barriers of the nasal epithelia must be overcome for adequate absorption. An extensive vasculature and the presence of olfactory nerves in the nasal cavity enable both systemic and direct-to-brain delivery of drugs targeting the central nervous system. Two intranasal benzodiazepine rescue therapies have been approved by the US Food and Drug Administration for seizure-cluster treatment, in addition to the traditional rectal formulation. Nasal sprays are easy to use and offer the potential for quick and consistent bioavailability. This review aims to increase the clinician's understanding of nasal anatomy and physiology and of the formulation of intranasal rescue therapies and to facilitate patient education and incorporate intranasal rescue therapies for seizure clusters (also known as acute repetitive seizures) into their seizure action plans.
Collapse
Affiliation(s)
- Steve Chung
- Banner University Medical Center, University of Arizona, 475 N. 5th St., Phoenix, AZ 85004, United States,Corresponding author.
| | - Jurriaan M. Peters
- Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, United States
| | - Kamil Detyniecki
- Miller School of Medicine, University of Miami, 1600 NW 10th Ave #1140, Miami, FL 33136, United States
| | - William Tatum
- Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL 32224, United States
| | | | - Enrique Carrazana
- Neurelis, Inc., 3430 Carmel Mountain Rd, San Diego, CA 92121, United States,John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St, Honolulu, HI 96813, United States
| |
Collapse
|
6
|
Kotloski RJ, Gidal BE. Rescue Treatments for Seizure Clusters. Neurol Clin 2022; 40:927-937. [DOI: 10.1016/j.ncl.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Gidal B, Detyniecki K. Rescue therapies for seizure clusters: Pharmacology and target of treatments. Epilepsia 2022; 63 Suppl 1:S34-S44. [PMID: 35999174 PMCID: PMC9543841 DOI: 10.1111/epi.17341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022]
Abstract
The primary goal of treatment for seizure clusters is cessation of the cluster to avoid progression to more severe conditions, such as prolonged seizures and status epilepticus. Rescue therapies are key components of treatment plans for patients with seizure clusters. Three rescue therapies are approved in the United States for the treatment of seizure clusters: diazepam rectal gel, midazolam nasal spray, and diazepam nasal spray. This review characterizes the pharmacological function of rescue therapies for seizure clusters, as well as describing γ‐aminobutyric acid A (GABAA) receptor functions. GABAA receptors are heteropentamers, consisting primarily of α1‐6, β1‐3, γ2, and δ subunits in the central nervous system. These subunits can traffic to and from the membrane to regulate membrane potential. Benzodiazepines, such as diazepam and midazolam, are positive allosteric modulators of GABAA receptors, the activation of which leads to an increase in intracellular chloride, hyperpolarization of the cell membrane, and a reduction in excitation. GABAA receptor subunit mutations, dysregulation of trafficking, and degradation are associated with epilepsy. Although benzodiazepines are effective GABAA receptor modulators, individual formulations have unique profiles in practice. Diazepam rectal gel is an effective rescue therapy for seizure clusters; however, adults and adolescents may have social reservations regarding its administration. Intranasal delivery of midazolam or diazepam is a promising alternative to rectal administration because these formulations offer easy, socially acceptable administration and exhibit a rapid onset. Off‐label benzodiazepines, such as orally disintegrating lorazepam and intranasal use of an intravenous formulation of midazolam via nasal atomizer, are less well characterized regarding bioavailability and tolerability compared with approved agents.
Collapse
Affiliation(s)
- Barry Gidal
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Kamil Detyniecki
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, United States
| |
Collapse
|
8
|
Rabinowicz AL, Faught E, Cook DF, Carrazana E. Implications of Seizure-Cluster Treatment on Healthcare Utilization: Use of Approved Rescue Medications. Neuropsychiatr Dis Treat 2022; 18:2431-2441. [PMID: 36325434 PMCID: PMC9619205 DOI: 10.2147/ndt.s376104] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
PURPOSE People with epilepsy may experience seizure clusters despite a stable regimen of antiseizure medications. Such clusters have the potential to last ≥24 hours, typically occur in the community setting, and may progress to medical emergencies, such as status epilepticus, if untreated. Thus, long-acting rescue therapy for seizure clusters is needed that can be administered by nonmedical individuals outside a hospital. Benzodiazepines are the foundation of rescue therapy for seizure clusters. The approved outpatient treatments (ie, diazepam, midazolam) have differing profiles that may affect multiple aspects of health-care utilization. The current labeling of these medications allows for a second dose if needed to control the cluster. Although no head-to-head studies directly comparing rescue treatments have been conducted, differences between studies with generally similar designs may provide context for the potential importance of second doses of rescue therapy on health-care utilization. METHODS For this analysis, large, long-term, open-label studies of approved seizure-cluster treatments designed for use by nonmedical caregivers were reviewed, and the percentage of seizure clusters for which a second dose was used or that were not controlled at 6, 12, and 24 hours was examined. Available data on hospitalizations were also collected. RESULTS The 3 identified studies meeting the inclusion criteria were for use of diazepam rectal gel, intranasal midazolam, and diazepam nasal spray. Across these studies, the use of a second dose ranged from <40% at 6 hours to <13% at 24 hours. Hospitalizations and serious treatment-emergent adverse events were reported variably across these studies. CONCLUSION These results demonstrate the importance of second doses of rescue therapy for seizure clusters for optimizing health-care utilization. Need for second doses should be included as one component. In turn, when second doses are needed, they have the potential to curtail emergency department use and hospitalization and to prevent further seizure clusters.
