1
|
Duma GM, Cuozzo S, Wilson L, Danieli A, Bonanni P, Pellegrino G. Excitation/Inhibition balance relates to cognitive function and gene expression in temporal lobe epilepsy: a high density EEG assessment with aperiodic exponent. Brain Commun 2024; 6:fcae231. [PMID: 39056027 PMCID: PMC11272395 DOI: 10.1093/braincomms/fcae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/22/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Patients with epilepsy are characterized by a dysregulation of excitation/inhibition balance (E/I). The assessment of E/I may inform clinicians during the diagnosis and therapy management, even though it is rarely performed. An accessible measure of the E/I of the brain represents a clinically relevant feature. Here, we exploited the exponent of the aperiodic component of the power spectrum of the electroencephalography (EEG) signal, as a non-invasive and cost-effective proxy of the E/I balance. We recorded resting-state activity with high-density EEG from 67 patients with temporal lobe epilepsy and 35 controls. We extracted the exponent of the aperiodic fit of the power spectrum from source-reconstructed EEG and tested differences between patients with epilepsy and controls. Spearman's correlation was performed between the exponent and clinical variables (age of onset, epilepsy duration and neuropsychology) and cortical expression of epilepsy-related genes derived from the Allen Human Brain Atlas. Patients with temporal lobe epilepsy showed a significantly larger exponent, corresponding to inhibition-directed E/I balance, in bilateral frontal and temporal regions. Lower E/I in the left entorhinal and bilateral dorsolateral prefrontal cortices corresponded to a lower performance of short-term verbal memory. Limited to patients with temporal lobe epilepsy, we detected a significant correlation between the exponent and the cortical expression of GABRA1, GRIN2A, GABRD, GABRG2, KCNA2 and PDYN genes. EEG aperiodic exponent maps the E/I balance non-invasively in patients with epilepsy and reveals a close relationship between altered E/I patterns, cognition and genetics.
Collapse
Affiliation(s)
- Gian Marco Duma
- Scientific Institute IRCCS E.Medea, Epilepsy and Clinical Neurophysiology Unit, 31015, Conegliano, Italy
| | - Simone Cuozzo
- Scientific Institute IRCCS E.Medea, Epilepsy and Clinical Neurophysiology Unit, 31015, Conegliano, Italy
| | - Luc Wilson
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alberto Danieli
- Scientific Institute IRCCS E.Medea, Epilepsy and Clinical Neurophysiology Unit, 31015, Conegliano, Italy
| | - Paolo Bonanni
- Scientific Institute IRCCS E.Medea, Epilepsy and Clinical Neurophysiology Unit, 31015, Conegliano, Italy
| | - Giovanni Pellegrino
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London N6A5C1, Canada
| |
Collapse
|
2
|
Pang X, Liang X, Chang W, Lv Z, Zhao J, Wu P, Li X, Wei W, Zheng J. The role of the thalamus in modular functional networks in temporal lobe epilepsy with cognitive impairment. CNS Neurosci Ther 2024; 30:e14345. [PMID: 37424152 PMCID: PMC10848054 DOI: 10.1111/cns.14345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/04/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023] Open
Abstract
OBJECTIVE Cognitive deficit is common in patients with temporal lobe epilepsy (TLE). Here, we aimed to investigate the modular architecture of functional networks associated with distinct cognitive states in TLE patients together with the role of the thalamus in modular networks. METHODS Resting-state functional magnetic resonance imaging scans were acquired from 53 TLE patients and 37 matched healthy controls. All patients received the Montreal Cognitive Assessment test and accordingly were divided into TLE patients with normal cognition (TLE-CN, n = 35) and TLE patients with cognitive impairment (TLE-CI, n = 18) groups. The modular properties of functional networks were calculated and compared including global modularity Q, modular segregation index, intramodular connections, and intermodular connections. Thalamic subdivisions corresponding to the modular networks were generated by applying a 'winner-take-all' strategy before analyzing the modular properties (participation coefficient and within-module degree z-score) of each thalamic subdivision to assess the contribution of the thalamus to modular functional networks. Relationships between network properties and cognitive performance were then further explored. RESULTS Both TLE-CN and TLE-CI patients showed lower global modularity, as well as lower modular segregation index values for the ventral attention network and the default mode network. However, different patterns of intramodular and intermodular connections existed for different cognitive states. In addition, both TLE-CN and TLE-CI patients exhibited anomalous modular properties of functional thalamic subdivisions, with TLE-CI patients presenting a broader range of abnormalities. Cognitive performance in TLE-CI patients was not related to the modular properties of functional network but rather to the modular properties of functional thalamic subdivisions. CONCLUSIONS The thalamus plays a prominent role in modular networks and potentially represents a key neural mechanism underlying cognitive impairment in TLE.
