1
|
Fateh AA, Smahi A, Hassan M, Mo T, Hu Z, Mohammed AAQ, Hu Y, Massé CC, Chen L, Chen Y, Liao J, Zeng H. From brain connectivity to cognitive function: Dissecting the salience network in pediatric BECTS-ESES. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111110. [PMID: 39069247 DOI: 10.1016/j.pnpbp.2024.111110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Benign childhood epilepsy with centrotemporal spikes (BECTS), a common pediatric epilepsy, may lead to cognitive decline when compounded by Electrical Status Epilepticus during Sleep (ESES). Emerging evidence suggests that disruptions in the Salience Network (SN) contribute significantly to the cognitive deficits observed in BECTS-ESES. Our study rigorously investigates the dynamic functional connectivity (dFC) within the SN and its correlation with cognitive impairments in BECTS-ESES, employing advanced neuroimaging and neuropsychological assessments. METHODS In this research, 45 patients diagnosed with BECTS-ESES and 55 age-matched healthy controls (HCs) participated. We utilized resting-state functional magnetic resonance imaging (fMRI) and Independent Component Analysis (ICA) to identify three fundamental SN nodes: the right Anterior Insula (rAI), left Anterior Insula (lAI), and the Anterior Cingulate Cortex (ACC). A two-sample t-test facilitated the comparison of dFC between these pivotal regions and other brain areas. RESULTS Significantly, the BECTS-ESES group demonstrated increased dFC, particularly between the ACC and the right Middle Occipital Gyrus, and from the rAI to the right Superior Parietal Gyrus and Cerebellum, and from the lAI to the left Postcentral Gyrus. Such dFC augmentations provide neural insights potentially explaining the neuropsychological deficits in BECTS-ESES children. Employing comprehensive neuropsychological evaluations, we mapped these dFC disruptions to specific cognitive impairments encompassing memory, executive functioning, language, and attention. Through multiple regression analysis and path analysis, a preliminary but compelling association was discovered linking dFC disturbances directly to cognitive impairments. These findings underscore the critical role of SN disruptions in BECTS-ESES cognitive dysfunctions. LIMITATION Our cross-sectional design and analytic methods preclude definitive mediation models and causal inferences, leaving the precise nature of dFC's mediating role and its direct impact by BECTS-ESES partially unresolved. Future longitudinal and confirmatory studies are needed to comprehensively delineate these associations. CONCLUSION Our study heralds dFC within the SN as a vital biomarker for cognitive impairment in pediatric epilepsy, advocating for targeted cognitive-specific interventions in managing BECTS-ESES. The preliminary nature of our findings invites further studies to substantiate these associations, offering profound implications for the prognosis and therapeutic strategies in BECTS-ESES, thereby underlining the importance of this research in the field of pediatric neurology and epilepsy management.
Collapse
Affiliation(s)
- Ahmed Ameen Fateh
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Abla Smahi
- Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Muhammad Hassan
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Tong Mo
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Zhanqi Hu
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Adam A Q Mohammed
- School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
| | - Yan Hu
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Cristina Cañete Massé
- Psychology, Sciences of Education and Sport, Blanquerna, Ramon Llull University, Barcelona, Spain; Department of Social Psychology and Quantitative Psychology, Faculty of Psychology, Universitat de Barcelona, Barcelona, Spain
| | - Li Chen
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Yan Chen
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Jianxiang Liao
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Hongwu Zeng
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen 518038, China.
| |
Collapse
|
2
|
Ameen Fateh A, Hassan M, Mo T, Hu Z, Smahi A, A Q Mohammed A, Liao J, Alarefi A, Zeng H. Static and dynamic changes in amplitude of Low-Frequency fluctuations in patients with Self-Limited epilepsy with centrotemporal Spikes (SeLECTS): A Resting-State fMRI study. J Clin Neurosci 2024; 129:110817. [PMID: 39244976 DOI: 10.1016/j.jocn.2024.110817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVE This study aims to explore differences in the static and dynamic amplitude of low-frequency fluctuations (sALFF and dALFF) in resting-state functional MRI (rs-fMRI) data between patients with Benign childhood epilepsy with centrotemporal spikes (SeLECTS) and healthy controls (HCs). MATERIALS AND METHODS We recruited 45 patient with SeLECTS and 55 HCs, employing rs-fMRI to assess brain activity. The analysis utilized a two-sample t-test for primary comparisons, supplemented by stratification and matching based on clinical and demographic characteristics to ensure comparability between groups. Post hoc analyses assessed the relationships between sALFF/dALFF alterations and clinical demographics, incorporating statistical adjustments for potential confounders and performing sensitivity analysis to test the robustness of our findings. RESULTS Our analysis identified significant differences in sALFF and dALFF between patient with SeLECTS and HCs. Notably, increases in sALFF and dALFF were observed in the right middle temporal gyrus and left superior temporal gyrus among patient with SeLECTS, while a decrease in dALFF was seen in the right cerebellum crus 1. Additionally, a positive correlation was found between abnormal dALFF variability in specific brain regions and various clinical and demographic factors of patient with SeLECTS, with age being one such influential factor. CONCLUSION This investigation provides insights into the assessment of local brain activity in SeLECTS through both static and dynamic approaches. It highlights the significance of non-invasive neuroimaging techniques in understanding the complexities of epilepsy syndromes like SeLECTS and emphasizes the need to consider a range of clinical and demographic factors in neuroimaging studies of neurological disorders.
