1
|
Sullivan J, Benítez A, Roth J, Andrews JS, Shah D, Butcher E, Jones A, Cross JH. A systematic literature review on the global epidemiology of Dravet syndrome and Lennox-Gastaut syndrome: Prevalence, incidence, diagnosis, and mortality. Epilepsia 2024; 65:1240-1263. [PMID: 38252068 DOI: 10.1111/epi.17866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024]
Abstract
Dravet syndrome (DS) and Lennox-Gastaut syndrome (LGS) are rare developmental and epileptic encephalopathies associated with seizure and nonseizure symptoms. A comprehensive understanding of how many individuals are affected globally, the diagnostic journey they face, and the extent of mortality associated with these conditions is lacking. Here, we summarize and evaluate published data on the epidemiology of DS and LGS in terms of prevalence, incidence, diagnosis, genetic mutations, and mortality and sudden unexpected death in epilepsy (SUDEP) rates. The full study protocol is registered on PROSPERO (CRD42022316930). After screening 2172 deduplicated records, 91 unique records were included; 67 provided data on DS only, 17 provided data on LGS only, and seven provided data on both. Case definitions varied considerably across studies, particularly for LGS. Incidence and prevalence estimates per 100 000 individuals were generally higher for LGS than for DS (LGS: incidence proportion = 14.5-28, prevalence = 5.8-60.8; DS: incidence proportion = 2.2-6.5, prevalence = 1.2-6.5). Diagnostic delay was frequently reported for LGS, with a wider age range at diagnosis reported than for DS (DS, 1.6-9.2 years; LGS, 2-15 years). Genetic screening data were reported by 63 studies; all screened for SCN1A variants, and only one study specifically focused on individuals with LGS. Individuals with DS had a higher mortality estimate per 1000 person-years than individuals with LGS (DS, 15.84; LGS, 6.12) and a lower median age at death. SUDEP was the most frequently reported cause of death for individuals with DS. Only four studies reported mortality information for LGS, none of which included SUDEP. This systematic review highlights the paucity of epidemiological data available for DS and especially LGS, demonstrating the need for further research and adoption of standardized diagnostic criteria.
Collapse
Affiliation(s)
- Joseph Sullivan
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Arturo Benítez
- Takeda Development Center Americas, Cambridge, Massachusetts, USA
| | - Jeannine Roth
- Takeda Pharmaceuticals International, Zurich, Switzerland
| | - J Scott Andrews
- Takeda Development Center Americas, Cambridge, Massachusetts, USA
| | - Drishti Shah
- Takeda Development Center Americas, Cambridge, Massachusetts, USA
| | | | | | - J Helen Cross
- University College London, National Institute for Health and Care Research Biomedical Research Centre, London, UK
| |
Collapse
|
2
|
Fan HC, Yang MT, Lin LC, Chiang KL, Chen CM. Clinical and Genetic Features of Dravet Syndrome: A Prime Example of the Role of Precision Medicine in Genetic Epilepsy. Int J Mol Sci 2023; 25:31. [PMID: 38203200 PMCID: PMC10779156 DOI: 10.3390/ijms25010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Dravet syndrome (DS), also known as severe myoclonic epilepsy of infancy, is a rare and drug-resistant form of developmental and epileptic encephalopathies, which is both debilitating and challenging to manage, typically arising during the first year of life, with seizures often triggered by fever, infections, or vaccinations. It is characterized by frequent and prolonged seizures, developmental delays, and various other neurological and behavioral impairments. Most cases result from pathogenic mutations in the sodium voltage-gated channel alpha subunit 1 (SCN1A) gene, which encodes a critical voltage-gated sodium channel subunit involved in neuronal excitability. Precision medicine offers significant potential for improving DS diagnosis and treatment. Early genetic testing enables timely and accurate diagnosis. Advances in our understanding of DS's underlying genetic mechanisms and neurobiology have enabled the development of targeted therapies, such as gene therapy, offering more effective and less invasive treatment options for patients with DS. Targeted and gene therapies provide hope for more effective and personalized treatments. However, research into novel approaches remains in its early stages, and their clinical application remains to be seen. This review addresses the current understanding of clinical DS features, genetic involvement in DS development, and outcomes of novel DS therapies.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan;
- Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Ming-Tao Yang
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan;
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan
| | - Lung-Chang Lin
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Kuo-Liang Chiang
- Department of Pediatric Neurology, Kuang-Tien General Hospital, Taichung 433, Taiwan;
- Department of Nutrition, Hungkuang University, Taichung 433, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- The iEGG and Animal Biotechnology Center, and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
3
|
Trinh NHNY, Reid AS, Robertson B. Perioperative considerations for adult patients with Dravet syndrome in regional centres. BMJ Case Rep 2023; 16:e256261. [PMID: 38056933 PMCID: PMC10711814 DOI: 10.1136/bcr-2023-256261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Dravet syndrome (DS) is a rare and intractable severe form of epilepsy presenting in infancy with frequent prolonged myoclonic seizures and neurodevelopmental impairment, associated with a SCN1A gene mutation. Seizures are often triggered by temperature fluctuations and hyperthermia. This report presents a woman in her late adolescence with DS complicated with intractable catamenial epilepsy, a sex-specific form of epilepsy with seizure activity prominent during phases of the menstrual cycle. The patient underwent general anaesthesia for a hysteroscopy, cervical dilatation and endometrial curettage with Mirena insertion to improve seizure control. Her perioperative care was optimised for seizure prevention with continuation of antiepileptic medications, strict temperature monitoring and control, optimised anaesthetic agents encompassing induction with propofol and fentanyl with maintenance sevoflurane, followed by attentive postoperative care and monitoring. This case demonstrates that general anaesthesia can safely be delivered to adult patients with DS in rural and regional areas with thorough perioperative planning.