Collapse
Affiliation(s)
- Xiaomin Pang
- Department of NeurologyGuangxi Medical University First Affiliated HospitalNanningChina
| | - Xiulin Liang
- Department of NeurologyGuangxi Medical University First Affiliated HospitalNanningChina
| | - Weiwei Chang
- Department of NeurologyGuangxi Medical University First Affiliated HospitalNanningChina
| | - Zongxia Lv
- Department of NeurologyGuangxi Medical University First Affiliated HospitalNanningChina
| | - Jingyuan Zhao
- Department of NeurologyGuangxi Medical University First Affiliated HospitalNanningChina
| | - Peirong Wu
- Department of NeurologyGuangxi Medical University First Affiliated HospitalNanningChina
| | - Xinrong Li
- Department of NeurologyGuangxi Medical University First Affiliated HospitalNanningChina
| | - Wutong Wei
- Department of NeurologyGuangxi Medical University First Affiliated HospitalNanningChina
| | - Jinou Zheng
- Department of NeurologyGuangxi Medical University First Affiliated HospitalNanningChina
| |
Collapse
|
3
|
Syed M, Miao J, Sathe A, Kang K, Manmatharayan A, Kogan M, Matias CM, Sharan A, Alizadeh M. Profiles of resting state functional connectivity in temporal lobe epilepsy associated with post-laser interstitial thermal therapy seizure outcomes and semiologies. FRONTIERS IN NEUROIMAGING 2023; 2:1201682. [PMID: 38025313 PMCID: PMC10665565 DOI: 10.3389/fnimg.2023.1201682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023]
Abstract
Introduction It is now understood that in focal epilepsy, impacted neural regions are not limited to the epileptogenic zone. As such, further investigation into the underlying functional connectivity (FC) patterns in those enduring Temporal Lobe Epilepsy (TLE) with Mesial Temporal Sclerosis (MTS) is imperative to understanding the intricacies of the disease. Methods The rsfMRIs of 17 healthy participants, 10 left-sided TLE-MTS patients with a pre-operative history of focal impaired awareness seizures (FIA), and 13 left-sided TLE-MTS patients with a pre-operative history of focal aware seizures (FA) were compared to determine the existence of distinct FC patterns with respect to seizure types. Similarly, the rsfMRIs of the above-mentioned healthy participants, 16 left-sided TLE-MTS individuals who were seizure-free (SF) 12 months postoperatively, and 16 left-sided TLE-MTS persons without seizure freedom (nSF) were interrogated. The ROI-to-ROI connectivity analysis included a total of 175 regions of interest (ROIs) and accounted for both age and duration of epileptic activity. Significant correlations were determined via two-sample t-tests and Bonferroni correction (α = 0.05). Results Comparisons of FA and FIA groups depicted significant correlations between the contralateral anterior cingulate gyrus, subgenual region, and the contralateral cerebellum, lobule III (p-value = 2.26e-4, mean z-score = -0.05 ± 0.28, T = -4.23). Comparisons of SF with nSF depicted two significantly paired-ROIs; the contralateral amygdala and the contralateral precuneus (p-value = 2.9e-5, mean z-score = -0.12 ± 0.19, T = 4.98), as well as the contralateral locus coeruleus and the ipsilateral intralaminar nucleus (p-value= 1.37e-4, mean z-score = 0.06 ± 0.17, T = -4.41). Significance FC analysis proves to be a lucrative modality for exploring unique signatures with respect to seizure types and postoperative outcomes. By furthering our understanding of the differences between epileptic phenotypes, we can achieve improvement in future treatment modalities not limited to targeting advancements.