Collapse
Affiliation(s)
- Ahmed Ameen Fateh
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Muhammad Hassan
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Tong Mo
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Zhanqi Hu
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Abla Smahi
- Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Adam A Q Mohammed
- School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
| | - Jianxiang Liao
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Abdulqawi Alarefi
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Hongwu Zeng
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen 518038, China.
| |
Collapse
|
3
|
Chen D, Liu C, Wang F, Li P, Wei Z, Nie D, Liu P, Liu H. Structure-function interrelationships and associated neurotransmitter profiles in drug-naïve benign childhood epilepsy with central-temporal spikes patients. Eur Radiol 2024:10.1007/s00330-024-10954-7. [PMID: 39009880 DOI: 10.1007/s00330-024-10954-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/12/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024]
Abstract
OBJECTIVES To explore the interrelationships between structural and functional changes as well as the potential neurotransmitter profile alterations in drug-naïve benign childhood epilepsy with central-temporal spikes (BECTS) patients. METHODS Structural magnetic resonance imaging (sMRI) and resting-state functional MRI data from 20 drug-naïve BECTS patients and 33 healthy controls (HCs) were acquired. Parallel independent component analysis (P-ICA) was used to identify covarying components among gray matter volume (GMV) maps and fractional amplitude of low-frequency fluctuations (fALFF) maps. Furthermore, we explored the spatial correlations between GMV/fALFF changes derived from P-ICA and neurotransmitter maps in JuSpace toolbox. RESULTS A significantly positive correlation (p < 0.001) was identified between one structural component (GMV_IC6) and one functional component (fALFF_IC4), which showed significant group differences between drug-naïve BECTS patients and HCs (GMV_IC6: p < 0.01; fALFF_IC4: p < 0.001). GMV_IC6 showed increased GMV in the frontal lobe, temporal lobe, thalamus, and precentral gyrus as well as fALFF_IC4 had enhanced fALFF in the cerebellum in drug-naïve BECTS patients compared to HCs. Moreover, significant correlations between GMV alterations in GMV_IC6 and the serotonin (5HT1a: p < 0.001; 5HT2a: p < 0.001), norepinephrine (NAT: p < 0.001) and glutamate systems (mGluR5: p < 0.001) as well as between fALFF alterations in fALFF_IC4 and the norepinephrine system (NAT: p < 0.001) were detected. CONCLUSION The current findings suggest co-altered structural/functional components that reflect the correlation of language and motor networks as well as associated with the serotonergic, noradrenergic, and glutamatergic neurotransmitter systems. CLINICAL RELEVANCE STATEMENT The relationship between anatomical brain structure and intrinsic neural activity was evaluated using a multimodal fusion analysis and neurotransmitters which might provide an important window into the multimodal neural and underlying molecular mechanisms of benign childhood epilepsy with central-temporal spikes. KEY POINTS Structure-function relationships in drug-naïve benign childhood epilepsy with central-temporal spikes (BECTS) patients were explored. The interrelated structure-function components were found and correlated with the serotonin, norepinephrine, and glutamate systems. Co-altered structural/functional components reflect the correlation of language and motor networks and correlate with the specific neurotransmitter systems.
Collapse
Affiliation(s)
- Duoli Chen
- School of Life Science and Technology, Xidian University, Xi'an, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Chengxiang Liu
- School of Life Science and Technology, Xidian University, Xi'an, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Fuqin Wang
- Department of Radiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Pengyu Li
- School of Life Science and Technology, Xidian University, Xi'an, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Zi Wei
- School of Life Science and Technology, Xidian University, Xi'an, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Dingxin Nie
- School of Life Science and Technology, Xidian University, Xi'an, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Peng Liu
- School of Life Science and Technology, Xidian University, Xi'an, China.