Collapse
Affiliation(s)
| | - Amy Susan Reid
- Anaesthesia, Albury Wodonga Health, East Albury, New South Wales, Australia
| | - Barbara Robertson
- Anaesthesia, Albury Wodonga Health, East Albury, New South Wales, Australia
| |
Collapse
|
4
|
Strzelczyk A, Lagae L, Wilmshurst JM, Brunklaus A, Striano P, Rosenow F, Schubert‐Bast S. Dravet syndrome: A systematic literature review of the illness burden. Epilepsia Open 2023; 8:1256-1270. [PMID: 37750463 PMCID: PMC10690674 DOI: 10.1002/epi4.12832] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
We performed a systematic literature review and narrative synthesis according to a pre-registered protocol (Prospero: CRD42022376561) to identify the evidence associated with the burden of illness in Dravet syndrome (DS), a developmental and epileptic encephalopathy characterized by drug-resistant epilepsy with neurocognitive and neurobehavioral impairment. We searched MEDLINE, Embase, and APA PsychInfo, Cochrane's database of systematic reviews, and Epistemonikos from inception to June 2022. Non-interventional studies reporting on epidemiology (incidence, prevalence, and mortality), patient and caregiver health-related quality of life (HRQoL), direct and indirect costs and healthcare resource utilization were eligible. Two reviewers independently carried out the screening. Pre-specified data were extracted and a narrative synthesis was conducted. Overall, 49 studies met the inclusion criteria. The incidence varied from 1:15 400-1:40 900, and the prevalence varied from 1.5 per 100 000 to 6.5 per 100 000. Mortality was reported in 3.7%-20.8% of DS patients, most commonly due to sudden unexpected death in epilepsy and status epilepticus. Patient HRQoL, assessed by caregivers, was lower than in non-DS epilepsy patients; mean scores (0 [worst] to 100/1 [best]) were 62.1 for the Kiddy KINDL/Kid-KINDL, 46.5-54.7 for the PedsQL and 0.42 for the EQ-5D-5L. Caregivers, especially mothers, were severely affected, with impacts on their time, energy, sleep, career, and finances, while siblings were also affected. Symptoms of depression were reported in 47%-70% of caregivers. Mean total direct costs were high across all studies, ranging from $11 048 to $77 914 per patient per year (PPPY), with inpatient admissions being a key cost driver across most studies. Mean costs related to lost productivity were only reported in three publications, ranging from approximately $19 000 to $20 000 PPPY ($17 596 for mothers vs $1564 for fathers). High seizure burden was associated with higher resource utilization, costs and poorer HRQoL. The burden of DS on patients, caregivers, the healthcare system, and society is profound, reflecting the severe nature of the syndrome. Future studies will be able to assess the impact that newly approved therapies have on reducing the burden of DS.