Collapse
Affiliation(s)
| | - Edward Faught
- Emory Epilepsy Program, Emory University School of Medicine, Atlanta, GA, USA
| | - David F Cook
- Clinical Development & Medical Affairs, Neurelis, Inc., San Diego, CA, USA
| | - Enrique Carrazana
- Clinical Development & Medical Affairs, Neurelis, Inc., San Diego, CA, USA.,John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| |
Collapse
|
9
|
Wheless JW, Miller I, Hogan RE, Dlugos D, Biton V, Cascino GD, Sperling MR, Liow K, Vazquez B, Segal EB, Tarquinio D, Mauney W, Desai J, Rabinowicz AL, Carrazana E. Final results from a Phase 3, long-term, open-label, repeat-dose safety study of diazepam nasal spray for seizure clusters in patients with epilepsy. Epilepsia 2021; 62:2485-2495. [PMID: 34418086 PMCID: PMC9290500 DOI: 10.1111/epi.17041] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/12/2021] [Accepted: 08/02/2021] [Indexed: 11/29/2022]
Abstract
Objective A Phase 3 open‐label safety study (NCT02721069) evaluated long‐term safety of diazepam nasal spray (Valtoco) in patients with epilepsy and frequent seizure clusters. Methods Patients were 6–65 years old with diagnosed epilepsy and seizure clusters despite stable antiseizure medications. The treatment period was 12 months, with study visits at Day 30 and every 60 days thereafter, after which patients could elect to continue. Doses were based on age and weight. Seizure and treatment information was recorded in diaries. Treatment‐emergent adverse events (TEAEs), nasal irritation, and olfactory changes were recorded. Results Of 163 patients in the safety population, 117 (71.8%) completed the study. Duration of exposure was ≥12 months for 81.6% of patients. There was one death (sudden unexpected death in epilepsy) and one withdrawal owing to a TEAE (major depression), both considered unlikely to be related to treatment. Diazepam nasal spray was administered 4390 times for 3853 seizure clusters, with 485 clusters treated with a second dose within 24 h; 53.4% of patients had monthly average usage of one to two doses, 41.7% two to five doses, and 4.9% more than five doses. No serious TEAEs were considered to be treatment related. TEAEs possibly or probably related to treatment (n = 30) were most commonly nasal discomfort (6.1%); headache (2.5%); and dysgeusia, epistaxis, and somnolence (1.8% each). Only 13 patients (7.9%) showed nasal irritation, and there were no relevant olfactory changes. The safety profile of diazepam nasal spray was generally similar across subgroups based on age, monthly usage, concomitant benzodiazepine therapy, or seasonal allergy/rhinitis. Significance In this large open‐label safety study, the safety profile of diazepam nasal spray was consistent with the established profile of rectal diazepam, and the high retention rate supports effectiveness in this population. A second dose was used in only 12.6% of seizure clusters.
Collapse
Affiliation(s)
- James W Wheless
- Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ian Miller
- Formerly Nicklaus Children's Hospital, Miami, Florida, USA
| | - R Edward Hogan
- Washington University in St. Louis, St. Louis, Missouri, USA
| | - Dennis Dlugos
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Victor Biton
- Arkansas Epilepsy Program, Little Rock, Arkansas, USA
| | | | | | - Kore Liow
- Hawaii Pacific Neuroscience, Honolulu, Hawaii, USA
| | - Blanca Vazquez
- New York University, Comprehensive Epilepsy Center, New York, New York, USA
| | - Eric B Segal
- Hackensack University Medical Center and Northeast Regional Epilepsy Group, Hackensack, New Jersey, USA
| | | | - Weldon Mauney
- Northwest Florida Clinical Research Group, Gulf Breeze, Florida, USA
| | - Jay Desai
- Children's Hospital of Los Angeles, Los Angeles, California, USA
| | | | | | | |
Collapse
|
10
|
Higdon LM, Sperling MR. A review of a diazepam nasal spray for the treatment of acute seizure clusters and prolonged seizures. Expert Rev Neurother 2021; 21:1207-1212. [PMID: 34374629 DOI: 10.1080/14737175.2021.1965880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Some people with epilepsy experience acute repetitive seizures (ARS), also termed seizure clusters, which have a negative impact on patient and caregiver quality of life, emotional wellbeing, daily function, and may pose risk of injury or death. In addition, these events increase healthcare utilization in emergency departments and hospitals, which might be avoided with use of an at-home rescue medication. Intranasal formulations of benzodiazepines used as rescue medications provide a means of delivering rescue medication that is socially acceptable and more easily administered than rectal drug. AREAS COVERED This article provides a review of intranasal diazepam covering development, pharmacokinetics, dosing, safety, adverse effects, and efficacy. The authors compare it with rectal diazepam and intranasal midazolam. EXPERT OPINION Intranasal rescue drugs are a valuable treatment modality for seizure clusters and prolonged seizures that are effective and well tolerated with the potential to enhance patient quality of life, reduce the incidence of seizure-related injury, and lessen the need for hospital visits. The literature does not provide evidence comparing the various rescue agents, and head-to-head comparison studies are needed. An inhaled benzodiazepine as a seizure rescue drug is currently undergoing clinical trials.
Collapse
Affiliation(s)
- Lindsay M Higdon
- Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael R Sperling
- Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|