Collapse
Affiliation(s)
- Mashaal Syed
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jingya Miao
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| | - Anish Sathe
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| | - Kichang Kang
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| | - Arichena Manmatharayan
- Department of Neurology, Detroit Medical Center, University Health Center, Detroit, MI, United States
| | - Michael Kogan
- Department of Neurological Surgery, University of New Mexico, Albuquerque, NM, United States
| | - Caio M. Matias
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ashwini Sharan
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| | - Mahdi Alizadeh
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
- Thomas Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
4
|
Meng X, Deng K, Huang B, Lin X, Wu Y, Tao W, Lin C, Yang Y, Chen F. Classification of temporal lobe epilepsy based on neuropsychological tests and exploration of its underlying neurobiology. Front Hum Neurosci 2023; 17:1100683. [PMID: 37397855 PMCID: PMC10307531 DOI: 10.3389/fnhum.2023.1100683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/09/2023] [Indexed: 07/04/2023] Open
Abstract
Objective To assist improving long-term postoperative seizure-free rate, we aimed to use machine learning algorithms based on neuropsychological data to differentiate temporal lobe epilepsy (TLE) from extratemporal lobe epilepsy (extraTLE), as well as explore the relationship between magnetic resonance imaging (MRI) and neuropsychological tests. Methods Twenty-three patients with TLE and 23 patients with extraTLE underwent neuropsychological tests and MRI scans before surgery. The least absolute shrinkage and selection operator were firstly employed for feature selection, and a machine learning approach with neuropsychological tests was employed to classify TLE using leave-one-out cross-validation. A generalized linear model was used to analyze the relationship between brain alterations and neuropsychological tests. Results We found that logistic regression with the selected neuropsychological tests generated classification accuracies of 87.0%, with an area under the receiver operating characteristic curve (AUC) of 0.89. Three neuropsychological tests were acquired as significant neuropsychological signatures for the diagnosis of TLE. We also found that the Right-Left Orientation Test difference was related to the superior temporal and the banks of the superior temporal sulcus (bankssts). The Conditional Association Learning Test (CALT) was associated with the cortical thickness difference in the lateral orbitofrontal area between the two groups, and the Component Verbal Fluency Test was associated with the cortical thickness difference in the lateral occipital cortex between the two groups. Conclusion These results showed that machine learning-based classification with the selected neuropsychological data can successfully classify TLE with high accuracy compared to previous studies, which could provide kind of warning sign for surgery candidate of TLE patients. In addition, understanding the mechanism of cognitive behavior by neuroimaging information could assist doctors in the presurgical evaluation of TLE.
Collapse
Affiliation(s)
- Xianghong Meng
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China
| | - Kan Deng
- Medical AI Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- MSC Clinical and Technical Solutions, Philips Healthcare, Guangzhou, China
| | - Bingsheng Huang
- Medical AI Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Xiaoyi Lin
- Medical AI Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yingtong Wu
- Medical AI Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Wei Tao
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China
| | - Chuxuan Lin
- Medical AI Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yang Yang
- Department of Radiology, Suining Central Hospital, Suining, China
| | - Fuyong Chen
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China
| |
Collapse
|
5
|
Duma GM, Danieli A, Mattar MG, Baggio M, Vettorel A, Bonanni P, Mento G. Resting state network dynamic reconfiguration and neuropsychological functioning in temporal lobe epilepsy: An HD-EEG investigation. Cortex 2022; 157:1-13. [PMID: 36257103 DOI: 10.1016/j.cortex.2022.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/07/2022] [Accepted: 08/24/2022] [Indexed: 12/15/2022]
Abstract
Temporal lobe epilepsy (TLE) is nowadays considered a network disorder impacting several cognitive domains. In this work we investigated dynamic network reconfiguration differences in patients with unilateral TLE compared to a healthy control group, focusing on two connectivity indices: flexibility and integration. We apply these indices for the first time to high-density EEG source-based functional connectivity. We observed that patients with TLE exhibited significantly lower flexibility than healthy controls in the Control, Default Mode and Attentive Dorsal networks, expressed in the delta, theta and alpha bands. In addition, patients with TLE displayed greater integration values across the majority of the resting state networks, especially in the delta, theta and gamma bands. Relevantly, a higher integration index in the Control, Attentive Dorsal and Visual networks in the delta band was correlated with lower performance in visual attention and executive functions. Moreover, a greater integration index in the gamma band of the Control, Somatomotor and Temporoparietal networks was related to lower long-term memory performance. These results suggest that patients with TLE display dysregulated network reconfiguration, with lower flexibility in the brain areas related to cognitive control and attention, together with excessive inter-network communication (integration index). Finally, the correlation between network integration and the reduced cognitive performance suggests a potential mechanism underlying specific alterations in neuropsychological profile of patients with TLE.