Collapse
Affiliation(s)
- Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine‐Main, Center of Neurology and NeurosurgeryGoethe‐University and University Hospital FrankfurtFrankfurt am MainGermany
- LOEWE Center for Personalized and Translational Epilepsy Research (CePTER)Goethe‐University FrankfurtFrankfurt am MainGermany
| | - Lieven Lagae
- Department of Development and RegenerationUniversity Hospitals KU LeuvenLeuvenBelgium
| | - Jo M Wilmshurst
- Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - Andreas Brunklaus
- Paediatric Neurosciences Research GroupRoyal Hospital for ChildrenGlasgowUK
- School of Health and WellbeingUniversity of GlasgowGlasgowUK
| | - Pasquale Striano
- IRCCS ‘G. Gaslini’ InstituteGenovaItaly
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversity of GenoaGenovaItaly
| | - Felix Rosenow
- Epilepsy Center Frankfurt Rhine‐Main, Center of Neurology and NeurosurgeryGoethe‐University and University Hospital FrankfurtFrankfurt am MainGermany
- LOEWE Center for Personalized and Translational Epilepsy Research (CePTER)Goethe‐University FrankfurtFrankfurt am MainGermany
| | - Susanne Schubert‐Bast
- Epilepsy Center Frankfurt Rhine‐Main, Center of Neurology and NeurosurgeryGoethe‐University and University Hospital FrankfurtFrankfurt am MainGermany
- LOEWE Center for Personalized and Translational Epilepsy Research (CePTER)Goethe‐University FrankfurtFrankfurt am MainGermany
- Department of NeuropediatricsGoethe‐University and University Hospital FrankfurtFrankfurt am MainGermany
| |
Collapse
|
5
|
Owen Pickrell W, Guelfucci F, Martin M, Holland R, Chin RF. Prevalence and healthcare resource utilization of patients with Dravet syndrome: retrospective linkage cohort study. Seizure 2022; 99:159-163. [DOI: 10.1016/j.seizure.2022.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022] Open
|
6
|
Strzelczyk A, Schubert-Bast S. A Practical Guide to the Treatment of Dravet Syndrome with Anti-Seizure Medication. CNS Drugs 2022; 36:217-237. [PMID: 35156171 PMCID: PMC8927048 DOI: 10.1007/s40263-022-00898-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/09/2022] [Indexed: 01/14/2023]
Abstract
Dravet syndrome is a severe developmental and epileptic encephalopathy characterised by refractory seizures and cognitive dysfunction. The treatment is challenging, not least because the seizures are highly drug resistant, requiring multiple anti-seizure medications (ASMs), while some ASMs can exacerbate seizures. Initial treatments include the broad-spectrum ASMs valproate (VPA), and clobazam (CLB) in some regions; however, they are generally insufficient to control seizures. With this in mind, three adjunct ASMs have been approved specifically for the treatment of seizures in patients with Dravet syndrome: stiripentol (STP) in 2007 in the European Union and 2018 in the USA, cannabidiol (CBD) in 2018/2019 (in combination with CLB in the European Union) and fenfluramine (FFA) in 2020. These "add-on" therapies (mostly to VPA/CLB) are used as escalation therapies, with the choice dependent on availability in different countries, patient characteristics and caregiver preferences. Topiramate is also frequently used, with evidence of efficacy in Dravet syndrome, and there is anecdotal evidence of efficacy with bromide, which is frequently used in Germany and Japan. With a growing treatment landscape for Dravet syndrome, there can be practical challenges for clinicians, particularly with issues associated with polypharmacy. This practical guide provides an overview of these main ASMs including their indications/contraindications, mechanism of action, efficacy, safety and tolerability profile, dosage requirements, and laboratory and clinical parameters to be evaluated. Standard laboratory and clinical parameters include blood counts, liver function tests, serum concentrations of ASMs, monitoring the growth of children, as well as weight loss and acceleration of behavioural problems. Regular cardiac monitoring is also important with FFA as it has previously been associated with cases of cardiac valve disease when used in adults at high doses (up to 120 mg/day) in combination with phentermine as a therapy for obesity. Importantly, no signs of heart valve disease have been documented to date at the low doses used in patients with developmental and epileptic encephalopathies. In addition, potential drug-drug interactions and their consequences are a key consideration in everyday practice. Interactions that potentially require dosage adjustments to alleviate adverse events include the following: STP + CLB resulting in increased plasma concentrations of CLB and its active metabolite norclobazam may increase somnolence, and an interaction with STP and VPA may increase gastrointestinal adverse events. Cannabidiol has a bi-directional interaction with CLB producing an increase in plasma concentrations of 7-OH-CBD and norclobazam resulting in the potential for increased somnolence and sedation. In addition, CBD is associated with elevations of liver transaminases particularly in patients taking concomitant VPA. The interaction between FFA and STP requires a dose reduction of FFA. Furthermore, concomitant administration of VPA with topiramate has been associated with encephalopathy and/or hyperammonaemia. Finally, we briefly describe other ASMs used in Dravet syndrome, and current key clinical trials.
Collapse
Affiliation(s)
- Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Schleusenweg 2-16 (Haus 95), 60528, Frankfurt am Main, Germany. .,LOEWE Center for Personalized and Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany.
| | - Susanne Schubert-Bast
- grid.7839.50000 0004 1936 9721Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Schleusenweg 2-16 (Haus 95), 60528 Frankfurt am Main, Germany ,grid.7839.50000 0004 1936 9721LOEWE Center for Personalized and Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany ,grid.7839.50000 0004 1936 9721Department of Neuropediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|