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China.
| | - Heng Liu
- Department of Radiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
4
|
Feng X, Piper RJ, Prentice F, Clayden JD, Baldeweg T. Functional brain connectivity in children with focal epilepsy: A systematic review of functional MRI studies. Seizure 2024; 117:164-173. [PMID: 38432080 DOI: 10.1016/j.seizure.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
Epilepsy is increasingly recognised as a brain network disorder and many studies have investigated functional connectivity (FC) in children with epilepsy using functional MRI (fMRI). This systematic review of fMRI studies, published up to November 2023, investigated profiles of FC changes and their clinical relevance in children with focal epilepsy compared to healthy controls. A literature search in PubMed and Web of Science yielded 62 articles. We categorised the results into three groups: 1) differences in correlation-based FC between patients and controls; 2) differences in other FC measures between patients and controls; and 3) associations between FC and disease variables (for example, age of onset), cognitive and seizure outcomes. Studies revealed either increased or decreased FC across multiple brain regions in children with focal epilepsy. However, findings lacked consistency: conflicting FC alterations (decreased and increased FC) co-existed within or between brain regions across all focal epilepsy groups. The studies demonstrated overall that 1) interhemispheric connections often displayed abnormal connectivity and 2) connectivity within and between canonical functional networks was decreased, particularly for the default mode network. Focal epilepsy disrupted FC in children both locally (e.g., seizure-onset zones, or within-brain subnetworks) and globally (e.g., whole-brain network architecture). The wide variety of FC study methodologies limits clinical application of the results. Future research should employ longitudinal designs to understand the evolution of brain networks during the disease course and explore the potential of FC biomarkers for predicting cognitive and postsurgical seizure outcomes.
Collapse
Affiliation(s)
- Xiyu Feng
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford, London WC1N 1EH, United Kingdom
| | - Rory J Piper
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford, London WC1N 1EH, United Kingdom; Department of Neurosurgery, Great Ormond Street Hospital, London, United Kingdom
| | - Freya Prentice
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford, London WC1N 1EH, United Kingdom
| | - Jonathan D Clayden
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford, London WC1N 1EH, United Kingdom
| | - Torsten Baldeweg
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford, London WC1N 1EH, United Kingdom.
| |
Collapse
|
5
|
Yin Y, Wang F, Ma Y, Yang J, Li R, Li Y, Wang J, Liu H. Structural and functional changes in drug-naïve benign childhood epilepsy with centrotemporal spikes and their associated gene expression profiles. Cereb Cortex 2023; 33:5774-5782. [PMID: 36444721 PMCID: PMC10183734 DOI: 10.1093/cercor/bhac458] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/30/2022] Open
Abstract
Benign epilepsy with centrotemporal spikes (BECTS) is a common pediatric epilepsy syndrome that has been widely reported to show abnormal brain structure and function. However, the genetic mechanisms underlying structural and functional changes remain largely unknown. Based on the structural and resting-state functional magnetic resonance imaging data of 22 drug-naïve children with BECTS and 33 healthy controls, we conducted voxel-based morphology (VBM) and fractional amplitude of low-frequency fluctuation (fALFF) analyses to compare cortical morphology and spontaneous brain activity between the 2 groups. In combination with the Allen Human Brain Atlas, transcriptome-neuroimaging spatial correlation analyses were applied to explore gene expression profiles associated with gray matter volume (GMV) and fALFF changes in BECTS. VBM analysis demonstrated significantly increased GMV in the right brainstem and right middle cingulate gyrus in BECTS. Moreover, children with BECTS exhibited significantly increased fALFF in left temporal pole, while decreased fALFF in right thalamus and left precuneus. These brain structural and functional alterations were closely related to behavioral and cognitive deficits, and the fALFF-linked gene expression profiles were enriched in voltage-gated ion channel and synaptic activity as well as neuron projection. Our findings suggest that brain morphological and functional abnormalities in children with BECTS involve complex polygenic genetic mechanisms.
Collapse
Affiliation(s)
- Yu Yin
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563003, China
| | - Fuqin Wang
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563003, China
| | - Yingzi Ma
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, Yunnan, China
| | - Jia Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, Yunnan, China
| | - Rui Li
- School of Electrical Engineering and Electronic Information, Xihua University, Chengdu 610039, China
| | - Yuanyuan Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 625014, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, Yunnan, China
| | - Heng Liu
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563003, China
| |
Collapse
|
6
|
Functional connectivity differences in speech production networks in Chinese children with Rolandic epilepsy. Epilepsy Behav 2022; 135:108871. [PMID: 35973912 DOI: 10.1016/j.yebeh.2022.108871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022]
|