Collapse
Affiliation(s)
- Gian Marco Duma
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille, France; IRCCS E. Medea Scientific Institute, Epilepsy Unit, Conegliano, Treviso, Italy.
| | - Alberto Danieli
- IRCCS E. Medea Scientific Institute, Epilepsy Unit, Conegliano, Treviso, Italy
| | - Marcelo G Mattar
- Department of Cognitive Science, University of California, San Diego, San Diego, CA, USA
| | - Martina Baggio
- IRCCS E. Medea Scientific Institute, Epilepsy Unit, Conegliano, Treviso, Italy
| | - Airis Vettorel
- IRCCS E. Medea Scientific Institute, Epilepsy Unit, Conegliano, Treviso, Italy
| | - Paolo Bonanni
- IRCCS E. Medea Scientific Institute, Epilepsy Unit, Conegliano, Treviso, Italy
| | - Giovanni Mento
- Department of General Psychology, University of Padova, Padova, Italy; Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| |
Collapse
|
6
|
Beniczky S, Tatum WO, Blumenfeld H, Stefan H, Mani J, Maillard L, Fahoum F, Vinayan KP, Mayor LC, Vlachou M, Seeck M, Ryvlin P, Kahane P. Seizure semiology: ILAE glossary of terms and their significance. Epileptic Disord 2022; 24:447-495. [PMID: 35770761 DOI: 10.1684/epd.2022.1430] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/19/2022] [Indexed: 11/17/2022]
Abstract
This educational topical review and Task Force report aims to address learning objectives of the International League Against Epilepsy (ILAE) curriculum. We sought to extract detailed features involving semiology from video recordings and interpret semiological signs and symptoms that reflect the likely localization for focal seizures in patients with epilepsy. This glossary was developed by a working group of the ILAE Commission on Diagnostic Methods incorporating the EEG Task Force. This paper identifies commonly used terms to describe seizure semiology, provides definitions, signs and symptoms, and summarizes their clinical value in localizing and lateralizing focal seizures based on consensus in the published literature. Video-EEG examples are included to illustrate important features of semiology in patients with epilepsy.
Collapse
|
7
|
Almojuela A, Xu Q, O'Carroll A, MacDonald C, Ritchie L, Serletis D. Development of a Pediatric Epilepsy Program: Analysis of Early Multidimensional Outcomes. JOURNAL OF PEDIATRIC EPILEPSY 2022. [DOI: 10.1055/s-0042-1742607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
Background A Pediatric Epilepsy Program was instituted in Manitoba in 2016. This report seeks to describe changes in the management of pediatric epilepsy patients in Manitoba since the inception of this Program, to provide an early analysis of local outcomes, and to present a framework for further program development.
Methods Data was collected for patients treated both before and after inception of the Program. Caregivers completed questionnaires on quality of life and program satisfaction. An online database was created to capture demographic information, seizure and quality of life outcomes, and caregiver satisfaction ratings. Descriptive statistics were used to summarize the results.
Results Prior to commencement of the Program, 16 patients underwent vagal nerve stimulator (VNS) insertion. At last follow-up, 6.25% of patients achieved Engel class I outcome, 75% achieved class III outcome, and 18.75% were classified as class IV. Following inception of the Program, 11 patients underwent resective procedures and 3 underwent VNS insertions. At last follow-up, 78.6% of patients achieved Engel class I outcome, 14.3% achieved class III outcome, and 7.1% were classified as class IV. Since inception of the Program, the average Quality of Life in Childhood Epilepsy Questionnaire-55 score measuring patient quality of life was (59.7 ± 23.2)/100. The average Care-Related Quality of Life-7D score measuring caregiver quality of life was (78.3 ± 18.6)/100. Caregiver satisfaction had an average rating of (9.4 ± 0.8)/10.
Conclusion Access to epilepsy surgery has significantly improved for children in Manitoba and has led to favorable, early multidimensional outcomes. Structural organization, funding, and multidisciplinary engagement are necessary for program sustainability and growth.
Collapse
Affiliation(s)
- Alysa Almojuela
- Department of Surgery, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Qi Xu
- Department of Pediatrics and Child Health, Section of Pediatric Neurology, University of Manitoba, Winnipeg, Canada
| | - Aoife O'Carroll
- Department of Pediatrics and Child Health, Section of Pediatric Neurology, University of Manitoba, Winnipeg, Canada
| | - Carling MacDonald
- Department of Surgery, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Lesley Ritchie
- Department of Clinical Health Psychology, University of Manitoba, Winnipeg, Canada
| | - Demitre Serletis
- Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, Ohio, United States
- Charles Shor Epilepsy Center, Cleveland Clinic, Cleveland, Ohio, United States
| |
Collapse
|
8
|
Furia A, Licchetta L, Muccioli L, Ferri L, Mostacci B, Mazzoni S, Menghi V, Minardi R, Tinuper P, Bisulli F. Epilepsy With Auditory Features: From Etiology to Treatment. Front Neurol 2022; 12:807939. [PMID: 35153984 PMCID: PMC8829259 DOI: 10.3389/fneur.2021.807939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/31/2021] [Indexed: 01/22/2023] Open
Abstract
Epilepsy with auditory features (EAF) is a focal epilepsy belonging to the focal epileptic syndromes with onset at variable age according to the new ILAE Classification. It is characterized by seizures with auditory aura or receptive aphasia suggesting a lateral temporal lobe involvement of the epileptic discharge. Etiological factors underlying EAF are largely unknown. In the familial cases with an autosomal dominant pattern of inheritance several genes have been involved, among which the first discovered, LGI1, was thought to be predominant. However, increasing evidence now points to a multifactorial etiology, as familial and sporadic EAF share a virtually identical electro-clinical characterization and only a few have a documented genetic etiology. Patients with EAF usually have an unremarkable neurological examination and a good response to antiseizure medications. However, it must be underscored that total remission might be lower than expected and that treatment withdrawal might lead to relapses. Thus, a proper understanding of this condition is in order for better patient treatment and counseling. Further studies are still required to further characterize the many facets of EAF.
Collapse
Affiliation(s)
- Alessandro Furia
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Laura Licchetta
- Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Reference Center for Rare and Complex Epilepsies, Bologna, Italy
| | - Lorenzo Muccioli
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Lorenzo Ferri
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Reference Center for Rare and Complex Epilepsies, Bologna, Italy
| | - Barbara Mostacci
- Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Reference Center for Rare and Complex Epilepsies, Bologna, Italy
| | - Stefania Mazzoni
- Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Reference Center for Rare and Complex Epilepsies, Bologna, Italy
| | - Veronica Menghi
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Raffaella Minardi
- Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Reference Center for Rare and Complex Epilepsies, Bologna, Italy
| | - Paolo Tinuper
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Reference Center for Rare and Complex Epilepsies, Bologna, Italy
| | - Francesca Bisulli
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Reference Center for Rare and Complex Epilepsies, Bologna, Italy
- *Correspondence: Francesca Bisulli
| |
Collapse
|
9
|
Kopachev D, Shishkina L, Shkatova A, Golovteev A, Troitsky A, Grinenko O, Sharkova S, Petrosyan D, Gushcha A. Long-term epilepsy-associated tumors. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:127-134. [DOI: 10.17116/jnevro2022122041127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|